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Abstract

During the stationary portion of neuron’s spiking response to a stimulus, the stimulus could be coded
in the average rate and, more elaborately, in the statistics of the sequence of interspike intervals. We use
information processing theory to explicitly define when interval coding occurs and quantify the coding
gain beyond rate coding provided by the interval code. We explicitly find the interval distribution com-
mensurate with average rate coding. When we analyzed optomotor neural responses recorded from the
crayfish eye, we found little interval coding occuring despite stimulus-induced changes from a unimodal
to a bimodal interval distribution.

1 Introduction

When a stimulus is presented, the responding neuron usually produces a transient response, which can be
followed by a sustained (relatively) constant rate of discharge. When present, the sustained rate usually
depends on the stimulus, with larger stimuli producing greater rates. The encoded stimulus could vary
not only discharge rate, but also the probability distribution of the interspike intervals and their statistical
dependence structure [5]. Determining what aspect of this relatively simple response encodes the stimulus
is difficult to discern. For example, if the average rate solely encodes the stimulus, average rate variations
must entail a change in the interval distribution and possibly a change in the dependence structure as well.

Our information processing theory rests on studying how neural responses change with the stimulus [2].
In practice or in theory, we compute the Kullback-Leibler distance between responses to measure how well
the response encodes the stimulus change: the larger the distance, the more effective the encoding. This
approach applies to both the transient and sustained responses; we concentrate on the sustained response
here and ask the question “How should the response statistics interval distribution and dependence struc-
ture change to accommodate a pure rate encoding?” We derive the statistical structure commensurate
with rate changes that result in the minimal Kullback-Leibler distance. If the measured distance exceeds
this minimum, additional features of the discharge pattern also encode the stimulus. If not, only the average
rate encodes the stimulus.

2 Results

The framework of information processing theory rests on investigating how the response changes between
two stimulus conditions. In this approach, we compute the Kullback-Leibler distance between the probabil-
ity distributions�������� and �������� that describe the response� to stimulus conditions parameterized
by �� and �� respectively.

� ������������������� �

�
�������� ���

��������

��������
��

In this expression, �� represents the reference stimulus condition. We use natural logarithms for the
Kullback-Leibler distance in subsequent derivations. For simplicity of presentation, assume first that the
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sustained response consists of a sequence of statistically independent, identically distributed interspike in-
tervals. Thus, the data are well-described as a renewal point process and the interval distribution ����
captures all response characteristics [1]. The Kullback-Leibler distance between two interval distributions
would be
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For a given reference response ���� ���� and a second response having average interval ��� when the
stimulus was ��, we seek the minimal distance interval distribution: what interval distribution based the
first response’s statistics is needed to achieve the observed rate change? Mathematically,
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Somewhat surprisingly, this constrained optimization problem has a closed-form solution. Kullback [3]
showed a simple solution solves a very general class of problems that includes the one we have here.
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where � is a constant that gives a unit-area result
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���� is any function of the random quantity �, � equals a constant that forces the solution to meet the
constraint, �� is the constraining value that the expected value of ���� must equal, and ����� denotes the
expected value with respect to the probability function ��������. The minimal Kullback-Leibler distance
consistent with the constraint equals �
� � � �� .

The reason this result is so important is that it specifies how an interval distribution must “morph” just
enough to match some response criterion. In our problem, � � � , the interspike interval, and the response
property we are trying to match is the average interval; consequently, ���� � � . Using Kullback’s result,
the minimal Kullback-Leibler interval distribution that has the same average interval as that measured in
response to �� has the form

����
� �� ���� � ����� �����

�� (1)

This minimal Kullback-Leibler interval distribution is related to the reference distribution by multiplication
with an exponential function of the interspike interval. To find expressions for the constants � and �, first
note that � equals the reciprocal of the moment-generating function of the reference interval distribution.
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To find �, we impose the average rate constraint.
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Simple manipulations show that finding � rests on finding when the derivative of the logarithm of the interval
distribution’s moment-generating function equals ���: �

��
�
 ������� � ���. Note that the parameter � can

be positive or negative: a positive value occurs when ��� 	 ��� and a negative value occurs in the opposite
situation. Furthermore, an average rate change must induce a distance between the interval distributions
of at least �
� � ����. Any measured Kullback-Leibler distance bigger than this quantity must be due to
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“extra” interval distribution changes that indicate interval coding is occurring. Furthermore, the additional
distance describes how much the interval coding contributes to the ability to discriminate between the two
interval sequences.

Because the minimal-Kullback-Leibler-distance “morphing” of the interval distribution is multiplication
by an exponential, you can investigate various reference interval distributions analytically to determine how
they change. For example, gamma distributions, which have the form ���� ���� � ������ , morph into a
gamma distributionhaving the same value for the parameter 
. If the interval distribution is (approximately)
Gaussian, multiplication by an exponential amounts to simply changing the mean: the distribution is shifted
left or right with no change in variance. Thus, if a stimulus change causes the response’s interval distribution
to change from a gamma distribution to some other form, interval coding in addition to rate coding is
occurring.

A second example application of Kullback’s result concerns serial dependence of interspike intervals.
Here, the reference probability distribution would be the joint probability function for successive intervals
����������	��� �	����. This quantity would express the dependence of an interval on the duration of the pre-
vious interval. The minimal Kullback-Leibler joint probability function for the second response constrained
only to have the same average interval as that measured is easily shown to be

����������	��� �	���� � �����������	��� �	���� � �
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where � is again a normalization constant and � is found to satisfy the average-interval constraint. The
exponentials multiplying each other is reminiscent of the joint probability function for independent random
variables. Exploring several examples shows, however, that the dependence of successive intervals (as
measured by the correlation coefficient) can be smaller or larger than that of the reference. In any case,
the presence of interval dependence coding can also be explored this way: any Kullback-Leibler distance
larger than the minimal value �
� � ���� can be due to interval coding and/or interval dependence coding.
Calculating the excess distance for the marginal interval distribution ���� ���� can help discern whether
dependence coding is also present. Note that the values of � and � will be different for the marginal and
joint probability function cases.

3 Data Analysis

These elegant theoretical results do not lend themselves well to dealing with empirical distributions. First
of all, despite the existence of fast algorithms to compute the moment-generating function (chirp-� trans-
form) [4], finding the parameters from data this way is complicated. Instead, we note that finding the scaling
parameter � is easy once we know �. We established an iterative procedure (Newton-Raphson) to estimate
the parameter � from the reference interval histogram and the average-rate constraint provided by the sec-
ond response. We found this to converge quickly. Figure 1 shows the result of applying this algorithm
to data recorded from a crayfish motoneuron. Here, the recordings were made from on optomotor neuron
responding to a spatial wavelength (�) variations of a sinusoidal grating. The increase in Kullback-Leibler
distance for intermediate values of spatial wavelength reflect the fact that the discharge rate increased, which
led to a greater discrepancy between the reference interval distribution and that obtained when the stimulus
changed. The confidence intervals include the minimal Kullback-Leibler distance in all but the two smallest
spatial wavelengths. Note that despite the fact the reference interval histogram is unimodal, the minimal
Kullback-Leibler interval distribution is bimodal in the � � ��Æ and ��Æ cases and that these distributions
match well those measured. For the cases that have a larger Kullback-Leibler distance than required for the
rate change (� � �Æ� 

Æ), the excess distance can be traced to the presence of more short intervals than
necessary for a pure rate change. The difference in the measured and minimal Kullback-Leibler distance is
not large, indicating that this interval coding, while statistically significant, does not contribute greatly to
the overall distance.
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Figure 1: The left column shows the interval histograms of a crayfish visual motoneuron responding to vari-
ations in spatial wavelength of a sinusoidal grating. The solid line is the measured interval histogram and
the thin line is the minimum Kullback-Leibler distribution derived from the reference interval histogram
shown in the right column. The reference stimulus had a wavelength of 
��Æ. The bottom plot in the
right column compares the measured and minimal Kullback-Leibler distances for the measured interval his-
tograms. For each stimulus condition, the circle indicates the bootstrapped estimate of the Kullback-Leibler
distance between the two measured interval histograms and the error bars denote ��� confidence intervals
for the estimate. The � symbol marks the value of the minimal Kullback-Leibler distance consistent with
the measured average interspike interval.

4 Conclusions

The Kullback-Leibler distance characterizes how well two responses can be distinguished by an optimal
classifer [2]. Kullback’s result allows teasing apart components of a measured distance into those required
for a rate change and those that might be required to reflect an interval distribution change and a dependence
change. Thus, an objective measure can be made not only of the efficacy of a neural code, but also of what
response attributes contribute to it. However, having these response attributes identified does not mean that
the receiving neuron employs them in its processing, but they do contribute to distinguishing the responses.
It not employed, subsequent processing is suboptimal.
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Because of the generality of this result, any response attribute that can be expressed as an expected value
can be analyzed in this way. Several response attributes can be examined systematically in this approach,
with the each attribute’s contribution to the neural code quantified.
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