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Chapter 1

Probability

1.1 Foundations of Probability Theory

The basis of probability theory is a set of events—sample space—and a systematic set of num-
bers — probabilities—assigned to each event. What is an “event” and what kind of mathematical structure
can collections of events —sets —have?

1.1.1 Mathematical Structure of Events

Letting A and B denote events, each of which consist of a collection of indecomposable elementary events w;.
Events can be manipulated according to the union, intersection and complement operations.

Al JB={0w:w € Aor » € B} (union)
AﬂB ={w:w € Aand w € B} (intersection)
A={w:w ¢ A} (complement)
AUB=ANB.
The null set @ is the complement of Q, the universal set containing all events. “Indecomposable” or elementary
events have nothing in common: ;N w i= 0. Events, on the other hand, may share elements. Events are said

to be mutually exclusive if there is no element common to both events: A(B = 0.
For a collection of events .7 to be an algebra,

e 0eand Q€ .
o Ifthe events A € 7 and B € ¢/, then both the union and intersection of these events are in 7: A|JB € o/
and A\ B € ¢/ . This property implies that all finite unions and intersections of events are also contained

in the algebra.
N N

IfA,..  Ay€o, | JAn€Ew and (A, €&

i=1 i=1

We say that .Z is a 0-algebra if the algebra is closed under all countable intersections and unions. Note that
this means that

IfA,,...€.Z, |JAeZ and (A €Z .

i=1 i=1

In probability theory, a sample space is the set Q of all possible elementary outcomes w; of an experiment,
which can be collected into event sets.



2 Probability Chap. 1

Q

@ 7
;
» X

Figure 1.1: A random variable X is a function having a domain on the o-algebra of events and a range lying
somewhere on the real line. Random variables need not be one-to-one or onto.

1.1.2 The Probability of an Event

The key aspect of the theory is the system of assigning probabilities to events. Associated with each event A;
is a probability measure Pr[A;], sometimes denoted by ;, that obeys the axioms of probability.

e Pr[A]>0
o Pr[Q]=1
e If AN B = 0, then Pr[AUB] = Pr[A] + Pr[B].

The consistent set of probabilities Pr[-] assigned to events are known as the a priori probabilities. From the
axioms, probability assignments for Boolean expressions can be computed. For example, simple Boolean
manipulations (A|JB = AUJ(AB) and AB|JAB = B) lead to

Pr[A| ) B] = Pr[A] + Pr[B] — Pr[A[ ) B].

Suppose Pr[B] # 0. Suppose we know that the event B has occurred; what is the probability that event
A also occurred? This calculation is known as the conditional probability of A given B and is denoted by
Pr[A|B]. To evaluate conditional probabilities, consider B to be the sample space rather than Q. To obtain a
probability assignment under these circumstances consistent with the axioms of probability, we must have

Pr[AN B]

PilAB = =

The event is said to be statistically independent of B if Pr[A|B] = Pr[A]: the occurrence of the event B does
not change the probability that A occurred. When independent, the probability of their intersection Pr[A N B]
is given by the product of the a priori probabilities Pr[A] - Pr[B]. This property is necessary and sufficient for
the independence of the two events. As Pr[A|B] = Pr[AN B]/ Pr[B] and Pr[B|A] = Pr[AN B]/ Pr[A], we obtain
Bayes’ Rule.

Pr[A|B] - Pt[B]

Pr[A]

All situations demanding a stochastic model are defined by what is known as the ordered-triple of prob-
ability theory (2,.#,P). The universal set Q defines the set of events, .# defines elementary events (by
imposing the structure of union and intersection), and P the probability assignment that conforms to the laws
of probability. In most applications, only the probability law needs precise definition. In some advanced
situations, precisely defining the o-algebra is also required.

Pr[B|A] =

1.2 Random Variables and Probability Density Functions

A random variable X is the assignment of a number—real or complex—to each sample point in sample
space; mathematically, X :  — IR (see Figure 1.1). Thus, a random variable can be considered a function
whose domain is a set and whose range are, most commonly, a subset of the real line. This range could be
discrete-valued (especially when the domain Q is discrete). In this case, the random variable is said to be
symbolic-valued. In some cases, the symbols can be related to the integers, and then the values of the random
variable can be ordered. When the range is continuous, an interval on the real-line say, we have a continuous-
valued random variable. In some cases, the random variable is a mixed random variable: it is both discrete-
and continuous-valued.
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The probability distribution function or cumulative can be defined for continuous, discrete (only if an
ordering exists), and mixed random variables.

Py (x) =Pr[X <4].

Note that X denotes the random variable and x denotes the argument of the distribution function. Probabil-
ity distribution functions are increasing functions: if A = {w : X(w) <x,;} and B= {0 :x; < X(w) <x,},
Pr{AUB] = Pr[A]+P1[B] = Py(x,) = Py(x;)+Prlx; <X <x,],; which means that Py(x,) > Py(x,),
X, < x,.

The probability density function py (x) is defined to be that function when integrated yields the distribution
function.

P = [ playda

As distribution functions may be discontinuous when the random variable is discrete or mixed, we allow den-
sity functions to contain impulses. Furthermore, density functions must be non-negative since their integrals
are increasing.

1.2.1 Function of a Random Variable

When random variables are real-valued, we can consider applying a real-valued function. Let Y = f(X); in
essence, we have the sequence of maps f: Q+— IR — IR, which is equivalent to a simple mapping from sample
space € to the real line. Mappings of this sort constitute the definition of a random variable, leading us to
conclude that Y is a random variable. Now the question becomes “What are Y’s probabilistic properties?”.
The key to determining the probability density function, which would allow calculation of the mean and
variance, for example, is to use the probability distribution function.

For the moment, assume that f(-) is a monotonically increasing function. The probability distribution of
Y we seek is

<
= Pr[f(X) <»]

7o) (*)
=P (')

Equation (*) is the key step; here, f~!(y) is the inverse function. Because f(-) is a strictly increasing function,
the underlying portion of sample space corresponding to ¥ < y must be the same as that corresponding to
X < f7(y). We can find Y’s density by evaluating the derivative.

The derivative term amounts to 1/f'(x)|_, .

The style of this derivation applies to monotonically decreasing functions as well. The difference is
that the set corresponding to ¥ < y now corresponds to X > f~!(x). Now, P,(y) = 1—Py(f~'(y)). The
probability density function of a monotonic—increasing or decreasing —function of a random variable is
found according to the formula

1

m px(f7' ()

py(y) =

*What property do the sets A and B have that makes this expression correct?
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Example
Suppose X has an exponential probability density: py(x) = e”*u(x), where u(x) is the unit-step func-
tion. We have ¥ = X2. Because the square-function is monotonic over the positive real line, our
formula applies. We find that
1
=V y>0.

Although difficult to show, this density indeed integrates to one.

1.2.2 Expected Values

The expected value of a function f(-) of a random variable X is defined to be
U= [ rpytds.

Several important quantities are expected values, with specific forms for the function f(-).

e f(X)=X.
The expected value or mean of a random variable is the center-of-mass of the probability density func-
tion. We shall often denote the expected value by m, or just m when the meaning is clear. Note that
the expected value can be a number never assumed by the random variable (py(m) can be zero). An
important property of the expected value of a random variable is linearity: £[aX] = a £[X], a being a
scalar.

o f(X)=Xx2
&[X?] is known as the mean squared value of X and represents the “power” in the random variable.

o f(X)=(X—my).
The so-called second central difference of a random variable is its variance, usually denoted by cr)%. This
expression for the variance simplifies to 02 = &[X?] — &2[X], which expresses the variance operator
7 []. The square root of the variance oy is the standard deviation and measures the spread of the
distribution of X. Among all possible second differences (X — c)z, the minimum value occurs when
¢ = my (simply evaluate the derivative with respect to ¢ and equate it to zero).

o f(X)=X".
&[X"] is the n'" moment of the random variable and & [ (X — my)"] the n'"* central moment.
o F(X) = e,

The characteristic function of a random variable is essentially the Fourier Transform of the probability
density function.

gl =@, (jv) = /_o;px(x)ejvxdx

The moments of a random variable can be calculated from the derivatives of the characteristic function
evaluated at the origin.

A"y (V)
X" = i n X

EX" =] Jyn

v=0
1.2.3 Jointly Distributed Random Variables

Two (or more) random variables can be defined over the same sample space: X : Q —R,Y: Q— IR. More
generally, we can have a random vector (dimension N) X: Q +— RV, First, let’s consider the two-dimensional
case: X = {X,Y}. Just as with jointly defined events, the joint distribution function is easily defined.

Py y(x,y) = Prl{X <x}n{Y < y}]
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The joint probability density function py ,(x,y) is related to the distribution function via double integration.

‘92PX,Y(xa)’)

X y
Pt = [ [ perlapidadp o pyyley) = =8

Since limy_« Py ,(x,y) = Py (x), the so-called marginal density functions can be related to the joint density
function.

px(x) = /_o;pxyy(xa/j)dﬁ and py (y) = /_ipxyy(aaY) do

Extending the ideas of conditional probabilities, the conditional probability density function pxly(x|Y =y)
is defined (when py, (y) # 0) as
Px,Y(xa y)

pX|Y('x|Y:y) = py(y)

For jointly defined random variables, expected values are defined similarly as with single random vari-
ables. Probably the most important joint moment is the covariance:

cov[X,Y] = £[XY]— £[X]- £[Y], where £[XY]= /_o;/_ixypxyy(x,y) dxdy.

Related to the covariance is the (confusingly named) correlation coefficient: the covariance normalized by the
standard deviations of the component random variables.

_ cov[X,Y]

Pyy=
XY 0y Oy

Because of the Cauchy-Schwarz inequality, the correlation coefficient’s value ranges between —1 and 1.
A conditional expected value is the mean of the conditional density.

X = [ oy alY =) ax

Note that the conditional expected value is now a function of ¥ and is therefore a random variable. Conse-
quently, it too has an expected value, which is easily evaluated to be the expected value of X.

sletxl) = [ [ [ mytolr =y)ax| 0y = 61

More generally, the expected value of a function of two random variables can be shown to be the expected
value of a conditional expected value: &[f(X,Y)] = &[&[f(X,Y)|Y]]. This kind of calculation is frequently
simpler to evaluate than trying to find the expected value of f(X,Y) “all at once.” A particularly interesting
example of this simplicity is the random sum of random variables. Let L be a random variable and {X,} a
sequence of random variables. We will find occasion to consider the quantity E{‘z 1 X;- Assuming that the each
component of the sequence has the same expected value £[X], the expected value of the sum is found to be

s =¢ ¢ |3 x|
=¢[L ¢X]]
= &[1]- &[X]
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1.2.4 Notions of Statistical Dependence

Statistical dependence is not consequent of the structure or nature of the underlying event space. Rather,
statistical dependence captures how two (or more) random variables are interrelated through the probability
law P.

Two random variables are statistically independent when pxly(x|Y =y) = py(x), which is equivalent to
the condition that the joint density function is separable: py y(x,y) = px(x) - py (y). Thus, no matter what the
conditioning value y, the probabilistic properties of X remain unchanged from what they would be if we were
ignorant of Y’s value.

A weaker form of independence is mean-square independence wherein the conditional mean equals the
expected value: £[X|Y = y] = £[X] for all values of y. Clearly, random variables that are statistically indepen-
dent are also mean-square independent, but not the other way around. The essential reason for mean-square
independence being weaker is because expected values are integrals.

When two random variables are uncorrelated, their covariance and correlation coefficient equals zero so
that £[XY] = &[X] £[Y]. Statistically independent and mean-square independent random variables are always
uncorrelated, but uncorrelated random variables can be dependent. For example, let X be uniformly distributed
over [—1,1] and let ¥ = X2. The two random variables are uncorrelated, but are clearly not statistically
independent. The correlation coefficient equals zero when two randfom variables are uncorrelated.

statistical independence —> mean-square independence = uncorrelated

Despite being the weakest, the correlation coefficient is typically used to assess from data the statistical
dependence between two random variables. The more stringent notions would have one determine if a func-
tion, in the case of statistical dependence, or a scalar, in the case of mean-square dependence, varied with
a random variable’s value.* The correlation coefficient represents a single quantity that not only can assess
whether two random variables are uncorrelated (if the correlation coefficient zero?), but also measure the
degree of correlation. The correlation coefficient quantifies the degree to which the statistical relationship
between two random variables can be summarized by a straight line. When Y = aX, py, =1if a > 0 and
px y = —1if a <0. The smaller the magnitude of p, the less correlated the two random variables.

1.2.5 Random Vectors

A random vector X is an ordered sequence of random variables X = col[X, ..., X;]. The density function of
a random vector is defined in a manner similar to that for pairs of random variables. The expected value of a
random vector is the vector of expected values.

61X = [ xox(x)ax = col[61X,], ., 61X,

The covariance matrix Ky is an L x L matrix consisting of all possible covariances among the random vector’s
components.

K = cov[X;, X = ¢[XX]] - IX] 6[X]] i.j=1,....L

Using matrix notation, the covariance matrix can be written as Ky = £[(X — £[X])(X — #[X])']. Using
this expression, the covariance matrix is seen to be a symmetric matrix and, when the random vector has no
zero-variance component, its covariance matrix is positive-definite. Note in particular that when the random
Variables are real-valued, the diagonal elements of a covariance matrix equal the variances of the components:

KX = ch Circular random vectors are complex-valued with uncorrelated, identically distributed, real and
imaginary parts. In this case, & [|X | ] = 2ch and & [X 2] = 0. By convention, ch denotes the variance of
the real (or imaginary) part. The characteristic function of a real-valued random vector is defined to be

oy (jv) =& [X].

*Information theoretic quantities, like entropy, can be used to assess statistical dependence. If and only if X,Y are statistically
independent does the joint entropy 5#(X,Y) equal 5#(X) - 5#(Y ). Techniques exist for measuring entropy without needing to estimate
the probability function.
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1.2.6 Single function of a random vector

Just as shown in §1.2.1, the key tool is the distribution function. When ¥ = f(X), a scalar-valued function
of a vector, we need to find that portion of the domain that corresponds to f(X) < y. Once this region is
determined, the density can be found.

For example, the maximum of a random vector is a random variable whose probability density is usually
quite different than the distributions of the vector’s components. The probability that the maximum is less
than some number u is equal to the probability that all of the components are less than u.

PrimaxX < u] = Pg(u,..., 1)

Assuming that the components of X are statistically independent, this expression becomes

dimX
PrfmaxX < u] = [ ] Py (w),
1=

and the density of the maximum has an interesting answer.

dimX

Prmaxx (M) = Zl px, (W) ] [Py, (1)

i#j

When the random vector’s components are identically distributed, we have

Prnaxx (1) = (dimX) py () PLA™X = (1)
1.2.7 Several functions of a random vector

When we have a vector-valued function of a vector (and the input and output dimensions don’t necessarily
match), finding the joint density of the function can be quite complicated, but the recipe of using the joint
distribution function still applies. In some (intersting) cases, the derivation flows nicely. Consider the case
where Y = AX, where A is an invertible matrix.

Py(y) = PrlAX <y]
=Pr[X<A™y]
=P (A7ly)

To find the density, we need to evaluate the N"-order mixed derivative (N is the dimension of the random
vectors). The Jacobian appears and in this case, the Jacobian is the determinant of the matrix A.

1 _
Py(Y) = mpx (A lY)

1.3 Sequences of Random Variables

Sequences of random variables X, X,, ... denotes a sequence of functions defined on the probability space.
We care how this sequence of random variables behaves, in particular does the sequence converge to some
well-defined random variable? )

IimX, =X

n—o0

One could simply extend the definition of a convergent sequence of real-valued functions: does f;,(x) — f(x)?
Here, convergence means that the sequence of real numbers f,(x,) converges to f(x,) for all choices of x,.
Were it so simple. This kind of convergence is known as point-wise convergence. It is well-known that
Fourier series do not converge point-wise (points of discontinuity cause problems). Consequently, we need
weaker forms of convergence, which amounts to defining what “=" means. For random variables, it is even
more complicated because we also need to include the definition of probability for all the random variables
involved. Consequently, many forms of convergence have been defined.
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Sure convergence. The random sequence X, converges surely to the random variable X if the sequence
X (n, w) converges to the function X (w) as n — o for all @ € Q. Sure convergence amounts to point-wise
convergence of nonrandom functions. This most restrictive form of convergence requires that the sequence
converges even on sets that have probability zero of occurring. Consequently, this form of convergence is
usually too demanding.

Almost-sure convergence. The sequence X, converges a.s. to X on all sets that have non-zero proba-
bility.
Pr[lim X, = X| =1
n—o
This form of convergence is also known as probability-one convergence.

Mean-square convergence. A sequence of random variables converges in the mean-square sense if
lim £[|X, —X[*]=0.
n—®

This kind of convergence depends only on the second-order properties of the random variable (all second

moments must be finite, of course) and thus is a weak form of convergence.

Convergence in probability. This even weaker form of convergence than in mean-square demands that
the probability the sequence deviates from the limit be zero.

limPr{|X, —X|>¢e]=0 Ve>0
n—®

“Weaker” means that we can show that all sequences converging in mean-square also converge in proba-
bility but not vice-versa. The proof relies on the Chebyshev inequality.

NPl

Py | > €] < S5

Showing this result is easy.
sIVPI= [ Ppyi)dy

> / Yopy (y)dy
[y|>e

> ¢? / py(y)dy
[y|>e

=2 Pr[|Y| > ¢

To apply the Chebyshev inequality, we let ¥ = X;, —X. Assuming X, — X in the mean-square sense,
lim, . &£[|Y|?] = 0. Consequently, for any & > 0, lim, e Pr[|X,, — X| > €] = 0. To show that the converse
does not apply, we need only create a sequence without second moments, like Cauchy random variables, that
converges in probability. For example, Let X be Cauchy and define X;, = X + 1/n.

Convergence in distribution. Let the random variables X, have a probability distribution function
PXH(~). The sequence formed by these random variables converges in distribution to the random variable
X if
Jim Py, (x) = Py (x)
for all points of continuity of Py (x). This is the weakest form of convergence of those described here since it
only concerns the probability assignments, not the inherent properties of the random variables.
The hierarchy of convergence modes of random sequences is shown in Figure 1.2.
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All Random Variables

distribution
probability

= (@

Figure 1.2: The implication hierarchy of notions of convergence are depicted. The weakest form (in proba-
bility) encompasses more situations while the most restrictive —surely —applies to the fewest.

Perhaps the most common application of notions of convergence is the “Law of the Unconscious Statis-
tician:” the sample average of statistically independent, identically distributed random variables converges to

the mean.
n

1
lim - ) X, = £1X]

nmen &

Here, the sequence of random variables is the sample average and the convergent random variable only as-
sumes the value of the mean with non-zero probability. The Strong Law of Large Numbers uses the notion of
almost sure convergence and the Weak Law of Large Numbers uses convergence in probability.

1.4 Special Random Variables

The Appendix describes the properties of many kinds of random variables. A few of the most important ones
are described here.

1.4.1 The Gaussian Random Variable

The random variable X is said to be a Gaussian random variable* if its probability density function has the

form
) 1 (x—m)?
X) = exp§ — .
R T
The mean of such a Gaussian random variable is m and its variance 2. As a shorthand notation, this informa-

tion is denoted by x ~ .#"(m, 0?). The characteristic function ®y(-) of a Gaussian random variable is given
by

Dy (jv) = /™ eV

No closed form expression exists for the probability distribution function of a Gaussian random variable.
For a zero-mean, unit-variance, Gaussian random variable (JV (0, 1)) , the probability that it exceeds the value
x is denoted by Q(x).

PriX >x] =1—-Py(x) = %/xweﬂﬁ/zd(x =0(x)

A plot of Q(-) is shown in Fig. 1.3. When the Gaussian random variable has non-zero mean and/or non-unit

*Gaussian random variables are also known as normal random variables.
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X

Figure 1.3: The function Q(+) is plotted on logarithmic coordinates. Beyond values of about two, this function
decreases quite rapidly. Two approximations are also shown that correspond to the upper and lower bounds
given by Eq. 1.1.

variance, the probability of it exceeding x can also be expressed in terms of Q(-).

Pr[X>x]:Q<J%), X ~ A (m,0?)
Integrating by parts, Q(-) is bounded (for x > 0) by
1 X 2 1 _ep
= e <Q0x) < e . 1.1
Vam Teet RS -0

As x becomes large, these bounds approach each other and either can serve as an approximation to Q(-); the
upper bound is usually chosen because of its relative simplicity. The lower bound can be improved; noting
that the term x/(1+x?) decreases for x < 1 and that Q(x) increases as x decreases, the term can be replaced
by its value at x = 1 without affecting the sense of the bound for x < 1.

1
—F€
221

We will have occasion to evaluate the expected value of exp{aX +bX?} where X ~ 4" (m,0?) and a, b
are constants. By definition,

<o), x<1 (12)

s ﬁ /_ “; exp{ax+ b — (x—m)?/(26°)} dx

The argument of the exponential requires manipulation (i.e., completing the square) before the integral can be
evaluated. This expression can be written as

1
_ﬁ{(l —2b0?)x* = 2(m~+ac?)x+m?} .
Completing the square, this expression can be written

1—2ba2< m+a02)2 1—2b02<m+a02)2 m?

202\’ T 1-2b02 202 \1-2b0%2) 202
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We are now ready to evaluate the integral. Using this expression,
2 2\ 2 2
AXbX2 1-2bo” [ m+ao _om
gl = eXp{ 200 \1—20?) 202 ("
1 /wex 1 —2bo? m+ao?\’ J
———— - .
Vama? - P\ T 202 1—2b0%) [

2
_ mtac
X 12202

(X:#,

v/ 1-2bo?

which implies that we must require that 1 —2bo? > 0 (or b<1/ (202)) . We then obtain

Let

(ga{e"x“’xﬂzexp 1—2b0? [ m+ac? 2_m_2 1 1 /we_%zda
202 1 —2bo? 202 | /1=2b02 21 J-= ’

The integral equals unity, leaving the result

2
1-2b02 ( m+ao? _om?
eXp{ 202 (1—2ha2 207 1
b

V1—2bo?

(ga[eaX+hX2]

Important special cases are

1. a=0,X ~ ¥ (m,o?).
2
exp{ 22}

(ga[thQ]
V1—2bo?
2.a=0,X ~.4(0,0?%.
2 1
£letX =
[ V1—2bo?
3. X ~.4(0,0?%).
0202
aX+bX2y _ eXp{2(1—2h02)}
&le l=——F 5=
1 -2bo?

The real-valued random vector X is said to be a Gaussian random vector if its joint distribution function
has the form

p{ 3 tx— /K - | |

1
px(x) = \/ﬁex

If complex-valued, the joint distribution of a circular Gaussian random vector is given by

—_ 1 {
pX(X)_ \/mexp _(

The vector my, denotes the expected value of the Gaussian random vector and Ky, its covariance matrix.

x—my)' Ky (x—my)} . (1.3)

my = &[X] Ky = &[XX'] - mymy
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As in the univariate case, the Gaussian distribution of a random vector is denoted by X ~ .4"(m,,K).
Note that if the covariance matrix is diagonal, which would occur if the components of the random vector
were pairwise uncorrelated, the joint probability density factors into the marginal distributions. Thus, for
Gaussian random vectors, if all components are pairwise uncorrelated, the random variables are statistically
independent. The weakest form of statistical independence implies the strongest.

After applying a linear transformation to Gaussian random vector, such as Y = AX, the result is also a
Gaussian random vector (a random variable if the matrix is a row vector): Y ~ /" (Amy, AK,A’).

The characteristic function of a Gaussian random vector is given by

1
Dy (jv) = exp{—l—jv’mx - EV[KXV} )

From this formula, the N"*-order moment formula for jointly distributed Gaussian random variables is easily
derived.*

SIX, Xy ] = {E%’N Xz, Xz, Xz o1 X )] N even

EaH@N éa[X@N(l)] (f[X@N(z)X@NG)] a .éa[XﬁN(N—l)XﬁN(N)]’ N odd,
where 22, denotes a permutation of the first N integers and 22y (i) the i element of the permutation. For
example, £[X, X, X;X,] = £[X,X,] £[X:X,] + &£1X, X;] £[X,X,] + £[X, X,] £[X, X;].

1.4.2 The Central Limit Theorem

Let {X,} denote a sequence of independent, identically distributed, random variables. Assuming they have
zero means and finite variances (equaling 02), the Central Limit Theorem states that the sum E{‘ZIXI /L
converges in distribution to a Gaussian random variable.

1 & w
ﬁ‘gxﬁ; (0,07
=1

Because of its generality, this theorem is often used to simplify calculations involving finite sums of non-
Gaussian random variables. However, attention is seldom paid to the convergence rate of the Central Limit
Theorem. Kolmogorov, the famous twentieth century mathematician, is reputed to have said “The Central
Limit Theorem is a dangerous tool in the hands of amateurs.” Let’s see what he meant.

Taking o> = 1, the key result is that the magnitude of the difference between P(x), defined to be the
probability that the sum given above exceeds x, and Q(x), the probability that a unit-variance Gaussian random
variable exceeds x, is bounded by a quantity inversely related to the square root of L [7: Theorem 24].

sIXP] 1

o3 L

The constant of proportionality ¢ is a number known to be about 0.8 [11: p. 6]. The ratio of absolute third
moment of X; to the cube of its standard deviation, known as the skew and denoted by yy , depends only on the
distribution of X; and is independent of scale. This bound on the absolute error has been shown to be tight [7:
pp- 79ff]. Using our lower bound for Q(-) (Eq. 1.2 {10}), we find that the relative error in the Central Limit
Theorem approximation to the distribution of finite sums is bounded for x > 0 as

|P(x) — O(x)] 2r L2 2, x<1
o) VT U R o

bl

[P(x) = Q(x) < c-

N )
X Xyl =N MI?TVNCDX(JV)

v=0
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Figure 1.4: The quantity which governs the limits of validity for numerically applying the Central Limit
Theorem on finite numbers of data is shown over a portion of its range. To judge these limits, we must
compute the quantity Le? /2mc? Yx » where ¢ denotes the desired percentage error in the Central Limit Theorem
approximation and L the number of observations. Selecting this value on the vertical axis and determining
the value of x yielding it, we find the normalized (x = 1 implies unit variance) upper limit on an L-term sum
to which the Central Limit Theorem is guaranteed to apply. Note how rapidly the curve increases, suggesting
that large amounts of data are needed for accurate approximation.

Suppose we require that the relative error not exceed some specified value €. The normalized (by the standard
deviation) boundary x at which the approximation is evaluated must not violate

Le? o x<1
322 2 ¢ (1) :
2mc?y: (J;X) x>1

As shown in Fig. 1.4, the right side of this equation is a monotonically increasing function.

Example

For example, if ¢ = 0.1 and taking cyy arbitrarily to be unity (a reasonable value), the upper limit
of the preceding equation becomes 1.6 x 10™3L. Examining Fig. 1.4, we find that for L = 10,000, x
must not exceed 1.17. Because we have normalized to unit variance, this example suggests that the
Gaussian approximates the distribution of a ten-thousand term sum only over a range corresponding
to an 76% area about the mean. Consequently, the Central Limit Theorem, as a finite-sample distribu-
tional approximation, is only guaranteed to hold near the mode of the Gaussian, with huge numbers of
observations needed to specify the tail behavior. Realizing this fact will keep us from being ignorant
amateurs.

1.4.3 The Exponential Random Variable

The exponential random variable is positive-valued and has a probability density given by
Py(x) = A ulx)

The expected value of the exponential random variable is 1/A and the variance is 1/A2. This makes the
exponential random variable’s coefficient of variation equal to one.
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1.4.4 The Bernoulli Random Variable

Perhaps the simplest example of a random variable is the Bernoulli random variable. Sometimes called a
binary random variable, it only assumes the values O and 1.

PriX=1]=p
PrX=0]=1-p

Thus, a Bernoulli random variable can be considered either a discrete- or continuous-valued random variable.
In the latter case, the Bernoulli random variable’s probability density is given by

px(X) = (1=p)d(x)+pd(x—1).

The expected value of a Bernoulli random variable equals the probability the random variable equals one:
&[X] = p. The sum of N statistically independent Bernoulli random variables is known as a binomial random
variable because its probability mass function has the form

Pr

%X—k — (M pa—p*, k=
L =k| = pr(1=p)"% k=0,...,N.
n=1 k

When Bernoulli random variables are statistically dependent, the correlation among random variable pairs
is no longer sufficient to describe the joint probability function. A more detailed statistical structure than that
imposed by pairwise correlation occurs with most non-Gaussian random variables. The only cases in which
correlation determines the dependence structure occurs when we can write the joint distribution as

px(x) = f((X-m)'K™'(X-m)) ,

where f(-) is some function of a scalar that can yield a joint density function. One such example is f(x) o
1/(14x). More generally, all joint density functions can be expanded in terms of a set of orthogonal functions

as y (ll\{/)

N
px(x) =T Py, () - |1+
n=1 =2j=1i1,...,iNef]N(k

N
)ail,...,ian:[lwin (%)

This expression reflects just how complicated dependence can be. First of all, the set J ]N (k) denotes the
integers i, ...,y that reflect the j™ subset of arrangements of the integers 1,...,N of order k. For example,
7N(2) = {110,120,130,...,210,220,230,...}. Furthermore, j,(x) = 1. Thus, this representation of joint
distributions shown that pairs, triples, etc. of random variables can be individually dependent.

1.4.5 Stable Random Variables

Stable random variables play and interesting niche role in probability theory. X is a stable random variable
if the weighted sum of two statistically independent instances has the “same” (within a scaling and shift)
probability distribution. For example, Gaussian random variables are stable. What is interesting about non-
Gaussian stable random variables is that they disobey the Central Limit Theorem. For example, the sum of
two Cauchy random variables is also Cauchy, which has a probability density function of the form
1 o

P =
Clearly, the sum of any number of Cauchy random variables will never “converge” to the Gaussian. The
Central Limit Theorem requirement violated by stable random variables, save for the Gaussian, is that they
have infinite variance. All stable random variables have a characteristic function of the form

D (jv) = e M* 0 < a <2, aaconstant

The Gaussian case occurs when a = 2.
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Problems

11

1.2

1.3

Space Exploration and MTV

Joe is an astronaut for project Pluto. The mission success or failure depends only on the behavior of
three major systems. Joe feels that the following assumptions are valid and apply to the performance of
the entire mission:

o The mission is a failure only if two or more major systems fail.
¢ System I, the Gronk system, fails with probability 0.1.

o System II, the Frab system, fails with probability 0.5 if at least one other system fails. If no other
system fails, the probability the Frab system failsis 0.1.

¢ System III, the beer cooler (obviously, the most important), fails with probability 0.5 if the Gronk
system fails. Otherwise the beer cooler cannot fail.

(a) What is the probability that the mission succeeds but that the beer cooler fails?
(b) What is the probability that all three systems fail?
(c) Given that more than one system failed, determine the probability that:

(i) The Gronk did not fail.
(ii) The beer cooler failed.
(iii) Both the Gronk and the Frab failed.

(d) About the time Joe was due back on Earth, you overhear a radio broadcast about Joe while watch-
ing MTV. You are not positive what the radio announcer said, but you decide that it is twice as
likely that you heard “mission a success” as opposed to “mission a failure”. What is the probability
that the Gronk failed?

Lost Boyfriend

Rachel has lost her boyfriend Al in either Duncan Hall (with a priori probability 0.4) or in Abercrombie
(with a priori probability 0.6). If Al retains interest in Rachel but is not found by the N”* day of the
search, he will find another girlfriend that evening with plrobabilityNL+2 and remain uninterested in
Rachel forever. If Al is in Duncan Hall (interested or not) and Rachel spends the day searching for him
in Duncan, the conditional probability of finding Al that day is 0.25. Similarly, if Al is in Abercrombie
and Rachel spends a day searching for him there, she will fuind him that day with probability 0.15. Al
does not move between the buildings and Rachel can only search in the daytime and moves between
the buildings after breakfast.

(a) In which building should Rachel look to maximize the probability that she finds Al on the first
day of the search?

(b) Given that Rachel looked in Duncan on the first day but did not find Al, what is the probability
that Al was in Duncan?

(c) If Rachel flips a fair coin to determine where to look the first day and she find Al on the first day,
what is the probability she looked in Duncan?

(d) Rachel has decided to look in Duncan for the first two days. What is the a priori probability that
she will find and interested boyfriend for the first time on the second day?

(e) Rachel has decided to look in Duncan for the first two days. Given that she is unsuccessful on the
first day, determine the probability that she does not find an uninterested Al on the second day.

(f) Racel finally locates Al on the fourth day of the search. She looked in Duncan Hall for three days
and in Abercrombie the fourth. What is the probability she found him still infatuated with her?

Communication Links
A communication network consists of four nodes (I-IV) connected via four links (a—d).
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I C IV
b
However, all the links may not be available. Let p denote the probability that any link is available and
assume that the availability of a link is statistically independent of any other link’s state. Two terminal
can communicate only if they are connected by at least one chain of links.
(@) LetA={w: Iand IV can communicate}. Calculate Pr[A].
(b) Let B={w: Il and III can communicate }. Calculate Pr[B].
(c) Calculate Pr[AB]. Are the events A and B statistically independent?
(d) Prove that Pr[A] would be increased if link ¢ were connected between I and III as opposed to 1T
and III.
14 Communication Channels
A noisy discrete communication channel is available. Once each microsecond, one letter from the
three-letter alphabet {a,b,a} is transmitted and one letter from the three-letter alphabet {A, B,C} is
received. The conditional probability of each received letter given the transmission letter is provided
by the following transition diagram.
a 0.6 A
0.1
b B
0.1
C“ o8 » C
The a priori probability of each letter being transmitted is Pr[a] = 0.3, Pr[b] = 0.5, Pr[c] = 0.2.
(a) What decision rule—an algorithm for relating a received letter to a transmitted letter —has the
largest probability of being correct.
(b) What is the probability of error for this decision rule?
(¢c) What is the maximum probability of error that could be obtained without the the use of the chan-
nel? In other words, the receiver must decide what is transmitted without receiving anything!
15 Probability Density Functions?
Which of the following are probability density functions? Indicate your reasoning. For those that are
valid, what is the mean and variance of the random variable?
—|x| in2
e sin27x
a = b =
@) py() = 5 ) py () = 2
I—|x] |x <1 I |x <1
c x) = - d x) = -
(© Px () {0 otherwise (@ py () 0 otherwise
1 1 1 et x>
e X)==0(x+1)+=0(x)+-6(x—1 X) = -
(@) py(3) = 700+ 1)+ 381+ 30(r—1) (0 py() {0 i
1.6 Generating Random Variables

A crucial skill in developing simulations of systems subject to random influences is random variable
generation. Most computers (and environments like MATLAB) have software that generates statisti-
cally independent, uniformly distributed, random sequences. In MATLAB, the function is rand. We
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want to change the probability distribution to one required by the problem at hand. One technique is
known as the distribution method.

(a) If Py(x) is the desired distribution, show that U = P, (X) (applying the distribution function to a
random variable having that distribution) is uniformly distributed over [0, 1). This result means
that X — P (U) has the desired distribution. Consequently, to generate a random variable having
any distribution we want, we only need the inverse function of the distribution function.

(b) Why is the Gaussian not in the class of “nice” probability distribution functions?

(0 How would you generate random variables having the hyperbolic secant
Py (x) = (1/2)sech(mx/2), the Laplacian and the Cauchy densities?

(d) Write MATLAB functions that generate these random variables. Again use hist to plot the
probability function. What do you notice about these random variables?

Cauchy Random Variables
The random variables X; and X, have the joint pdf

_ 1 b,b,
P60 ) = o ) a4 )
(a) Show that X, and X, are statistically independent random variables with Cauchy density functions.
(b) Show that Dy (jv) = e 2V,

(¢c) Define Y = X, +X,. Determine py (y).
(d) Let {Z} beaset of N statistically independent Cauchy random variables with b, =b,i=1,...,N.

Define
Z= ! iZ
N & :

Determine p,(z). Is Z—the sample mean—a good estimate of the expected value &[Z;]?

yb,by >0

Correlation Coefficients
The random variables X, Y have the joint probability density py ,(x,y). The correlation coefficient

Py y 1s defined to be
&[(X —my) (Y —my)]
Ox Oy .

Pxy=

(a) Using the Cauchy-Schwarz inequality, show that correlation coefficients always have a magnitude
less than to equal to one.

(b) We would like find an affine estimate of one random variable’s value from the other. So, if we
wanted to estimate X from Y, our estimate X has the form X = a¥ + b, where a, b are constants
to be found. Our criterion is the mean-squared estimation error: &> = & [(X -X )2] . First of all,
let a = 0: we want to estimate X without using Y at all. Find the optimal value of b.

(¢) Find the optimal values for both constants. Express your result using the correlation coefficient.

(d) What is the expected value of your estimate?

(e) What is the smallest possible mean-squared error? What influence does the correlation coefficient
have on the estimate’s accuracy?

Probabilistic Football

A football team, which shall remain nameless, likes to mix passing and running plays. The yardage
gained on any running play is a random variable uniformly distributed between zero and ten yards
regardless of the yardage gained on any other play. The team’s quarterback, Bob Linguini, has a strange
quirk: the yardage gained on a passing play depends on the previous play. If the previous play was
a running play, the yardage gained passing is a random variable uniformly distributed betwee zero
and twenty yards. If the previous play that gained Y yards, the yardage gained is a random variable
uniformly distributed between —Y and 20 — Y yards. On any play, the team is equally likely to run or
pass.
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(a) What is the probability density function of the random variable defined to be the total yardage
agained on a running play followed by a passing play?

(b) A running play is executed followed by two passing plays. Find the probability density function
of the yardage gained on the second passing play.

(c) What is the probability that a total of at least ten yards is gained in the two passing plays mentioned
in part (b)?

1.10 Order Statistics
Let X, ..., Xy be independent, identically distributed random variables. The density of each random
variable is py (x). The order statistics X,(1),...,X,(N) of this set of random variables is the set that
results when the original one is ordered (sorted).

Xy (1) < %(2) < . < Xy (N)

(a) What is the joint density of the original set of random variables?
(b) What is the density of X, (N), the largest of the set?

(¢) Show that the joint density of the ordered random variables is
Px,(1),.. Xy(N) (xp, -5 xy) = Nlpy(xp) -+ px (xy)

(d) Consider a Poisson process having constant intensity A,. N events are observed to occur in the
interval [0, 7). Show that the joint density of the times of occurrence W, ..., Wy is the same as the
order statistics of a set of random variables. Find the common density of these random variables.

1.11 Estimating Characteristic Functions
Suppose you have a sequence of statistically independent, identically distributed random variables
X,,...,Xy. From these, we want to estimate the characteristic function of the underlying random vari-
able. One way to estimate it is to compute

D [ 1 jvX,
Dy (jv) = ﬁnzl el
(a) What is the expected value of the estimate?

(b) Does this estimate converge to the actual characteristic function? If yes, demonstrate how; if not,
why not?



Chapter 2

Stochastic Processes

2.1 Stochastic Processes
2.1.1 Basic Definitions

A random or stochastic process is the assignment of a function of a real variable to each sample point @ in
sample space (see Figure 2.1). Thus, the process X (w, ) can be considered a function of two variables. For
each w, the time function must be well-behaved and may or may not look random to the eye. Each time
function of the process is called a sample function and must be defined over the entire domain of interest. For
each 7, we have a function of w, which is precisely the definition of a random variable. Hence the amplitude
of a random process is a random variable. The amplitude distribution of a process refers to the probability
density function of the amplitude: 2% (x). By examining the process’s amplitude at several instants, the joint
amplitude distribution can also be defined. For the purposes of this book, a process is said to be stationary
when the joint amplitude distribution depends on the differences between the selected time instants.
The expected value or mean of a process is the expected value of the amplitude at each ¢.

oo

XN =me(t)= [ iy, (0)dn

For the most part, we take the mean to be zero. The correlation function is the first-order joint moment
between the process’s amplitudes at two times.

Ry (t1,15) :/_w/_wxlxsz(zl),x(zz)(xlaxz)dxl dx,

Since the joint distribution for stationary processes depends only on the time difference, correlation functions
of stationary processes depend only on |f, —1,|. In this case, correlation functions are really functions of
a single variable (the time difference) and are usually written as Ry (t) where T = t, —t,. Related to the
correlation function is the covariance function Ky (t), which equals the correlation function minus the square

Q

@ I X () \}F_:t

Figure 2.1: A stochastic process is defined much like a random variable (Figure 1.1) but with a time function
assigned to each element of event space. The collection of time function is known as the ensemble.

19
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of the mean.
Ky (1) = Ry(v) —mg

The variance of the process equals the covariance function evaluated as the origin. The power spectrum of a
stationary process is the Fourier Transform of the correlation function.

oo

() = / RX(r)e_jz”ff dt
—

A particularly important example of a random process is white noise. The process X (¢) is said to be white
if it has zero mean and a correlation function proportional to an impulse.

N,
SXM] =0 Ry(r) = Lo(n
The power spectrum of white noise is constant for all frequencies, equaling N,/2. which is known as the
spectral height.*
When a stationary process X (¢) is passed through a stable linear, time-invariant filter, the resulting output
Y (¢) is also a stationary process having power density spectrum

L (f) = H()PF5(f),

where H(f) is the filter’s transfer function.
2.1.2 The Gaussian Process

A random process X(¢) is Gaussian if the joint density of the N amplitudes X(z,),...,X(ty) comprise a
Gaussian random vector. The elements of the required covariance matrix equal the covariance between the
appropriate amplitudes: K;; = K (1, tj). Assuming the mean is known, the entire structure of the Gaussian
random process is specified once the correlation function or, equivalently, the power spectrum are known. As
linear transformations of Gaussian random processes yield another Gaussian process, linear operations such
as differentiation, integration, linear filtering, sampling, and summation with other Gaussian processes result
in a Gaussian process.

2.1.3 Sampling and Random Sequences

The usual Sampling Theorem applies to random processes, with the spectrum of interest being the power
spectrum. If stationary process X (¢) is bandlimited—.%y(f) = 0, | f| > W, as long as the sampling interval
T satisfies the classic constraint T < /W the sequence X (IT') represents the original process. A sampled
process is itself a random process defined over discrete time. Hence, all of the random process notions
introduced in the previous section apply to the random sequence X (I) = X(IT). The correlation functions of
these two processes are related as

R, (k) = £ [R(DX(1+K)] = Ry (kT).

We note especially that for distinct samples of a random process to be uncorrelated, the correlation func-
tion Ry (kT') must equal zero for all non-zero k. This requirement places severe restrictions on the correlation
function (hence the power spectrum) of the original process. One correlation function satisfying this property
is derived from the random process which has a bandlimited, constant-valued power spectrum over precisely
the frequency region needed to satisfy the sampling criterion. No other power spectrum satisfying the sam-
pling criterion has this property. Hence, sampling does not normally yield uncorrelated amplitudes, meaning
that discrete-time white noise is a rarity. White noise has a correlation function given by R}?(k) = 026(k),

where 6(+) is the unit sample. The power spectrum of white noise is a constant: Yg( f) = o>

*The curious reader can track down why the spectral height of white noise has the fraction one-half in it. This definition is the
convention.
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2.2 Structural Aspects of Waveform Processes
2.2.1 Stationarity

The stationarity of a waveform process is often assumed; otherwise, the process’s temporal variations must
be specified, either explicitly or through a model. When stationarity holds, the process’s joint amplitude
distribution does not depend on absolute time: The density depends only on the intervals among temporal
samples. Consequently, specification of the joint amplitude distribution amounts to defining the underlying
process’s stationarity.

When system models are handy, time-invariant models are required to produce stationary outputs. In this
context, stability is closely linked to stationarity [39]. The stability theory of difference equations, both linear
and nonlinear, is technically delicate because of the possibility of chaos. Ignoring techncial conditions for the
moment to get to the heart of the matter, iteration of a stable system with no input from any initial condition
should lead to an output that lies in some compact set defined on the real line. A system is strongly stable if
this compact set consists of a single point. For a strongly stable linear system, this limit set corresponds to the
origin if all the poles lie within the unit circle.

To develop a parallel notion, iterating a system is equivalent to passing the output from one probability
distribution to another, with the “initial condition” corresponding to an initial distribution for the the system’s
state. Stationarity thus means that the output’s probability distribution asymptotically falls in a restricted set
of distributions across any distributions of initial conditions. We seek conditions under which this restricted
set consists of a single distribution, the so-called stationary distribution. For example, when the system is
linear and time-invariant, a stationary distribution results if the system is strongly stable regardless of the
white noise input’s Gaussianity or the initial distribution. Assuming the distribution of the initial condition
equals this stationary distribution, examination of the transfer functions pole locations or calculation of the
system matrix’s eigenvalues thus suffices as a stationarity test.

We concentrate here on Markovian systems: The output is computed from the past p outputs X, | =

col[X,_,,...,X;_ ] and the input at a single time instant.

X, = G[X,_;W] 2.1)

Many results, arising from the extensive literature on Markov chains, exist for this model and not for the
more general one given previously. Some special-case results are known for the situation in which the output
depends on several past input values.

In applications, the input frequently appears additively, yielding the additive-input Markovian model.
Here, the system model G[-; -] equals the sum of a “state-dependent” part G4[X,_,] and an input.*

G[Xl_l;VVl] = Gs[Xl_l] +W, (2.2)

When the system is linear, for example, this relation expresses the well-known autoregressive model:
GIX,_;Wl=37_ aX_+W,.

For Markovian systems (additive-input or not), a type of dynamic system model can be found for the
p'"-order multivariate density of the output process X;. We begin by noting that the conditional density of the
output at time / given the values of the previous p states is easily expressed in terms of the input’s amplitude
distribution. For a given value X of X|_,, an output equaling X, could have arisen from one of several input
values, depending on the nonlinear nature of G[X;-]. Notation demands that we represent the i possibility
as an index on the system’s transformation rather than on the input: x;, = G(l.) [X;w],i=1,.... The density
associated with the output conditioned on state thus equals

J . -
(X [ X) = E ‘8—}(()G(i)l [XaXol| Pw (G(,-)l [X;Xo])

Pxx,

*This equation might suggest that no memoryless transformations can be applied to the input. Such transformations would modify
the input’s amplitude distribution, but not its whiteness. To keep the notation under control, we use W, to represent the transformed input.
Do note, however, that subsequent results place requirements on this distribution.
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GG)I [X; -] denotes the inverse function of G(l.) [X;-]. Multiplying this conditional density by the p™-order

density of the state gives the (p + 1)’h-order density, which, when integrated over the most distant state, yields
the output’s multivariate density. The resulting integral equation describes the structural evolution of the
system’s state.

px,(Xo) = /_ Pxix, (Ko IXoy)px,  (X_)dX, (2.3)

Here, X, =col[X,,..., X, _ ot ,]. When the process is stationary, the p'-order joint densities appearing on each
side of this equation are equal. To determine when such a stationary output exists, we seek conditions under

which this equation has a unique solution. Such conditions revolve around the properties of p X (X, 1X_4),
1-1

which depends on both the system’s characteristics and the input’s amplitude distribution.

For nonlinear systems, stability tests are also equivalent to stationarity tests. Stability of nonlinear differ-
ence equations would lead us too far afield; we concentrate on stationarity results here. The Markov system
model of Eq. (2.1) can be tested for stability using Lyapunov functions.

Theorem A stationary distribution exists for a Markovian system if the output is weakly continuous (the
conditional expected value &[g(X,) | X,_, = X] is continuous for all bounded, continuous functions g(-))
and if there exists a continuous, non-negative function L(-), a Lyapunov function, that satisfies L(X) — o as
[|X[|| = o and, for some bounded positive constant K,

LX) — LX) | X, =X]
fga[L(XH.l) _L(Xl) | Xl = X]

KX

<
< 0,X¢.

& denotes a compact set in R?. Here, X, denotes the state of the Markov system at time I: X, =

COI[XI""’XI—])-{-]]'

The quantity L(X) denotes the expected change &[L(X,,,) —L(X,) | X;] = X in the system’s “energy” as
time goes on. The continuity condition is satisfied when the system G[-; -] is continuous in each state variable
and in the input. In some cases, a smooth amplitude distribution for the input W, suffices.

Example
Consider a first-order linear Markovian system expressed by

X, =aX,_ +W,

where W, is a zero-mean, white input. Let the Lyapunov function be L(X) = X 2. We calculate change
L(X) in system energy from sample to sample to be

LX) = &laX,+W,)" - (X)X =X]
= (@-1)X*+ W]

For the quantity (a> — 1)X? + &£[W?] to remain bounded as a function of X, we must require |a| < 1.
For the system energy to increase (exceed zero) only within a compact set, we must further require
|a| to be strictly less than one. Thus, the output of a simple first-order, linear, Markov system is
guaranteed so long as the input’s mean-square-value is bounded.

What about inputs having “infinite” variance? We know, for example, that the output of a linear
system excited by white noise having a stable distribution (Cauchy, for example) also has the same
distribution. To show that in such cases stationarity can result, we must choose a different Lyapunov
function. In the Cauchy case, choosing L(X) = \/m provides an affirmative result.

As this example shows, the theorem requires the existence of only one Lyapunov function to demonstrate
stationarity. To show that stationarity does not obtain can be much more difficult: We would need to show that
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no Lyapunov function can exist. When we do demonstrate stationarity, some restriction on system parameters
must usually be enforced. For a given Lyapunov function choice, such restrictions are sufficient, but may not
be necessary.

Example
Consider the bilinear Markov system described by

X, = (a+bW)X,_ |+ W,

where the input has zero-mean and finite variance crvzv. When we choose L(X) = x? as before, the
parameters must satisfy a® + b*o, < 1. If we use L(X) = |X| instead, the condition £[|a+ bW,[] < 1
results. What parameter ranges satisfy both conditions depends on the input’s amplitude distribution.
For example, when the input has a Laplacian distribution, the latter condition becomes

la] + (

1
|b| oy, /V/2) exp —‘g‘ — < 1.
\/ 0% /2

In this case, the parabolic choice defines a more restrictive set.

The set over which the energy change equals zero defines the output’s stationarity. For instance, in the
first example, L(X) = 0 occurs when X2 = £[W?]/(1 — a?), which precisely equals the output variance under
stationary conditions. Because of this observation, we can distill an intuitive feel for what the theorem means.
Only over a restricted range of state does the system “expand;” over a much larger set the system contracts,
tending toward no energy change as “stationary” behavior dominates. This lack of expansion is equivalent
to stability. When the distribution if the system’s initial condition equals the stationary one, the output’s
distribution is unchanging.

For a stationary process to be produced by passing white noise through some system, the production
must have started in the distant, unremembered past or at some finite time with a particular choice of initial
condition dsitribution. Here a quandry arises: How does one distinguish a specific initial condition as being
“bad” or “good?” Assuming the stationary distribution is never zero, any initial condition could have arisen
from a given distribution, the stationary one in particular, thereby resulting in stationary behavior. In other
words, transients never occur! While this argument may hold theoretically, the authors prefer starting systems
at the Big Bang and concentrate on observing and processing signals long afterwards.

Assuming the theorem’s conditions are satisfied, we obtain a fundamental relation that a stationary pro-
cess’s joint amplitude distribution must satisfy when we generate it by passing white noise through a single-
input system.

pX;p) (XOa'“aX_(p_l)) :/—oopxﬂng)l (XO |X—l""’X—p)pX;]7) (X—la'“aX—p) dX—p (24)

From one viewpoint, the p"-order amplitude distribution is an eigenfunction having eigenvalue one of the

“kernel” p, X (X, | X_,). Finding this eigenfunction, either analytically or numerically, seems feasible
1=1

only for low-order (small p) systems [31],[39: §4.2.4].
Work is simpler in the additive-input case, in which this integral equation becomes

PxXr X )= [ oy (X = GUX_ o X pglXC s X)X

Here, the kernel’s dependence on both the input’s amplitude distribution and the system’s characteristics
become explicit. From this relationship, we can easily see that if the input has an even probability density, so
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too will the output if and only if the system’s input-output relation is odd: G;[—X] = —G,[X]. We can also
find more explicit relationships using this equation. Take the first-order (p = 1) case for example. Evaluating
the Fourier transform yields

1 o] o] .
()= wy ()5 [ [ MO ey (v avax.y

We see that what remains is a kind of Fourier transform in which the system’s strictly nonlinear part G,[X] — X
plays a central role: The more complicated this term is, the more difficult this equation is to use.
When the system is linear, X; = aX,;_, + W,, we obtain the simplest possible result.

@y () =
Dy (av)

Given the input distribution, only with difficulty can the output distribution be found from this formula. Curi-
ously, if we have the output’s amplitude distribution, we can use this result to calculate the input distribution.
For example, assuming the output has a stable distribution, which is defined as having a characteristic function
of the form exp{—|v|"}, 0 < r < 2, we find that the input must also possess a stable distribution of the same
degree r. Note, however, that in general that there is no guarantee that the ratio is a characteristic function.
We note that, because characteristic functions are positive-definite, they obey |®(v)| < ®(0) = 1. Because
of the denominator, arbitrary substitution of valid characteristic functions into this ratio may well produce
a quantity that exceeds one. In such cases, we have just proven that certain distributions cannot describe
first-order Markov, linear processes.

Example

The most famous example of this phenomenon is due to Rosenblatt [34: p. 52]. Let’s try to force
the output of a first-order linear system to have a uniform amplitude distribution. The corresponding
characteristic function has the functional form of sinv/v. When we calculate the ratio asinv/ sinav,
we find that the zeros of this function occuring in the demoninator cause difficulty: Unless they are
cancelled by zeros in the numerator, the potential characteristic function will be infinite, a property
characteristic functions do not possess. Cancellation only occurs when the parameter a equals the
reciprocal of an integer. Thus, we conclude that a process having a uniform amplitude distribution and
a linear, first-order dependence structure can only occur when the correlation coefficient of successive
values equals 1/2,4+1/3,.... Fig. 2.2 portrays an example of this process.

2.2.2 Time-Reversibility

A process’s time-reversibility characteristics comprise a special form of dependence structure. A stationary
process X; is time-reversible if the multivariate density of the amplitudes at the ordered times [, .. ., [y equals
that of the amplitudes at the times —/,, ..., —I.

le X, (Xl ye 'aXN) = pxil X, (Xl ye 'aXN)
1y 1 N

Assuming the stationarity equation 2.4 {23} has a solution, the result can be examined to determine its time-
reversibility. Examining this evolution equation does not reveal any general structure that the input or the
system must possess to produce a time-reversible output. In fact, cases exist wherein the input’s amplitude
distribution solely determines the output’s time-reversibility: Non-Gaussian, time-reversible processes cannot
be produced by causal linear filters excited by white noise [42]. Only in the Gaussian case is the output
time-reversible.
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Figure 2.2: A portion of the sample function taken from a first-order linear Markov process is shown in the
bottom panel. A histogram estimate of this process’s amplitude distribution (10,000 samples) is shown in the

top panel. Here, the process is generated according to X; = %Xl_l +W,, where {W,} is an IID sequence with
each element equaling :I:% with probability 1/2.

Theorem [42] Assume a linear system is governed by the difference equation
p q
X, =YaX_i+ YbW_;
=1 /=0

where W, represents the white noise input. The output is time-reversible if and only if the input is Gaussian
orif a; = 0 and the coefficients {b;} obey the symmetry property b; = £b,_;,j=0,...,[q/2].

Only when the system’s transfer function has linear phase can a non-Gaussian input produce a time-reversible,
non-Gaussian linear process. In all other cases, the filter’s output conveys its causality, making measurements
of the filter’s phase characteristics much easier. Note that a process’s time-reversibility depends on both the
generation system’s characteristics and on the amplitude distribution of the white input.

Multivariate distributions that correspond to the joint distribution of non-Gaussian, time-reversible pro-
cesses are easily found. For example, the so-called elliptically symmetric distributions fall into this class [25].
On the other hand, even conjuring examples of densities for time-irreversible processes can be quite difficult:
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The bivariate amplitude density of time-irreversible processes are not symmetric functions — Px, x, (a,p) #
17
Px, x, (B, a)—but have equal marginals (le (a) = px, (@)). In either case, if we can specify the output’s
) 1

multivariate distribution, a system generation model for it can be found from the conditional density of the
stationarity equation’s kernel Pxix, (X, | X).

The importance of time-irreversible stationary processes rests on their physical existence. Thermody-
namic arguments demonstrate that only in very carefully controlled circumstances can time-reversible pro-
cesses describe physical measurements. Thus, physically plausible models must produce time-irreversible
processes. What models produce time-irreversible outputs can only be assessed by calculating the multivari-
ate distribution; to emphasize what was mentioned previously, changing the input’s amplitude distribution can
change the output from a time-reversible to a time-irreversible one.

2.2.3 Statistical Dependence

The dependence structure of a non-Gaussian process both illuminates what system describes its generation
and what form the multivariate distribution must take. In fact, modeling physical situations demands that a de-
pendence structure be imposed. The authors would be remiss not to point out that if the process was obtained
by periodically sampling a continuous-time one, the resulting measurement cannot be white. To show this

fact, consider the correlation function Ry (7) = &[X,, X|] of the sequence. It equals the sampled values on the

continuous-time process’s correlation function: Ry () = R;(77Ty), where X(r) denotes the continuous-time
process and 7 the sampling interval. For X, to be white, we at least need the correlation function to correpond
to a unit sample. This condition means that the analog signal’s correlation function must have zero-crossings
uniformly separated by 7;. Assuming that we wish to bey the Sampling Theorem, this situation only occurs
when the analog signal is ideally bandlimited to precisely the Nyquist frequency. Interestingly, oversampling
only increases correlation; to achieve maximal decorrelation, we must in general undersample to try to effect
a white sampling sequence.

Broad categories for dependence have been defined based on analytic and theoretical considerations. Un-
fortunately, testing data against these can be virtually impossible, which makes assuming they apply somewhat
tenuous.

Definition Two (or more) amplitudes are independent if they are statistically independent: X 1, is independent
OfX12 ifpxll X, X 1X,) = lel (X)-

Note this notion’s symmetry: If Xl1 is independent of X, X then so is Xl2 of Xl1 . This symmetry contrasts with
the asymmetry of the next dependence category.

Definition The amplitude Xl1 is mean-square independent of Xl2 if the conditional expected value of the first
with respect to the second does not depend on the conditioning value.

(ga[Xll |X12:X]:£[Xl]

1
Mean-square independence is not a symmetric notion: &[X, | Xl2 =X]=¢X ]~ (ga[Xl2 | X, =X] =
1 1 1
(ga[Xlz]. As an example, consider a time-irreversible process defined by X, = (% — %Xl_ 1) W,, where W, =
44 with equal probability. Clearly, £[X, | X,_,] = 0, which also means that £[X,] = 0. The time-reversed
system has the form X,_, = 1—-2|X,| [26]. Now, &£[X,_, | X;] = 1 —2|X,|. Thus, we say that X, is mean-

square independent of X;_,, but X;_, is not mean-square independent of X;. It is mean-square independence’s
asymmetry that underlies the conditional expected value’s utility in exploring a signal’s time-reversibility.

Definition Two amplitudes are strictly uncorrelated if the expected value of the product of arbitrary functions
of each amplitude equals the product of the expected values of each function for all reasonable functional
choices.

(ga[gl(xll)g2(xlz)] = (ga[gl(xll)] éa[gz(xlz)] aV|éa[gi(X1)]| < ®
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Weakly uncorrelated (uncorrelated) amplitudes occur when we consider the expected values of the amplitudes
directly.

(ga[Xllxlz] =¢X ] ¢X, ]

1 2
The notion of correlation is symmetric, meaning that we can say two amplitudes are uncorrelated without
ambiguity.

These dependence categories form a clear progression, wherein each implies others.

independence =— m.s. independence = strongly uncorrelated =—> uncorrelated

Independence is simultaneously the simplest, the most powerful, and the most difficult to verify empirically.
Because the minimum mean-squared error predictor of a random variable X given another, say Y is the con-
ditional expected value £[X | ¥ = y], mean-square independence means that providing an amplitude value
does not reduce the mean-squared error in predicting another. The notion of strongly uncorrelated is not
used frequently; uncorrelated and correlated amplitudes correspond to dependence categories prevalent in the
second-order radom process theory.

Spanning these categories, succint dependence structures have been defined that ease the transistion to
theoretical development and incorporating model-based notions.

Markov dependence. When the conditional distribution of a process’s amplitude at time / given the
process’s entire past {X,_,,X,_,,...} functionally depends only on the p most recent values, the process is
Markovian of order p.

(Ko 1X_y ) =Py (Kol XopoX,)

Pxix, .. )

From this definition, it easily follows that Markov dependence extends to any set of past adjacent p values.

>0

,...,X_(H_p)),r_

px,|XHfl,...(X0 | X gy = PXIX,_ X, (Xo | X_ 141y
Be that as it may, this dependence structure does not mean that the process depends only on a subset of

adjacent p values. For example, if p > 1, the conditional density p, X (X, | X_;) usually depends on X_,
13—

for all 7, even if T > p. Thus, a Markov process’s memory — the time-span over which a value depends on a
previous one—is usually infinite.

Systems that produce Markov dependence structures have the form expressed by Eq. (2.1) {21}. One
important special case of which is the linear autoregressive process, described by the input-output relation
X = E’k’:l a,X,_; +W,. Including more than one input amplitude value in the system’s input-output relation
usually means that Markovian dependence does not result.

The Markov structure for an additive-input, stationary process (Eq.2.2) {21} allows the explicit evaluation
of the process’s multivariate amplitude distribution for any order. Let X(rk) denote col X, Xy, ..., X;_; - the
point at which we evaluate the k”*-order density. The index T indicates the lag relative to the time / of the
temporal origin of the associated amplitude vector. Assume the process has Markovian order p and that we
want the k”-order amplitude distribution. For the moment, k > p. The joint distribution of the amplitude
vector ng) equals

PX;k) (X(()k)) = PXllxy:l) (Xo | X(k_l))ny:l) (X(_kl_l))
Because of the Markovian structure, the (k— 1)™-order conditional density in this expression equals the p:-
order conditional density. The additive input structure allows explicit calculation of this conditional density.

) (Xo | X(_pl)) :pW(XO _Gs[X(_pl)])

p
XX,
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This reduction of the multivariate density into the product of a known conditional density and a lower order
multivariate density can be repeated until a p”*-order multivariate density results. Assuming we can calculate
this density, the final expression for the desired multivariate density is

k—p
Py (X(k)) = P (X(_p,ng ,,) H Pw (X—i+1 =G [X(—pi)])
k+p i=1

When the order of the multivariate density is less than the Markovian order p, we can simply integrate the
p™" density over the unwanted components. Thus, regardless of the number of and selection of process values
for which we want the joint probability distribution, we can calculate the multivariate density if we know the
p™ order joint distribution and the amplitude distribution of the white noise input. Note how this expression
exemplifies the infinite-duration dependence structure of the Markov process: No matter how remote the lag
T, the pair X, X;__ are dependent through the telescope-like product terms.

Example
Consider the first-order, linear autoregressive case: X; = aX,;_, +W,. The k™ -order multivariate density
has the expression
k=1
k)y —
Py (X( )) =px (X i) | | Pw Xy —aX_y)
1 1=

When the white input has a stable amplitude distribution, the output has the same distribution with a
different “variance’”: When a stationary distribution exists, the variance of the output equals that of the
input divided by 1 — a?. Note that among stable distributions, only the Gaussian has finite variance.
Be that as it may, we can derive the multivariate distribution for a linear, first-order Markov Cauchy
process to be

V1i-a2 o? k=l o?
Py (X(k)) =

X mtok o2+ (1 az)Xlz_k+l =T 0%+ (Xl—i+l — aXl_l.)2

Note the asymmetry in this joint distribution, which indicates the process’s time-irreversibility.

g-dependence. This property applies to processes generated by systems that depend only on the most
recent g input values.

X :Gi[Wz"“’Wl—qH]

Thus, amplitude values separated by g or more samples are independent. For statisticians, g-dependence re-
fines the definition of moving average processes. In the signal processing terminology of linear systems, such
finite-memory systems are said to be FIR (have Finite-duration Impulse Responses). Correlation matrices of
g-dependent processes are banded, with nonzero correlation extending only over ¢ — 1 diagonals above and
below the main one.

Mixing. Mixing structures rival Markovian structures in theoretical importance; in those situations where
these structures both occur, very powerful results obtain. For a formal definition of mixing, define 27” to be
the o-field generated by the amplitudes {X,,a <! < b}. With these o-fields, we can (conceptually) define
individual, conditional, and joint probabilities of the occurence of particular sets defined over time-restricted
portions of the process. The fundamental notion of mixing is that the joint probability of two sets of process
amplitudes asymptotically factors—the two sets become independent—as the temporal separation between
the sets increases. Formally, let A € 2.? and A’ € %a’,’l be sets that are members of o-fields defined over time

intervals. Let T denote the shift operator that operates on set so that TA € %a’f:'ll .
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Definition The process X, is said to be mixing if, for all A, Al

lim Pr[ANT"A'] = Pr[A] - Pr{A]
where Tt denotes a shift by T (applying the shift operator T times).
Unfortunately, many special measures of mixing have been developed over the years [3], mudding the waters
somewhat since Rosenblatt’s original formulation of the idea [32]. These variations assess, using different
criteria, the rate by which the dependence of two temporally separated amplitude sets decreases as the sets
become more widely separated. For the following definitions, we define the sets A, A’ over the special o-fields
29, and %", respectively. Emphasis here on time zero is arbitrary; any finite value could be used.

Definition A process is said to be strongly mixing if the mixing coefficient o(t) asymptotically equals zero.

sup|Pr[AN T7A'| — Pr[A] Pr{A']| = a(v) =50
AA!

A stationary process is said to be 1-mixing if

|Pr[ANT7A’] — Pr{A] PrA]| _ e
R e 7 A

A process is said to be uniformly strongly mixing, uniformly mixing, or ¢-mixing if the two sets are asym-
potically independent in a slightly different way than in strong mixing.

sup|Pr[t7A’ | A] —
A

| ‘L’—)OO

A process is said to be p-mixing if the maximal correlation coefficient between the two o-fields is asympoti-

cally zero.

|cov(U, V)| — () =30

sup
UEL,(20,),VEL, (% = (P U2 (7 V)12

Here L,( %, "b) denotes the collection of all second-order (finite variance) random variables measurable with
respect to %ab .

The various mixing coefficients obey interesting inequalities [3, 14].

)<y dO<I pr) <1
4a(r) < 29() < (v
4a(v) < p(r) < (1)

p(r) <20'(x)

) <
For stationary Gaussian processes, a(t) < p(t) < 2mwa(t), which means that Gaussian processes are strongly
mixing if and only if they are p-mixing [18]. From these inequalities, we glean the following maximal (no
other implications exist) relations among the various types of mixing conditions [3].

P-mixing = uniform mixing = strongly mixing
P-mixing = p-mixing = strongly mixing
strongly mixing —> mixing

Strong mixing was the first defined condition and claims the high ground; the more recent definitions yield
more stringent criteria, leaving the adverb in “strongly mixing” somewhat inappropriately chosen.
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If stationary processes can be shown to be strongly mixing, many interesting properties can result. Among
process classes have been shown to be strongly mixing are white noise, Markov processes (if they are purely
nondeterministic)* [33: p. 195], and Gaussian processes having continuous and positive power spectra [18]. A
Markov process cannot be ¢-mixing without its mixing coefficients decreasing exponentially [8]: ¢(t) < ca”,
0 < a < 1and ca positive constant. If X, is strongly mixing, then the process ¥, = G,[X, .. "Xl—q+1] is strongly
mixing [34: p. 79]. This result means that all g-dependent processes are strongly mixing.

We defer discussing the interaction of mixing and ergodic theory to §2.2.4 {30}. For now, we comment on
an issue that should worry the signal processor: “When can I produce estimates from dependent data and how
does the dependence affect my estimate’s accuracy?” Suffice it that if a stationary sequence is strongly mixing,
then estimation procedures, such as kernel estimates for densities and regression functions and distributional
parameters, converge, but at a slower rate. Even the Central Limit Theorem survives!

Theorem [15: p. 316] Let S, = Ef:_& X, be the cumulative sum of a strongly mixing process having mixing
coefficient a(k). Let P,(-) denote the distribution function of the cumulative sum normalized as N 'S, — M,
where lim, , N, = . If P,(-) converges to a non-degenerate distribution function P(-), then P(-) is stable. If
this stable distribution’s parameter equals 3, then N, = k' g(k), where g(k) is slowly varying as k — .

Theorem [15: pp. 346-7] Let X, be a zero-mean, strongly mixing stationary process with mixing coefficient
a(t) and variance o that has the property &[|X,|*7°] < o for some & > 0. If

(X(‘E)a/(2+5)

s

<

=1

then (k'/2 o)~ S¥Z) X, converges to the unit normal.

Putting these results in context, we found that distributions of sums of random variables are never far
away from densities of infinitely divisible random variables. For those situations for which these asymptotic
densities approach a limiting distribution, amplitude averages taken from observing strongly mixing processes
also obey a Central Limit Theorem.

2.2.4 Ergodicity

Perhaps the most subtle structural component of a random process is its ergodicity. Intuitively, an ergodic
process is one in which estimates of its characteristics —expected value, covariance, amplitude distribution,
etc.—have meaning. Nonergodic processes have the somewhat counterintuitive property that estimates cannot
converge; their dependence structure is such that convergence, no matter how many observations are available,
never occurs. Presumably, nature is not so capricious to not allow us to learn from experiment its underlying
structure: We believe that physically relevant models should produce ergodic processes. On the other hand,
we can produce nonergodic models without difficulty. For example, all spherically symmetric joint amplitude
distributions (save the Gaussian) correspond to nonergodic processes [41]. Thus, testing models for ergodic
behavior should be high on the checklist for reasonableness and applicability.

Definition The process X, is said to be ergodic if temporal averages of a function g(-) of some finite collection
Cy observations converges to its expected value.

7—1

1 .
rlgr;;rz 8(t°Cx) = £18(Cy)] as.

This collection consists of a selection of process amplitudes {XZO’XZ ,-.-}. We clearly need to require that
1
¢llg(Cx)l] <.

* A process is purely nondeterministic if a set derived from currently occuring amplitudes is aymptotically independentof a set derived
from amplitudes occuring in the distant past. Formally, if A € 2,?, Pr[A | 27%,,] — Pr[A] as T — —oo almost everywhere.



Sec. 2.2 Structural Aspects of Waveform Processes 31

This definition formalizes our notion of meaningful measurements, but does not directly relate ergodicity to a
process’s structural properties. To obtain results, two important theorems relate ergodicity to joint-amplitude-
distribution and system descriptions of random processes.

Theorem Let A and A’ be sets contained in the o-algebras %" and %’ a’,’l respectively, which are generated
from the stationary random process X, over the interval expressed by the subscripts and superscripts. Let
T denote the shift operator {28} that can be applied to these sets and T' be the operator’s inverse image:
1 'A={w: to € A}. X, is ergodic if and only if*

7—1

1
lim — Y PrfANT "A'] = Pr[A] Pr[A"]

T+ T =

for all choices of A, A" and intervals [a, b],[d’, b'].

Clearly, this theorem is satisfied for all mixing processes; thus, if one can show that a process is mixing
(Def. 2.2.3 {29}), estimates computed from it will be meaningful. Thus, white noise and purely nondeter-
ministic Markov processes are ergodic because they are strongly mixing (hence mixing). Note, however, that
mixing more than satisfies the theorem’s requirements.

In any case, this theorem can be used to determine if a process is not ergodic from its multivariate am-
plitude distribution. Let the sets A, A’ denote small intervals in R" centered at X and X', respectively. The
theorem says, after making appropriate smoothness assumptions on the amplitude distribution, that if the
process is ergodic, then

. 1 = 1 !
ggrolo;rzop{xﬂ...xb}y{x -X }(XaX) :p{Xa'“X;,}(X)p{xﬂl'“x,,/}(X)

d+t b4

In particular, for the bivariate density, we have the ergodicity test

7—1

.1
lim — E Px, x, (X,X') = px(X)py(X)
7=0

T30 T

An equivalent test of the bivariate distribution for mixing is

. no_ !
lim py x (X, X) = px (X) px (X')
Note that if an amplitude distribution “passes” these tests, that does not mean that they are ergodic or mixing.
Because the theorem demands all sets selected from the o-algebras satisfy the condition, a passing distribu-
tion is only consistent with ergodicity. On the other hand, a failing distribution is not ergodic, presumably
dismissing the corresponding process from consideration as a viable model for reality.

Example

Consider the multivariate Gaussian density expressed by .#"(0,K,). When the covariance function
Ky (7), which corresponds to entries in the covariance matrix Ky, approaches zero for large lags, the
multivariate density factors: lim;_,e -4 (0, Ky ) = [T-#'(0, 02). When we consider two groups of am-
plitudes separated by lag T, increasing the separation creates a covariance matrix that asymptotically
has two square matrices on the diagonal and zero-valued entries elsewhere. Again, the multivariate
density factors and the ergodicity test is passed for all choices of groups. Thus, stationary Gaussian
processes are mixing, hence ergodic.

*The seemingly odd appearance of T~ ' A’ allows us to focus on a fixed set A’ that corresponds to more and more remotely shifted set.
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Example
Now consider the elliptically symmetric bivariate distribution having Laplacian marginals [25].

1 2(X2+(X')? - 2p.XX')
n_ T
P X0 = oo (G

Here, K(-) denotes the modifed Bessel function of the second kind. All densities in this class are
parameterized by the correlation coefficient p, between X, and X;. Letting this coefficient approach
zero (as in the Gaussian example just described), the density does not factor, meaning that the process
is not mixing. Applying the more direct, but harder to use, sum-of-densities test, this density still
does not pass. Thus, as expected (the only ergodic elliptically symmetric process is the Gaussian), the
process corresponding to this density is not ergodic.

Theorem Assume the conditions apply for a white-noise driven Markov system to produce a stationary output
(Thm. 2.2.1 {22}). Furthermore, assume that

1. zero is an equilibrium point of the zero-input system (0 = G[0;0]);
2. the amplitude density of the input W, is non-zero in some open interval that includes the origin;

3. the transformation G[-; -] is continuous everywhere and continuously differentiable in a neighborhood
of the origin;

4. for some € > 0, &[||G[X;W]||] < € for all values of X lying in the system’s state space.

Under these conditions, the output X, produced by G[X,_,;W,] has exponentially decreasing mixing coeffi-
cients p(t), and hence is ergodic.

Thus, stable systems that, like linear systems, produce zero output with no input and satisfy continuity prop-

erties yield an ergodic output. All stable linear systems fall into this category; chaotic systems do not (their
output to zero-input never dies). Because the theorem does not provide necessary and sufficient conditions,
one wonders how nonlinear systems fit. In the case of additive-input Markov systems, if G4[X,_,] is bounded
and the input’s amplitude distribution function is continuous, then the output is ¢-mixing [9]. Thus if the
output is stationary, it is ergodic.

It is unfortunate these two theorem’s conditions differ. The theorem that applies to the joint amplitude
distribution is more direct and exhaustive. The system-based one is not necessarily comprehensive: other
systems and inputs may exist that produce ergodic outputs. More work is needed in this area to produce a
comprehensive ergodic theorem.

2.3 Simple Waveform Processes

Special classes of processes have found application to engineering problems, both practical and theoretical.
Results even for these admittedly special cases are spotty; this situation indicates the unevenness of the non-
Gaussian terrain.

White noise. The most elementary waveform process—it has the simplest structure—is white noise. This
process consists of a sequence independent, identically distributed, amplitudes that can have any probability
distribution. Note that this definition, with the specification of independent amplitudes, is stronger than some
definitions that demand only uncorrelated values. In most cases, we take the process to have zero mean.
Clearly, white noise is stationary and ergodic. As mentioned previously, white noise cannot be obtained by
sampling (in a realistic fashion) a continuous-time process {26}. This model represents a convenient fiction,
especially for the input to system models for generating processes.

A white-noise-type process having subtly more dependence occurs in least-squares estimation. The least
squares predictor of X, based on the observation of {X,,...,X,},a < b <1, is the conditional expected value:
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X, = &[X, | X,,...,X4). The estimation error forms a mean-squared independent sequence {26}, which of
course is not a white sequence. This next-of-kin to white noise that is produced by least-squares estimation
errors is known as an innovations sequence.

Linear processes. From a system’s viewpoint, the simplest nontrivial dependence structure is expressed
by passing white noise through a linear system. When the system is strictly stable (all poles lie inside the
unit circle), the resultant is a stationary linear process. For a finite variance input to yield a finite variance
output, we must impose a somewhat more restrictive condition: Ehl2 < o, where hl denotes the system’s
unit-sample response. In this case, a linear system generates a linear process from white noise according to
the convolution sum.
X, = E hl — kW,
3

Note that the filter need not be causal to produce a well-defined linear process.
The most frequently used linear process is the ARMA— autoregressive-moving average—process. Here,
the system’s input-output relation is expressed by the difference equation

The dependence structure of such processes is represented by the notation ARMA(p, g). Here, p equals the
number of poles in the system’s transfer function, g the number of zeros. A more specialized, but frequently
used, case results when no zeros occur (¢ = 0). In this case, we have a pure AR process, which is symbolized
by AR(p). In both ARMA and AR processes when all poles lie inside the unit circle, the process is strongly
mixing, which means that the output is ergodic. When no poles occur, the ARMA model becomes a MA(g)
model, which produces a linear g-dependent output. This process is clearly ergodic so long as its order g
is finite {30}. As described previously, the only time-reversible linear processes are linear Gaussian ones,
produced when the white-noise input is Gaussian, and when the system has a linear phase transfer function
(no poles and either even- or odd-symmetric moving-average coefficients {b;}) (Thm. 2.2.2 {25}). Typically,
linear non-Gaussian processes are time-irreversible.*

Stable processes. Having more theroretical than practical interest are stable processes. Here, the white-
noise input to a linear system has an amplitude distribution drawn from the collection of stable probability
densities. Because a linear combination of stable random variables produces a stable random variable having
the same “form”: weighted sums of Gaussians are Gaussian, weighted sums of Cauchy random variables has
a Cauchy distribution. Thus, a linear system’s output, when driven by stable white noise, is also stable and
has a marginal amplitude distribution of the same form —the parameters can differ—as the input’s. All stable
processes are linear, and these processes can be used to explore the dependence structures of linear processes.
However, the only stable density having a finite variance is the Gaussian, which means that non-Gaussian
stable processes all have the somewhat unrealistic property of infinite power.

Chaotic processes. Using the word “process” along side “chaotic” may seem to clash. However, chaotic
signals, which are produced by zero-input, nonlinear systems, do share some common properties with random
processes.
Consider the zero-input input-output relation expressed by
X, =G[X_,,.. .,Xl_p]

Assume this system’s initial condition, values for the states X, _,, .. .,Xl_p, have some joint distribution. What
is the output’s asymptotic distribution, if it exists? In other words, we ask when repeated solutions the state-
evolution equation (2.3) {22} converge. In some cases, no limit exists, and no such stationary density can be

*It is somewhat curious that the dependence structure expressed by elliptically symmetric distributions contains all least-squares
predictors that turn out to be linear, and yet, because the corresponding processes are time-reversible, they cannot be produced by linear
systems having a white-noise input [2]!
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defined. If the limit exists, then the evolution equation defines the limiting distributions.
(X(”)) - B (X, | X(”)) (X(”)) dx
Pxin '\ _oopXIIX;f)l 0 21/ Pxin\ A —=p

Recall the notation X(r”) =colXy,...,X;_ ;. The conditional density expresses the input-output relation
Gi[].

Because stable linear systems settle to zero from any initial condition, linear processes have quite boring
limiting distributions: py,, (X(()”)) =[] 6 (X;). Nontrivial results can emerge in the nonlinear case.

Example
Consider the over-used example of the input-output relation expressed by the Hénon map.

X, =4X,_, (1 _Xl—l)

If the initial condition lies outside the interval [0, 1], the system’s output is unbounded: The system
acts as if it is unstable. If, however, the system is started within this interval, the output’s amplitude
remains in [0, 1] forever. To investigate solutions to the evolution equation, the conditional distribution
specifying the system has the simple form
Px|x, (X |X_)=20 (Xo —4x_,(1 _X—l))

To perform the required integration, we need to express X, ; in terms of X;. Using the
quadratic formula, we find that X;,_;, = % (1 +./1 —Xl). A relation like o (y— f(x)) equals
Ei|df_l (yl-)/dy| 1) (x— f! (yl-)) ,where {y,} denotes the solution set of x = f(y). The evolution equa-
tion thus constrains any stationary distribution to satisfy

Pl = s [y (414 VT=) £ 2 (1= V=)

Substitution shows that |

px(X) = T /7}((1 —X)

solves this equation. This result means that the output of the zero-input system expressed by the
Hénon map can rattle around inside the interval [0, 1] forever. Fig. 2.3 demonstrates a typical signal
generated according to this difference equation. We should note that not all initial conditions lead to
interesting rattles. If X, equals either O or 3/4, the output equals these values forever; furthermore,
initial conditions that produce these values later in time yield an output that gets “stuck.” These initial
conditions are sparse (the probability of such a value being chosen from the stationary amplitude
distribution is zero.)

In such situations, when a nontrivial amplitude distribution satisfies the evolution equation corresponding to
a zero-input, hence deterministic, system, the signal thus produced is said to be chaotic.

Chaotic signals have been segregated from stochastic ones. A relation between chaotic signals, which
are generated deterministically, and stochastic ones, generated by passing white noise through some system,
would seem only remotely possible. When we consider the time-reversed system, the one that generates
signals in the opposite temporal direction, a random process characterization must result in at least some
cases. Take the just presented Hénon map example; the systems that generate the same signal values forward
and backward in time are

X = 4X1—1(1_X1—1)

1 1
5(1+Wl 1=X), W, =+1] = 5

2
l
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Figure 2.3: Using the initial condition X, = 1/ /2 in the Hénon difference equation produces the depicted
signal. Visually, this signal seems odd somehow, having some structure that does not correspond to intuitive
notions of what random signals should appear to be.

The second equation results from the sign ambiguity of the quadratic formula applied to the first equation
to find X,_, in terms of X,. The equally likely choice for the probability assignment creates an amplitude
distribution for the signal that agrees with the chaotic system’s stationary distribution. Because of this kind
of constraint, a nonlinear Markov model for the signal must be used to describe how to generate the chaotic
signal in the opposite temporal direction. The authors chose temporal “direction” arbitrarily in this example;
nature is not so arbitrary. If we impose causality as a constraint to help define the “right” model for a given
set of observations, one of these models—either the stochastic or deterministic choice—becomes the pre-
ferred model. Thus, the observations’ time-reversibility structure determines which model describes natural
phenomena!

Example
Another, more interesting, example of this duality is the process discussed by Rosenblatt [34: p. 52].
Here, with K some nonzero integer (positive or negative), two systems produce the identical signal
values.
1
1+ W, Pr[W, =k/K] = T’ k=0,...|K|—1

1
Xl:—X
K

X_, = (KX,) mod1

The first difference equation describes a linear autoregressive (hence Markov) process. Using the
techniques used in a previous example {24} of this process, we find that the generated signal’s am-
plitude distribution is uniform over [0, 1]. The (deterministic) equation describing how to generate
this signal in the opposite temporal direction is also known as a congruential uniform random number
generator. Apparently, chaotic signals have been used for decades to model stochastic phenomena!
The stochastic counterpart indicates that the successive outputs of this random number generator are
correlated (correlation coefficient 1/K). This correlation is one reason why K is usually quite large in
applications.

The authors emphasize that these examples demonstrate that randomness and determinism are not di-
chotomous concepts. Either model can describe the same set of observations in these cases. Tests that attempt
to distinguish chaotic signals from random ones cannot succeed unless they take into account the direction of
time. Signal processing researchers are intensely investigating the full picture of how chaos and randomness
are related.
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2.4 Structure of Point Processes

This book has concentrated so far on waveform processes—time series— wherein the observations are a
stochastic sequence derived by somehow sampling a waveform. This mindset limits models and algorithms,
in which the non-Gaussian world only consists of difficult to characterize waveforms. We turn now to point
processes, a class of processes that have no waveform. Such processes cannot be Gaussian, meaning that the
non-Gaussian process category must embrace them. Loosely speaking, a point process consists of a sequence
of events occuring with respect to some continuous parameter, with time being the primary example here;
the times at which events occur completely characterizes the process. In some point process models, a value
(possibly random) is associated with each event; in this case, both event times and event values comprise the
point process. Such nonwaveform processes occur in interesting applications, the primary one being neu-
roscience. For example, many neurons in the central nervous system work by assimilating their inputs to
produce a sequence of identical-waveform pulses —action potentials— that propagate actively (without wave-
form dispersion) through their output cable—axon—to serve as the input to one or several neurons. In many
neural groups, the times at which action potentials occur seem random. In sensory systems, for example,
repeated presentations of the same external input do not produce the same sequence of action potentials.
Clearly, information is conveyed by action potential sequences, else our brains would be incapable of assimi-
lating information about the environment. Analyzing and modeling neural data amounts to developing a point
process characterization and then exploiting it. How do we describe a process having no waveform, and how
can information be encoded into and extracted from such processes?

2.4.1 Definitions

Point processes are described from the viewpoint of observing them. The process is born at = 0. We denote
by N,1 1 the number of events occuring in the observation interval [t,,t,). Observations have no meaning that
occur prior to the process’s birth; we require #; > 0.* A shorthand notation for the total number N, , of events

occuring up to time ¢ is N,, which is known as the counting process. The occurence time of the n” event we
denote by W), and the NV, event times we denote by the event vector W = colW,, .. ., WN, . Note that the number

of elements in this vector can be variable. The n™ interevent interval T, equals the time between the n™ and
(n—1)™ events: T, = w, —w,_,." The history of a point process is the couple {N;, W}: the number of events
that have occurred up to time ¢t and when they occurred.

Definition A regular point process has the property that the probability of an event occuring in the interval
[#,t4 0) conditioned on the process’s history is asymptotically (6 — 0) proportional to the length of the
interval.

t

Pr N71+521|N[:n,W:W :)\,([’n’w)6+0(6)

Here, O (-) denotes a quantity that approaches zero faster than its argument: lim _,, O (x) /x = 0. The quantity
A (z;n;w) denotes the point process’s intensity, an expression of the instantaneous rate at which events occur
and how this rate depends on process history.
In waveform processes, the stochastic process is defined by the multivariate distribution of arbitrarly selected
amplitudes. For a regular point process, the intensity defines it: We distinguish point processes solely by
their intensity definitions. Save for the Poisson process, the intensity depends on history, and expresses the
process’s dependence structure. Note that because the intensity is proportional to probability, all intensities
are non-negative and bounded, and have units of events/s. When an intensity equals zero, no events occur.
Because the intensity defines how the event occurrence rate varies with previous event occurrences, which
are governed by the point process’s probability law, the intensity itself is a random process when viewed as
a waveform. When the point process is ergodic, the intensity can be estimated from observations, meaning
that, as opposed to waveform processes, we have a chance of deriving a model for an observed point process.
Often, we want the rate of event occurrence to depend on more than just the process’s history. To model
seasonal variations of rain storm occurrences, for example, the intensity should depend on some periodic

*The notion of the Big Bang comes to mind here.
TWe define the occurrence time w, to equal ¢, , the beginning of the observation interval.
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waveform. In such cases, the intensity depends on time through more than its history. The waveform control-
ling event occurrence in addition to history can be deterministic, or it can be a sample function of a waveform
process. When deterministic, we have a non-stationary point process; when stochastic, we have what is known
as a doubly stochastic point process. The intensity of such processes is indicated by A (s();#; N;; W), where
s(-) represents a signal that somehow modulates the event occurrence rate.

In applications, we may want to associate with each event a value or sequence of values. For example,
Californians not only care when earthquakes occur, but also how strong they are.

Definition A marked point process is regular and has associated with each event a mark U: a vector of
random variables colU,, ..., U, having a joint probability distribution dependent on process history (which
now includes previous marks).

The intensity of a marked point process has the complicated general form A (t;N,;W;Ul, .. .,UN[ ) In

marked processes, the rate at which events occur as well as mark values can depend on previous marks and
when they occurred. For example, earthquake rate increases (temporarily) after a “big one” occurs, and these
aftershocks thankfully have decreased mark values.

The definition of stationarity is somewhat tricky because of the explicit inclusion of the process’s birth at
time ¢t = 0. Frequently, point processes have a nontrivial dependence structure: Rate of event occurrence does
depend on process history. Because no history exists prior to the process’s birthday, how the intensity evolves
from having no history to having one becomes an important mathematical detail that we would like to ignore
in applications: We would like to assume that the start-up transient has dissipated, leaving the process in kind
of “steady-state.” The only point processes —Poisson processes —immune from this transient have intensities
that do not depend on process history.

Definition The sample function density p,,  (n; W) equals the joint probability density of the number and
oty

occurence times of events that occur in a given interval [t,,1,).

Note that this density completely characterizes a point process during the stated time interval. A reason-
able definition of stationarity must involve this density’s properties as the observation interval becomes more
distant from process initiation.

Definition A point process is said to be stationary if the sample function density asymptotically depends only

on the interval t — W), and on the interevent interval vector T equivalent to W.

This definition recalls the existence of a stationary distribution for a waveform process produced by a system
provided by a white input {23}. The point process equivalent of a generation model is the intensity; as
described subsequently {42}, the sample function density completely depends on the intensity and, given the
intensity, we can generate the point process.

2.4.2 The Poisson Process

Some signals have no waveform. Consider the measurement of when lightning strikes occur within some
region; the random process is the sequence of event times, which has no intrinsic waveform. Such processes
are termed point processes, and have been shown [37] to have a simple mathematical structure. Define some
quantities first. Let N, be the number of events that have occurred up to time ¢ (observations are by convention
assumed to start at + = 0). This quantity is termed the counting process, and has the shape of a staircase
function: The counting function consists of a series of plateaus always equal to an integer, with jumps between
plateaus occurring when events occur. N,1 b= N,2 — N,1 corresponds to the number of events in the interval
[t,,1,). Consequently, N, = No,z' The event times comprise the random vector W; the dimension of this vector
is N;, the number of events that have occurred. The occurrence of events is governed by a quantity known as
the intensity A (t;N;; W) of the point process through the probability law
Pr[N, i p = 1N W= A (1;N;; W) At

for sufficiently small Ar. Note that this probability is a conditional probability; it can depend on how many
events occurred previously and when they occurred. The intensity can also vary with time to describe non-
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stationary point processes. The intensity has units of events/s, and it can be viewed as the instantaneous rate
at which events occur.

The simplest point process from a structural viewpoint, the Poisson process, has no dependence on process
history. A stationary Poisson process results when the intensity equals a constant: A (#;N;; W) = A,. Thus, in
a Poisson process, a coin is flipped every Az seconds, with a constant probability of heads (an event) occurring
that equals AjAt and is independent of the occurrence of past (and future) events. When this probability varies
with time, the intensity equals A (), a non-negative signal, and a nonstationary Poisson process results.*

From the Poisson process’s definition, we can derive the probability laws that govern event occurrence.
These fall into two categories: the count statistics Plr[N,P,2 = n], the probability of obtaining n events in an
interval [1,,1,), and the time of occurrence statistics py, (W), the joint distribution of the first n event times in

the observation interval. These times form the vector W , the occurrence time vector of dimension n. From
these two probability distributions, we can derive the sample function density.

Count statistics. We derive a differentio-difference equation that Plr[N,IV,2 =nl,t, < t,, must satisfy for
event occurrence in an interval to be regular and independent of event occurrences in disjoint intervals. Let ¢,
be fixed and consider event occurrence in the intervals [¢,,7,) and [z,,7,+ 0), and how these contribute to the
occurrence of 7 events in the union of the two intervals. If k events occur in [f,7,), then n — k must occur in
[t5,t,+ 8). Furthermore, the scenarios for different values of k are mutually exclusive. Consequently,

n

PN, s =nl= Y PN, =kN, | s =n—K

=0
= Pr[N12712+5 =O0|N; ., =n]Pr[N, , =n]
+ Pr[Nt2,t2+5 =1|N; ;, =n—1]PiN, , =n—1]

n
+ot kzzpr[NzQJQHS = k|N’1712 =n—kl Pr[N’lvtz =n—k|

Because of the independence of event occurrence in disjoint intervals, the conditional probabilities in this
expression equal the unconditional ones. When 6 is small, only the first two will be significant to first order
in 8. Rearranging and taking the obvious limit, we have the equation defining the count statistics.

dPrN; , =n]

i, = —A(ty) PN, ., = n]+A(1) Pr[N, , =n—1]

To solve this equation, we apply a z-transform to both sides. Defining the transform of PI‘[NIIJ2 =n] to be

P(t,,z)," we have

P23 _ ) (1= Plty,2)
it

Applying the boundary condition that P(¢,,z) = 1, this simple first-order differential equation has the solution

P(tz,z):exp{—(l—z_l)/tlz)»(a)da}

1

To evaluate the inverse z-transform, we simply exploit the Taylor series expression for the exponential, and
we find that a Poisson probability mass function governs the count statistics for a Poisson process.

Plr[N,P,2 =n]= Mexp{—/tIZA(a)d(x} (2.5)

!
n: 1

*In the literature, stationary Poisson processes are sometimes termed homogeneous, nonstationary ones inhomogeneous.
"Remember, 7, is fixed and can be suppressed notationally.
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The integral of the intensity occurs frequently, and we succinctly denote it by A;2. When the Poisson process
is stationary, the intensity equals a constant, and the count statistics depend only on the difference t, —¢,.

Time of occurrence statistics. To derive the multivariate distribution of W, we use the count statistics
and the independence properties of the Poisson process. The density we seek satisfies

w+9, Wy +0,
/ / pw(n)(v)dU:Pr[WlE[wl,wl—l—él),...,WnE[wn,wn—l—é,,)]
w, Wy

The expression on the right equals the probability that no events occur in [¢,,w, ), one event in [w,,w, + 6, ),
no event in [w, + ,,w,), etc.. Because of the independence of event occurrence in these disjoint intervals, we
can multiply together the probability of these event occurrences, each of which is given by the count statistics.

Pr[Wl efw,w+9)),... . W, € [wn,wn—l—én)]

, L4 w, S, .
A" AT —A"2 _AM2T9 AW,
—e 4 - AW1+51 e Awl .e wito, . AW2+52€ AW2 .. 'AW”+5”€ sz "
Wi Wy Wn
AW

! for small §,

R~ (kljl)»(wk)ék) e

From this approximation, we find that the joint distribution of the first n event times equals

Wn
g

» ()(W): (fl)u(wk))exp{—/ )L((x)d(x}, < w <wy << wy,
Wiz =1

0, otherwise

Sample function density. For Poisson processes, the sample function density describes the joint distri-
bution of counts and event times within a specified time interval. Thus, it can be written as

Py, wmw)=Pr[N, = nlW, =w .. Wy =wa]py, (W)

oty
The second term in the product equals the distribution derived previously for the time of occurrence statistics.
The conditional probability equals the probability that no events occur between w), and ¢,; from the Poisson
process’s count statistics, this probability equals exp{—Ai}/n }. Consequently, the sample function density for
the Poisson process, be it stationary or not, equals

Py, , wlnsw) = (k]_jluwk)) exp{— / IQA(a)da} 2.6)

Properties. From the probability distributions derived on the previous pages, we can discern many struc-
tural properties of the Poisson process. These properties set the stage for delineating other point processes
from the Poisson. They, as described subsequently, have much more structure and are much more difficult to
handle analytically.

The counting process N, is an independent increment process. For a Poisson process, the
number of events in disjoint intervals are statistically independent of each other, meaning that we have an
independent increment process. When the Poisson process is stationary, increments taken over equi-duration
intervals are identically distributed as well as being statistically independent. Two important results obtain
from this property. First, the counting process’s covariance function K (¢, u) equals o? min(¢,u). This close
relation to the Wiener waveform process indicates the fundamental nature of the Poisson process in the world
of point processes. Note, however, that the Poisson counting process is not continuous almost surely. Second,
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the sequence of counts forms an ergodic process, meaning we can estimate the intensity parameter from
observations.

The mean and variance of the number of events in an interval can be easily calculated from the Poisson
distribution. Alternatively, we can calculate the characteristic function and evaluate its derivatives. The
characteristic function of an increment equals
(v) = exp { (e/V—1) AZ}

()
N,

The first two moments and variance of an increment of the Poisson process, be it stationary or not, equal

(ga[Ntl,zz] =Ap

gt

N2 _ At2 At2 2
(ga[ 11712] - [1 + [1

/V[Ntl,tz] = AP

g

Note that the mean equals the variance here, a trademark of the Poisson process.

Poisson process event times form a Markov process. Consider the conditional density

Pw,w W, (Wa|w,_;, ..., w,). This density equals the ratio of the event time densities for the n- and (n—1)-

dimensional event time vectors. Simple substitution yields

Wn
WalW,_1s--,w) = A(wy)expq — AMa)ydo o o wy>w,_,

Pw,\w,_,,...W, ( .

n—1

Thus, the n”* event time depends only on when the (n — 1) event occurs, meaning that we have a Markov
process. Note that event times are ordered: The n'* event must occur after the (n— 1)”’, etc.. Thus, the
values of this Markov process keep increasing, meaning that from this viewpoint, the event times form a
nonstationary Markovian sequence. When the process is stationary, the evolutionary density is exponential.
It is this special form of event occurrence time density that defines a Poisson process.

Inter-event intervals in a Poisson process form a white sequence. Exploiting the previous
property, the duration of the n"” interval 1, = w,, — w,_, does not depend on the lengths of previous (or future)
intervals. Consequently, the sequence of inter-event intervals forms a “white” sequence. The sequence may
not be identically distributed unless the process is stationary. In the stationary case, inter-event intervals are
truly white—they form an IID sequence —and have an exponential distribution.

P, (T) = )Loe_)‘()r ,T>0

To show that the exponential density for a white sequence corresponds to the most “random” distribution,
Parzen [30] proved that the ordered times of n events sprinkled independently and uniformly over a given in-
terval form a stationary Poisson process. If the density of event sprinkling is not uniform, the resulting ordered
times constitute a nonstationary Poisson process with an intensity proportional to the sprinkling density.

Doubly stochastic Poisson processes. Here, the intensity A (¢) equals a sample function drawn from
some waveform process. In waveform processes, the analogous concept does not have nearly the impact it
does here. Because intensity waveforms must be non-negative, the intensity process must be nonzero mean
and non-Gaussian. Assume throughout that the intensity process is stationary for simplicity. This model
arises in those situations in which the event occurrence rate clearly varies unpredictably with time. Such
processes have the property that the variance-to-mean ratio of the number of events in any interval exceeds
one. In the process of deriving this last property, we illustrate the typical way of analyzing doubly stochastic
processes: Condition on the intensity equaling a particular sample function, use the statistical characteristics



Sec. 2.4 Structure of Point Processes 4

of nonstationary Poisson processes, then “average” with respect to the intensity process. To calculate the
expected number N,1 1 of events in a interval, we use conditional expected values:

EIN, ) = ELEIN, 12 (1)1, <t < 1]

_ éa[/ttz)»(a)da]

1

= =1,)- €A (1)]

This result can also be written as the expected value of the integrated intensity: &[N, ,2] =& [A;2]. Similar
1
calculations yield the increment’s second moment and variance.

81N, ) = 1N+ 81(A2) ]
IV, ] = SN+ 7 [AR]

1ty
Using the last result, we find that the variance-to-mean ratio in a doubly stochastic process always exceeds
unity, equaling one plus the variance-to-mean ratio of the intensity process.

The approach of sample-function conditioning can also be used to derive the density of the number of
events occurring in an interval for a doubly stochastic Poisson process. Conditioned on the occurrence of a
sample function, the probability of n events occurring in the interval [1,,7,) equals (Eq. 2.5, {38})

(A’ )
Pr|N, . =n|A(t),1; <t < tz} exp{ A’z}

Because A 2 is a random variable, the unconditional distribution equals this conditional probability averaged

with respect to this random variable’s density. This average is known as the Poisson Transform of the random
variable’s density.

Pr{ tty = / —e (ot)d(x

2.4.3 Non-Poisson Processes

In the light of the Poisson process’s structural characteristics and Def. 2.4.1 {36}, any regular point process is
conditionally Poisson. The intensity expresses the dependence of the probability of an event occurring on the
process’s past and, if nonstationary, on a separate function of time. Thus, probabilities related to occurrence
of the next event all have formulae identical to corresponding ones for the Poisson case, save for conditioning
on history.

t
PrN; . :0|N,:n,W("):w} :exp{—/ A(osn;w) d(x}

Wn

Wi +T
(‘c|n,w):A(wn—l—‘c;n;w)exp{—/ )L(w,,—l—(x;n;w)d(x}

Wn

Tyay [N, WD

These expressions encompass both stationary and nonstationary cases. When stationary, the intensity depends
only on interevent intervals, and this dependence is frequently expressed by rewriting the intensity in terms of
intervals instead of time: A (¢;1; W) <> A (7;n; 7). Using this re-expression, the last equation becomes

~ Tntr>
T,y 1N, ) ( T, | n,T)=A (‘En+l;n;r) exp{—/o A(a;n;T) d(x} 2.7

Here, T, 41 is defined to be the time until the next event: =t wy, -
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From these relations, we can derive a system’s model for generating regular point processes [17, 28].
We exploit here a property of the conditonal distribution function. For any random variable X, its distribution
function maps its range uniformly into the interval [0, 1]. Furthermore, the inverse distribution function Py ')
maps the unit interval into the random variable’s domain. Thus, applying the inverse distribution function to
a uniformly distributed random variable U ~ % (0, 1) results in the random variable X: P;'(U) = X. This
property underlies many a random variable generation technique. Here, we apply it to the conditional interval

distribution, which equals exp {_ J"OTHJL (a;m;7) d (x}.

n

Tnt1
—1nU+l:/ Alasn;T) da
0

The negative logarithm of a uniform random variable equals a unit-parameter exponential random variable,
which has density exp{—x}u(x). Denoting such a random variable as E, we find that

Tt
E, :/0 Alasnyt) da

When applied to the sequence of (dependent) interevent intervals, this mapping generates a sequence of
independent, identically distributed random variables— white noise. Thus, the intervals in a regular point
process can be generated by passing white noise (distributed exponentially) through the inverse function of
the above integral.*

Toy1 = GITE, 4]
7, 28
G_l[r;rn+l]:/0 +r)vu(ot;n;‘c) do (@8)

When the intensity depends only on a finite number of events that occurred prior to time ¢, the sequence
of interevent intervals constitute a Markov process. Thus, the Markov process structural characterizations
developed in previous sections for waveform processes apply as well to the sequence of intervevent intervals
in a stationary point process. When the point process is nonstationary, the generating system varies with time,
which must be expressed as the sum of interval durations: = Y T,.

Example
The simplest possible example is the stationary Poisson process. Assume that it has intensity equaling
Ay The integral can be calculated explicitly as A,7, and its inverse is, of course, also linear. We find

that |
Th = A_OEn

This “system” yields a sequence of independent, exponentially distributed random variables having
parameter A,.

The next several examples illustrate frequently encountered intensities. These are all stationary; they can
be made nonstationary by including temporal variations into the intensity and doubly stochastic by making
these variations dependent on a random process.

Renewal processes. Second only to the Poisson process in simplicity, stationary renewal processes are
characterized by independent interevent intervals that are not exponentially distributed. Here, the probability
of an event depends on time since the last event occurrence.

AT 3mT) = Ay r(Tyy)
*Note that this inverse function is always well-defined. When the intensity is positive, the integral is strictly increasing. When zero,

integral is a constant over some contiguous range of interevent intervals. In this case, the inverse function is taken to be the range’s
rightmost edge.
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Here, r(-) denotes the recovery function, which is normalized so that lim;_,. 7(t) = 1. The Poisson process
is a renewal process with a recovery function equaling one for all inervals. The normalization isolates the
dependence of event occurrence on interval from the implicit occurrence rate A,,. Note that this rate does not
equal the average occurrence rate except in the Poisson case.

In a renewal process, the interval distribution can be directly calculated from the intensity and vice versa.
Using Eq. 2.7 {41},

pe(t) = )Lor(r)exp{—)uo/orr(a)d(x}
() = PO

The ratio in the last equation is known in point process literature as the hazard function and the age-specfic
failure rate. This terminology comes from considering events as component failures of some sort and noting
that the ratio can be interpreted as the probability of a failure in instant occurring at T given that the failure
interval exceeds t.

Example

One example recovery function is a delayed step: r(t) = u(t — A). Here, A is known as the deadtime:
Because the intensity equals zero for A seconds after each event, events cannot occur during this time.
This model has been used to approximate “latching” of a photomultiplier tube after a recorded incident
photon and to describe discharge patterns of single auditory neurons [16]. The average rate at which
events occur in this process equals A, /(14 A,A). This result can be easily derived by considering how
to generate it: Using the generation equation (2.8), we find that 7, = tE,, +A.

Passing from a stationary renewal process model to a nonstationary one can be done in several
ways. One approach used in modeling neural discharges [16] is to express the intensity as the product
of a recovery function and a time-varying rate.

At;nsw) =s(t) -u(t—w, —A)

Example
One renewal process that exhibits positive-aging—the probability of an event increases with time
since the last event—has a linear recovery function: r(t) = at. Here, the interevent intervals have a
Rayleigh density.
pe(T) = Myatexp {—A,at?/2}

First-order Markovian point processes. More complicated point process dependence structures have
been found in recordings from single neurons [17]. Here, the probability of an event depends not only on
time since the last event, but also on time since the pentultimate one. Thus, the sequence of intervals forms a
first-order Markov process in which the intensity has the form

A(tnyt) = )L0~r(‘cn+l —s(‘c,,))

where s(-) is a positive-valued shifting function that essentially delays the recovery function to longer interval
durations in a way that depends on the previous interval’s duration. When the shifting function is a decreas-
ing function, the delay is less for longer preceding intervals than shorter ones. Thus, in this process, long
intervals tend to be followed by short ones and vice versa. Simple calculations from the generation equation



44 Stochastic Processes Chap. 2

(Eq. 2.8 {42}) show that the conditional expected value, equivalent to the least-squares predictor, equals the
shifting function plus a constant.
Etpr | Tl = s() +C

The constant depends in a complicated way on both the recovery function and the shifting function.

Hawkes’ process [12]. This process demonstrates that regular point processes need not be Markovian.
Here, the intensity depends on the output of a linear filter that has an input equal to impulses occurring at
event times.

r
A(r;n;w):)»o—I—/ h(t — o) dNg

The Steiljes integral in this expression simply equals the summed impulse responses delayed by all event

times occurring prior to time ¢:
n

At w) = Ao+ Y h(t—w,)
=1
Thus, the intensity depends on all past event times. Note that not all impulse responses can occur in this ex-
pression. Fir instance, intensities are always positive quantities, meaning that the summed impulse responses
cannot be more negative than —A,. Further restrictions on the impulse response result if we demand the
Hawkes’ process be stationary. Defining A as the average occurrence rate, the intensity must satisfy

_ _ r
A:A0+A/ h(t — o) do

From this constraint we find the average occurrence rate equals A,/ (1 — f; () da), which means that the
filter’s impulse response must satisfy [, h(a)da < 1. This constraint means that the filter’s gain at zero
frequency must be less than unity.

2.5 Linear Vector Spaces

One of the more powerful tools in statistical communication theory is the abstract concept of a linear vector
space. The key result that concerns us is the representation theorem: a deterministic time function can be
uniquely represented by a sequence of numbers. The stochastic version of this theorem states that a process
can be represented by a sequence of uncorrelated random variables. These results will allow us to exploit the
theory of hypothesis testing to derive the optimum detection strategy.

2.5.1 Basics

Definition A linear vector space .¥ is a collection of elements called vectors having the following properties:
1. The vector-addition operation can be defined so that if x,y,z € .%:

(a) x+y €. (the space is closed under addition)

(b) x+y=y—+x (Commutivity)

(©) (x+y)+z=x+(y+2z) (Associativity)

(d) The zero vector exists and is always an element of .. The zero vector is defined by x+0 = x.

(e) For each x € ., a unique vector (—x) is also an element of . so that x+ (—x) = 0, the zero
vector.

2. Associated with the set of vectors is a set of scalars which constitute an algebraic field. A field is a set
of elements which obey the well-known laws of associativity and commutivity for both addition and
multiplication. If a, b are scalars, the elements x,y of a linear vector space have the properties that:

(a) a-x (multiplication by scalar a) is defined anda -x € ..
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(b) a-(b-x)=(ab)-x.
(c) If “I1” and “0” denotes the multiplicative and additive identity elements respectively of the field of
scalars; then 1 -x=xand0-x=0

(d) a(x+y) = ax+ay and (a+ b)x = ax+ bx.

There are many examples of linear vector spaces. A familiar example is the set of column vectors of length
N. In this case, we define the sum of two vectors to be:

X1 Y1 X+

Xy ) Xy +¥,
. + . = .

Xy N Xy TN

and scalar multiplication to be a - col[x, x, - - -xy] = col[ax, ax, - - -axy]. All of the properties listed above are
satisfied.
A more interesting (and useful) example is the collection of square integrable functions. A square-

integrable function x(¢) satisfies:
T
/ T x(t) Pt < .
T

One can verify that this collection constitutes a linear vector space. In fact, this space is so important that it
has a special name — L (T, T, ) (read this as el-two); the arguments denote the range of integration.

Definition Let . be a linear vector space. A subspace .7 of . is a subset of . which is closed. In other
words, ifx,y € 7, then x,y € . and all elements of 7 are elements of ., but some elements of . are not
elements of .7 . Furthermore, the linear combinationax—+ by € 7 for all scalars a, b. A subspace is sometimes
referred to as a closed linear manifold.

2.5.2 Inner Product Spaces

A structure needs to be defined for linear vector spaces so that definitions for the length of a vector and for
the distance between any two vectors can be obtained. The notions of length and distance are closely related
to the concept of an inner product.

Definition An inner product of two real vectors x,y € ., is denoted by (x,y) and is a scalar assigned to the
vectors x and y which satisfies the following properties:

¥ =)
ax,y) = a{x,y), a is a scalar
x+,2) = (x,2) +(y,2), z a vector.

L (x,
2.4
3.
4. (x,x) > 0 unless x = 0. In this case, (x,x) = 0.

As an example, an inner product for the space consisting of column matrices can be defined as
N

(xy)y=xy= E XiYi-
=1

The reader should verify that this is indeed a valid inner product (i.e., it satisfies all of the properties given
above). It should be noted that this definition of an inner product is not unique: there are other inner product
definitions which also satisfy all of these properties. For example, another valid inner product is

(x,y) =xKy.
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where K is an N x N positive-definite matrix. Choices of the matrix K which are not positive definite do not
yield valid inner products (property 4 is not satisfied). The matrix K is termed the kernel of the inner product.
When this matrix is something other than an identity matrix, the inner product is sometimes written as (x, y)x
to denote explicitly the presence of the kernel in the inner product.

Definition The norm of a vector x € . is denoted by ||x|| and is defined by:
] = x,x)'/2 29

Because of the properties of an inner product, the norm of a vector is always greater than zero unless the
vector is identically zero. The norm of a vector is related to the notion of the length of a vector. For example,
if the vector x is multiplied by a constant scalar a, the norm of the vector is also multiplied by a.

llax|| = (ax, ax)'/? = |l |

In other words, “longer” vectors (a > 1) have larger norms. A norm can also be defined when the inner
product contains a kernel. In this case, the norm is written ||x|| for clarity.

Definition An inner product space is a linear vector space in which an inner product can be defined for all
elements of the space and a norm is given by equation 2.9. Note in particular that every element of an inner
product space must satisfy the axioms of a valid inner product.

For the space .# consisting of column matrices, the norm of a vector is given by (consistent with the first
choice of an inner product)

This choice of a norm corresponds to the Cartesian definition of the length of a vector.
One of the fundamental properties of inner product spaces is the Schwarz inequality.

e < (I (2.10)

This is one of the most important inequalities we shall encounter. To demonstrate this inequality, consider the
norm squared of x+ ay.

[lx+ayll? = (et ay,x+ay) = [lal* + 2alx, ) + |yl

Let a = —(x,)/||y||*. In this case:

() N (]
[l +ayl? = x> ~2 + [yl
1331
_ ||x||2 . |<xa)’>|2
17

As the left hand side of this result is non-negative, the right-hand side is lower-bounded by zero. The Schwarz
inequality of Eq. 2.10 is thus obtained. Note that equality occurs only when x = —ay, or equivalently when
x = cy, where c is any constant.

Definition Two vectors are said to be orthogonal if the inner product of the vectors is zero: {x,y) = 0.

Consistent with these results is the concept of the “angle” between two vectors. The cosine of this angle is
defined by:

(%)
[yl
Because of the Schwarz inequality, |cos(x,y)| < 1. The angle between orthogonal vectors is +/2 and the
angle between vectors satisfying Eq. 2.10 with equality (x « y) is zero (the vectors are parallel to each other).

cos(x,y) =



Sec. 2.5 Linear Vector Spaces 47

Definition The distance d between two vectors is taken to be the norm of the difference of the vectors.

d(x,y) = [be=ll

In our example of the normed space of column matrices, the distance between x and y would be

. 1/2
B [zm—mz] ,

=1
which agrees with the Cartesian notion of distance. Because of the properties of the inner product, this
distance measure (or metric) has the following properties:
e d(x,y) = d(y,x) (Distance does not depend on how it is measured.)
e d(x,y) =0 = x =y (Zero distance means equality)
e d(x,7) <d(x,y) +d(y,z) (Triangle inequality)
We use this distance measure to define what we mean by convergence. When we say the sequence of vectors

{xn} converges to x (x, — x), we mean
lim ||x, —x|| =0
n—o

2.5.3 Hilbert Spaces

Definition A Hilbert space ¢ is a closed, normed linear vector space which contains all of its limit points:
if {x,} is any sequence of elements in 5 that converges to x, then x is also contained in ¢ . x is termed the
limit point of the sequence.

Example
Let the space consist of all rational numbers. Let the inner product be simple multiplication: (x,y) =
xy. However, the limit point of the sequence x, = 14+ 1+1/2!+---4 1/n! is not a rational number.
Consequently, this space is not a Hilbert space. However, if we define the space to consist of all finite
numbers, we have a Hilbert space.

Definition If % is a subspace of 5, the vector x is orthogonal to the subspace % foreveryy € %, {(x,y) =0.
We now arrive at a fundamental theorem.

Theorem Let .7 be a Hilbert space and % a subspace of it. Any element x € H has the unique decomposition
x=y-+z, wherey € % andz is orthogonal to % . Furthermore, |[x— y|| = min, _,, ||x—v||: the distance between
x and all elements of % is minimized by the vector y. This element y is termed the projection of x onto %' .

Geometrically, % is a line or a plane passing through the origin. Any vector x can be expressed as the
linear combination of a vector lying in % and a vector orthogonal to y. This theorem is of extreme importance
in linear estimation theory and plays a fundamental role in detection theory.

2.5.4 Separable Vector Spaces

Definition A Hilbert space ¢ is said to be separable if there exists a set of vectors {¢,},i=1,..., elements
of 3¢, that express every element x € 7 as

x= Exi¢i’ 2.11)
i=1
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where x; are scalar constants associated with ¢, and x and where “equality” is taken to mean that the distance
between each side becomes zero as more terms are taken in the right.

m
Al |x= 200y =0
The set of vectors {¢,} are said to form a complete set if the above relationship is valid. A complete set is
said to form a basis for the space 5¢. Usually the elements of the basis for a space are taken to be linearly
independent. Linear independence implies that the expression of the zero vector by a basis can only be made
by zero coefficients.

8

x¢$;=0&x,=0,i=1,...
1

The representation theorem states simply that separable vector spaces exist. The representation of the vector
x is the sequence of coefficients {x;}.

Example
The space consisting of column matrices of length N is easily shown to be separable. Let the
vector ¢; be given a column matrix having a one in the i row and zeros in the remaining rows:
¢, = col[0,...,0,1,0,...,0]. This set of vectors {¢,},i=1,...,N constitutes a basis for the space.
Obviously if the vector x is given by x = col[x, x, ...xy], it may be expressed as:

N
X = Exi¢i
=1

using the basis vectors just defined.

In general, the upper limit on the sum in Eq. 2.11 is infinite. For the previous example, the upper limit is
finite. The number of basis vectors that is required to express every element of a separable space in terms of
Eq.2.11 is said to be the dimension of the space. In this example, the dimension of the space is N. There exist
separable vector spaces for which the dimension is infinite.

Definition The basis for a separable vector space is said to be an orthonormal basis if the elements of the
basis satisfy the following two properties:

o The inner product between distinct elements of the basis is zero (i.e., the elements of the basis are
mutually orthogonal).

e The norm of each element of a basis is one (normality).
lol=1,i=1,...

For example, the basis given above for the space of N-dimensional column matrices is orthonormal. For
clarity, two facts must be explicitly stated. First, not every basis is orthonormal. If the vector space is
separable, a complete set of vectors can be found; however, this set does not have to be orthonormal to be
a basis. Secondly, not every set of orthonormal vectors can constitute a basis. When the vector space L? is
discussed in detail, this point will be illustrated.

Despite these qualifications, an orthonormal basis exists for every separable vector space. There is an ex-
plicit algorithm — the Gram-Schmidt procedure — for deriving an orthonormal set of functions from a complete
set. Let {¢,} denote a basis; the orthonormal basis {,} is sought. The Gram-Schmidt procedure is:
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Loy =¢/|9]]-
This step makes v, have unit length.

2. 9y = by — (W, )Yy
Consequently, the inner product between v, and v, is zero. We obtain v, from v, forcing the vector
to have unit length.

2"y, = b /|y

The algorithm now generalizes.

ke W= — 312 (v, 9

! — ! !
K. e =y /|yl
By construction, this new set of vectors is an orthonormal set. As the original set of vectors {¢,} is a complete
set, and, as each v, is just a linear combination of ¢;, i = 1,...,k, the derived set {1} is also complete.

Because of the existence of this algorithm, a basis for a vector space is usually assumed to be orthonormal.
A vector’s representation with respect to an orthonormal basis {¢,} is easily computed. The vector x may
be expressed by:

re ixi¢i (2.12)
=1

%= (5,0) 2.13)

This formula is easily confirmed by substituting Eq. 2.12 into Eq. 2.13 and using the properties of an inner
product. Note that the exact element values of a given vector’s representation depends upon both the vector
and the choice of basis. Consequently, a meaningful specification of the representation of a vector must
include the definition of the basis.

The mathematical representation of a vector (expressed by equations 2.12 and 2.13) can be expressed
geometrically. This expression is a generalization of the Cartesian representation of numbers. Perpendicular
axes are drawn; these axes correspond to the orthonormal basis vector used in the representation. A given
vector is representation as a point in the ”plane” with the value of the component along the ¢, axis being x;.

An important relationship follows from this mathematical representation of vectors. Let x and y be any
two vectors in a separable space. These vectors are represented with respect to an orthonormal basis by {x;}
and {y,}, respectively. The inner product (x,y) is related to these representations by:

<xa)’> = E X i
=1

This result is termed Parseval’s Theorem. Consequently, the inner product between any two vectors can be
computed from their representations. A special case of this result corresponds to the Cartesian notion of the
length of a vector; when x = y, Parseval’s relationship becomes:

L 112
[lxl] = [lelz]

These two relationships are key results of the representation theorem. The implication is that any inner product
computed from vectors can also be computed from their representations. There are circumstances in which the
latter computation is more manageable than the former and, furthermore, of greater theoretical significance.

2.5.5 The Vector Space L’

Special attention needs to be paid to the vector space L(7;, T;): the collection of functions x(t) which are
square-integrable over the interval (7;, T;):

Tf 2
/ ()2 dr < o0
T.

i
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An inner product can be defined for this space as:

(x,y) = / T e)y(e) di (2.14)

i

Consistent with this definition, the length of the vector x(z) is given by

= [ [ par]

i

Physically, ||x||* can be related to the energy contained in the signal over (T, T;). This space is a Hilbert space.
If 7; and T} are both finite, an orthonormal basis is easily found which spans it. For simplicity of notation, let
T.=0 and I,=T. The set of functions defined by:

12 -
by () = (%) COSM

2\'? | 2air
¢2i(f)—<7) SN ——

is complete over the interval (0,7) and therefore constitutes a basis for L?(0,T). By demonstrating a basis,
we conclude that L2 (0,T) is a separable vector space. The representation of functions with respect to this
basis corresponds to the well-known Fourier series expansion of a function. As most functions require an
infinite number of terms in their Fourier series representation, this space is infinite dimensional.

There also exist orthonormal sets of functions that do not constitute a basis. For example, the set {¢;(z) }

defined by:
1 . .
= IiT <t nr
¢i(r>:{T TEE DT o

(2.15)

0 otherwise

over L? (0,). The members of this set are normal (unit norm) and are mutually orthogonal (no member
overlaps with any other). Consequently, this set is an orthonormal set. However, it does not constitute a basis
for L*(0, ). Functions piecewise constant over intervals of length T are the only members of L?(0, %) which
can be represented by this set. Other functions such as e~"u(¢) cannot be represented by the {¢,(¢)} defined
above. Consequently, orthonormality of a set of functions does not guarantee completeness.

While L2(0, T) is a separable space, examples can be given in which the representation of a vector in this
space is not precisely equal to the vector. More precisely, let x(¢) € L?(0, T) and the set {¢;(¢)} be defined by
Eq. (2.15). The fact that {¢,(r) } constitutes a basis for the space implies:

where ’
%= /0 x(t)¢(t) dr

In particular, let x(¢) be:

1 0<t<T/2
x(t) =
0 T/2<t<T

Obviously, this function is an element of L2(0, 7). However, the representation of this function is not equal
to 1 at + = T /2. In fact, the peak error never decreases as more terms are taken in the representation. In the
special case of the Fourier series, the existence of this “error” is termed the Gibbs phenomenon. However, this
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“error” has zero norm in L2(0, T); consequently, the Fourier series expansion of this function is equal to the
function in the sense that the function and its expansion have zero distance between them. However, one of
the axioms of a valid inner product is that if ||¢|| =0 = e = 0. The condition is satisfied, but the conclusion
does not seem to be valid. Apparently, valid elements of L2(0, T) can be defined which are nonzero but have

zero norm. An example is
1 t=T/2
e =
0 otherwise

So as not to destroy the theory, the most common method of resolving the conflict is to weaken the definition
of equality. The essence of the problem is that while two vectors x and y can differ from each other and be
zero distance apart, the difference between them is “trivial”. This difference has zero norm which, in 12,
implies that the magnitude of (x—y) integrates to zero. Consequently, the vectors are essentially equal. This
notion of equality is usually written as x = y a.e. (x equals y almost everywhere). With this convention, we
have:

[le]| =0 = e=0ae.

Consequently, the error between a vector and its representation is zero almost everywhere.

Weakening the notion of equality in this fashion might seem to compromise the utility of the theory. How-
ever, if one suspects that two vectors in an inner product space are equal (e.g., a vector and its representation),
it is quite difficult to prove that they are strictly equal (and as has been seen, this conclusion may not be valid).
Usually, proving they are equal almost everywhere is much easier. While this weaker notion of equality does
not imply strict equality, one can be assured that any difference between them is insignificant. The measure
of “significance” for a vector space is expressed by the definition of the norm for the space.

2.5.6 A Hilbert Space for Stochastic Processes

The result of primary concern here is the construction of a Hilbert space for stochastic processes. The space
consisting of random variables X having a finite mean-square value is (almost) a Hilbert space with inner
product £[XY]. Consequently, the distance between two random variables X and Y is

d(x,y) = {el(x v}

Now d(X,Y) =0 = &[(X —Y)?] = 0. However, this does not imply that X = Y. Those sets with prob-
ability zero appear again. Consequently, we do not have a Hilbert space unless we agree X =Y means
PriXx=Y]=1.
Let X (¢) be a process with £[X>(¢)] < . For each , X (t) is an element of the Hilbert space just defined.
Parametrically, X (¢) is therefore regarded as a “curve” in a Hilbert space. This curve is continuous if
. 2
lim (X (1) ~ X ()] = 0
Processes satisfying this condition are said to be continuous in the quadratic mean. The vector space of
greatest importance is analogous to L2(Tl-, Tf) previously defined. Consider the collection of real-valued
stochastic processes X (¢) for which
T
/ftf[x(t)z]dt@o
Ti

Stochastic processes in this collection are easily verified to constitute a linear vector space. Define an inner

product for this space as:
T
/ fX(t)Y(t)dt]
T.

i

SUX(). Y ()] = 6 [

While this equation is a valid inner product, the left-hand side will be used to denote the inner product
instead of the notation previously defined. We take (X(¢),Y ()} to be the time-domain inner product as in
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Eq. (2.14). In this way, the deterministic portion of the inner product and the expected value portion are
explicitly indicated. This convention allows certain theoretical manipulations to be performed more easily.

One of the more interesting results of the theory of stochastic processes is that the normed vector space
for processes previously defined is separable. Consequently, there exists a complete (and, by assumption,
orthonormal) set {¢;(z)},i=1, ... of deterministic (nonrandom) functions which constitutes a basis. A process
in the space of stochastic processes can be represented as

X()= Y X9(1), T,<t<Ty,
where {X;}, the representation of X (), is a sequence of random variables given by

%= (X000 o X= [ X0y o)

Strict equality between a process and its representation cannot be assured. Not only does the analogous
issue in L? (0,T) occur with respect to representing individual sample functions, but also sample functions
assigned a zero probability of occurrence can be troublesome. In fact, the ensemble of any stochastic process
can be augmented by a set of sample functions that are not well-behaved (e.g., a sequence of impulses) but
have probability zero. In a practical sense, this augmentation is trivial: such members of the process cannot
occur. Therefore, one says that two processes X (z) and Y (r) are equal almost everywhere if the distance
between || X (z) —Y (¢)|| is zero. The implication is that any lack of strict equality between the processes (strict
equality means the processes match on a sample-function-by-sample-function basis) is “trivial”.

2.5.7 Karhunen-Loéve Expansion

The representation of the process, X (¢), is the sequence of random variables X;. The choice basis of {¢,(¢)}
is unrestricted. Of particular interest is to restrict the basis functions to those which make the {X;} uncorre-
lated random variables. When this requirement is satisfied, the resulting representation of X (z) is termed the
Karhunen-Loéve expansion. Mathematically, we require £[X,X,] = £[X;] £[X ], i # j. This requirement can
be expressed in terms of the correlation function of X (7).

stxx)=s| [ Tx<a>¢i<a>da /0 X(p)0,(6)dp]|

- [ / Ry(a,B)dadp

As £[X] is given by

our requirement becomes

[ [ otcn,BIry (e pydceas = [‘my(gcrda [‘my(B)o,B)ap. i#

Simple manipulations result in the expression
T T o
[ o@] [ Kelaproprap] da=o.iz

When i = j, the quantity &[X?] — &2[X,] is just the variance of X;. Our requirement is obtained by satisfying

/Onpi(a) [/OT Ky(a,B)9;(B) d/j] da =25,
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or
T
| s (@yda=0.i% .
where .
gi(@) = [ Kela.B)o,(B)dp.

Furthermore, this requirement must hold for each j which differs from the choice of i. A choice of a function
g (@) satisfying this requirement is a function which is proportional to ¢;(at): g () = A ;¢ ,(a). Therefore,

[ w1018 = 20,00 |

The {¢,} which allow the representation of X(z) to be a sequence of uncorrelated random variables must
satisfy this integral equation. This type of equation occurs often in applied mathematics; it is termed the
eigenequation. The sequences {¢,} and {A,} are the eigenfunctions and eigenvalues of Ky (o, §), the covari-
ance function of X (¢). It is easily verified that:

Ky(t,u) = E Aii(t) 9;(u)
=1
This result is termed Mercer’s Theorem.
The approach to solving for the eigenfunction and eigenvalues of K, (z, u) is to convert the integral equa-
tion into an ordinary differential equation which can be solved. This approach is best illustrated by an exam-
ple.

Example
Ky(t,u) = o min(t,u). The eigenequation can be written in this case as

o? [/Otu(/)(u)du—I—t/tT(/)(u)du] =Ap(1).

Evaluating the first derivative of this expression,
T
o214 (1) + o2 / o (1) du— o1 (1) =
t
r d
or 02/ ¢ (u)du= A—(P.
t

, 4o (1)
dt

dt
Evaluating the derivative of the last expression yields the simple equation
d’¢
2
-0 P(t)=A—.
This equation has a general solution of the form ¢ (¢) = Asin %t + Bcos %t. It is easily seen that

B must be zero. The amplitude A is found by requiring [|¢|| = 1. To find A, one must return to the
original integral equation. Substituting, we have

) o
A/ usm—udu—i—a tA/ sin — udu_AAmn
VA ﬂ

After some manipulation, we find that

AL Sin ——t — AGtV/A c0s —=T = AAsin —=t Vr € [0,7).

VA VA Vi

o
or AotvVAcos—T =0Vr € [0,7T).
Vi (0.7)



54 Stochastic Processes Chap. 2

Therefore, -Z \/— =(n—-1/2)n,n=1,2,...and we have

02T2
Ao
" (n—1/2)2x2

oin=(2) " sl

T T

The Karhunen-Loeve expansion has several important properties.

o The eigenfunctions of a positive-definite covariance function constitute a complete set. One can easily
show that these eigenfunctions are also mutually orthogonal with respect to both the usual inner product
and with respect to the inner product derived from the covariance function.

o If X(¢) Gaussian, X; are Gaussian random variables. As the random variables {X;} are uncorrelated and
Gaussian, the {X;} comprise a sequence of statistically independent random variables.

o Assume K, (t,u) = %6 t —u): the stochastic process X(¢) is white. Then
X 2 p

/ 2051 — ) (w)du = 2 (1)

for all ¢ (7). Consequently, if A, = N,;/2 , this constraint equation is satisfied no matter what choice is
made for the orthonormal set {¢,(t)}. Therefore, the representation of white, Gaussian processes con-
sists of a sequence of statistically independent, identically-distributed (mean zero and variance N,,/2)
Gaussian random variables. This example constitutes the simplest case of the Karhunen-Loeve expan-
sion.

Problems

2.1 Simple Processes
Determine the mean, correlation function and first-order amplitude distribution of each of the processes
defined below.

(a) X, is defined by the following equally likely sample functions.

X (w) =1 X (wy) = sinmt
X (w,)=-2  X/(w,)=cosmt
(b) X, is defined by X, = cos(Ar + 6), where A and 6 are statistically independent random variables.
0 is uniformly distributed over [0, 27) and A has the density function
()= ——
Pal? = 7(1+A?)

2.2 An Elementary Process
The joint density of the amplitudes of a stochastic process X; at the specific times t = ¢, and t =1,
(t, > t,) is found to be

constant x; > x, ,0<x,x, <1
Px, x, (x1, %) = .
1770 0 otherwise

This joint density is found to be a valid joint density for X, and X,, when |t —u| = |t, —1,].
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(a) Find the correlation function Ry (¢, u) at the times t = ¢, and u = 1,.

(b) Find the expected value of X; for all ¢.

(c¢) Is this process wide-sense stationary?

Freshman Chemistry

A student in freshman chemistry lab is frustrated; an experiment is not going well and limited time
is available to perform the experiment again. The outcome of each experiment is a Gaussian random

variable X having a mean equal to the value being sought and variance o>. The student decides to
average his experimental outcomes.

Yl:

~| —

1
X ., 1=102,...

Each outcome X; is uncorrelated with all other outcomes X, j # i

(a) Find the mean and correlation function of the stochastic sequence ;.

(b) Is Y, stationary? Indicate your reasoning.

(¢c) How large must n be to ensure that the probability of the relative error |(Yl - &)/ cr| being less
than 0.1 is 0.95?

The Morning After the Night Before

Sammy has had a raucous evening and is trying to return home after being dropped at the RMC. As
he has had a little too much, he walks in a random fashion. His friends observe that at each second
after he leaves the RMC, he has moved a distance A since the previous observation. The distance A is a
Gaussian random variable with zero mean and standard deviation one meter. In addition, this distance
can be reasonably assumed to be statistically independent of his movements at all other times (he is
really out of it!). We wish to predict, to some degree, Sammy’s position with time. For simplicity, we
assume his movements are in one dimension.

(a) Define a stochastic process X; that describes Sammy’s position relative to the RMC at each obser-
vation time.

(b) What is the mean and variance of this process?

(c) What is the probability that sammy is more than ten meters from the RMC after two minutes of
observations? First put your answer in terms of Q(-), then find a numeric answer.

(d) After ten minutes of wandering, Sammy bumps into a tree 150 meters from the RMC. What is the
probability that Sammy comes within one meter of the same tree ten seconds after his collision.
Again, express your answer first in terms of Q(+) and then find a numeric answer.

Not-So-Random Sample Functions
Consider the process defined by X, = Acos(2mf,t) where A is a random variable and f; is a constant.

(a) Find the first-order density py (x).

(b) Find the mean and correlation function of X;.

() Can .#4(f) be calculated? If so, calculate it; if not, why not?

(d) Now let X, = Acos(2mf,t) + Bsin(2nft), where A and B are random variables and f;, constant.
(e) Find necessary and sufficient conditions for X; to be wide-sense stationary.

(f) Show that necessary and sufficient conditions for the stochastic process X, defined by X, =
cos(2mfyt 4+ 0) with f; a constant to be wide-sense stationary is that the characteristic function
D, (jv) satisfy
Dy (j1) = 0= Dy(j2).
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2.6 Random Frequency and Phase
A stochastic process X; is defined to be
X, = cos(2mFt + 0)
where F and 0 are statistically independent random variables. The quantity 0 is uniformly distributed
over [—z, ) and F can assume one of the values 1,2, or 3 with equal probability.

(a) Compute the mean and correlation function of X, .

This process serves as the input to the following system.

X Z 1 Y,
t (Y2 / (-)dt L,
I -1
Delay
Note: The signals are multiplied, not summed, at the node located just before the integrator. ¥; and Z;
are related by
t
Y, = / Zgdo
-1

(b) Isthe process Z, wide-sense stationary?

(c) What is the expected value and correlation function of ¥;?
2.7 Random Amplitude, Frequency and Phase

Let the stochastic process X; be defined by

X, = Acos(2nFt 4+ 0)

where A, F, and 0 are statistically independent random variables. The random variable 0 is uniformly

distributed over the interval [—s, ). The densities of the other random variables are to be determined.

(a) Show that X, is a wide-sense stationary process.

(b) Is X, strict-sense stationary? Why or why not?

(c) The inventor of this process claims that X, can have any correlation function one desires by ma-
nipulating the densities of A and . Demonstrate the validity of this result and the requirements
these densities must satisfy.

(d) The inventor also claims that X; can have any first-order density one desires so long as the desired
density is bounded. Show that this claim is also valid. Furthermore, show that the requirements
placed on the densities of A and F are consistent with those found in the previous part.

(e) Could this process be fruitfully used in simulations to emulate a process having a specific cor-
relation function and first-order density? In other words, would statistics computed from the
simulation results be meaningful? Why or why not?

2.8 Quadrature Representation of Stochastic Signals

Let X; be a zero-mean process having the quadrature representation
X; = X, ;0827 fot — X, , Sin27 fol |

where X, and X; ; are jointly wide-sense stationary, Gaussian processes.

(a) Show that X; is a Gaussian process.
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(b) In terms of the correlation functions Ry (t) and Ry (t) and the cross-correlation function
Ry x, (t), determine sufficient conditions for X; to be wide-sense stationary.

(¢) Under these conditions, what are the joint statistics of teh random variables Xy and X, ,? In
particular , so that Ry y (t) =0 fort = 0.

(d) Show that if the power spectrum of X; is bandpass and symmetric about f = =+ fo, then Ry y (t) =
0 for all T. What does this result say about the joint statistics of the processes X, , and X; ,?

Random Telegraph Wave
One form of the random telegraph wave X, is derived from a stationary Poisson process N, , having

constant event rate A .
_ +1 N, even
=
-1 No,z odd
For ¢ < 0, the process is undefined. NV, denotes the number of events that have occurred in the interval

[0,¢) and has a probability distribution given by

At)"
Pr[NO,:n]:( ') M 1>0.
’ n:

Note that Pr[N, ,=0] = 1.

(a) What is the probability distribution of X; ?
(b) Find the mean and correlation function of X, .

(c) Is this process wide-sense stationary? stationary in the stricter sense? Provide your reasoning.

Independent Increment Processes
A stochastic process X, is said to have stationary, independent increments if, for t; < t, <ty <1,:

e The random variable X,2 — X,1 is statistically independent of the random variable X,4 — X,s.
o The pdf of X,2 — X,1 is equal to the pdf of X[2+T — X[1+T forallz ,t,,T.
The process is identically equal to zero at r = 0 (Pr[X, = 0] = 1).
(a) What is the expected value and variance of X,1 +,2?
Hint: Write X, ,, = [X’H"z =X 1+ X, — X
(b) Using the result of part (a), find expressions for £[X;] and 7 [X,].
(c) Define (DX, (jv) to be the characteristic function of the first-order density of the process X,. Show
that this characteristic function must be of the form:

q)X[(jV) — et'f(V)

where f(v) is a conjugate-symmetric function of v.
(d) Compute Ky(t,u).

(e) The process X, is passed through a linear, time-invariant filter having the transfer function H(f) =
J2nf. Letting Y, denote the output, determine K, (¢, u).

Martingales
A process X, is said to be a martingale if it satisfies the relationship

EX X, 0 <ul =X, ,u<t.

In words, the expected value of a martingale at time ¢ given all values of the process that have been
observed up to time u (4 < ¢) is equal to the most recently observed value of the process (X,,).
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(a) Show that the mean of a martingale is a constant.

(b) Show that all zero-mean, independent, stationary-increment processes are martingales. Are all
martingales independent increment processes?

(¢) IfX is a zero-mean martingale having a possibly time-varying variance Gz(t) , show that its cor-
relation function is given by
Ry (t,u) = o (min(r, u))

2.12 Time-Rescaling
In this problem, assume that the process X; has stationary, independent increments.
(a) Define Y; to be:
Ye=8(1) Xy
where g(¢) and h(t) are deterministic functions and k(z)/g(z) is a strictly increasing function. Find
the mean and covariance functions of ¥;.

(b) A stochastic process X, is said to be a Markov process if, for t; <1, < ... <1,_, < ty, the condi-
tional density of X, satisfies:

XulX), 0 X,y) (XulX,_)-

p =p
X0, X, 0%

Show that all independent-increment processes are Markov processes.

2.13 Mean-Square Continuity
Let X; be a stochastic process with correlation function Ry (¢, u). X; is said to be mean-square continuous
if
lim&[(X, — X,)2] =0, forall #,u .

t—u

(a) Show that X, is mean-square continuous if and only if the correlation function Ry (¢, u) is contin-
uous at = u.

(b) Show that if RX(t, u) is continuous at = u, it is continuous for all 7 and u.

(¢) Show that a zero-mean, independent-increment process with stationary increments is mean-square
continuous.

(d) Show that a stationary Poisson process is mean-square continuous. Note that this process has no
continuous sample functions, but is continuous in the mean-square sense.

2.14 Properties of Correlation Functions

(a) Show that correlation and covariance functions have the following properties:
1. Ry(t,u) = Ry (u,t)
2. Ry () = Ry(-7)
3. Kg(t,u) < Ky(t,1) - Ky(u, u)
4. Ky (r,u)| < 3[Ky(1,1) + Ky (u, u)]
5. [Ry(7)| < Ry (0)
(b) LetX; be a wide-sense stationary random process. If s(¢) is a deterministic function and we define
Y, = X, +s(¢), what is the expected value and correlation function of ¥;?

2.15 Correlation Functions and Power Spectra

(a) Which of the following are valid correlation functions? Indicate your reasoning.
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2. Ry(t,u) = o> max(t,u) 0 otherwise

3. Ry(t,u)=e -0 1 |7|<T

4. Ry(r,u) = cost-cosu 8. Ry() = {0 otherwise

5. Ry(t) = eIl — el 9. Ry(t)=5(1)+25

6. Ry(r) = :inl000r 10. Ry(t) =0(v+ 1)+ 8(v)+6(t—1)

(b) Which of the following are valid power density spectra? Indicate your reasoning.

Lo F(f)="5H 4 Fy(f) = e M =2

inzf) 2 - —j2nf
2. F(f) = () 5. Flf) = ITO';:]UT
3. K= exp{——(‘f_fo) } 6. Ix(f)= {0 othe_rwise

2.16 The Bispectrum
The idea of a correlation function can be extended to higher order moments. For example, the third

order “correlation” function RS) (t,,,,t;) of a random process X; is defined to be
3
Rgg)(tlafza%) = (ga[Xlleth3]
(a) Show that if X; is strict-sense stationary, then the third-order correlation function depends only on

the time differences z, — ¢, and 1; —¢,.

(b) Find the third-order correlation function of X, = Acos(2nft + ©), where © ~ U[—m, ) and A,
Jfo are constants.

(¢) LetZ =X, +Y,, where X; is Gaussian, ¥, is non-Gaussian, and X;, Y, are statistically independent,
zero-mean processes. Find the third-order correlation function of Z;.

2.17 Joint Statistics of a Process and its Derivative .
Let X; be a wide-sense stationary stochastic process. Let X; denote the derivative of X;.

(a) Compute the expected value and correlation function of X, in terms of the expected value and
correlation function of X;.

(b) Under what conditions are X, and X, orthogonal? In other words, when does <X ,X) = 0 where
(X, X)=¢XX]?

(¢) Compute the mean and correlation function of ¥, = X, — X,.

(d) The bandwidth of the process X, can be defined by

| Pinar
B)2( R
[ Adnar

Express this definition in terms of the mean and correlation functions of X, and X,.

(e) The statistic U is used to count the average number of excursions of the stochastic process X;
across the level X; = A in the interval [0, T]. One form of this statistic is

1 T
U=~
7,

where u(-) denotes the unit step function. Find the expected value of U, using in your final
expression the formula for By. Assume that the conditions found in part (b) are met and X, is a
Gaussian process.

d
EU(XI — A) dt
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A Non-Gaussian Process

Let {X,} denote a sequence of independent, identically distributed random variables. This sequence
serves as the input to a discrete-time system having an input-output relationship given by the difference
equation

Yy=a¥_,+X
(a) IfX, ~ .40, 02), find the probability density function of each element of the output sequence
)

(b) Show that |(DX1( V)| < <I)Xl (jO) for all choices of v no matter what the amplitude distribution of
X; may be.

(¢) If X; is non-Gaussian, the computation of the probability density of ¥, can be difficult. On the
other hand, if the density of Y, is known, the density of X, can be found. How is the characteristic
function of X; related to the characteristic function of ¥;?

(d) Show that if ¥, is uniformly distributed over [—1, 1), the only allowed values of the parameter a
are those equalling 1 /m, m = 42,43, 44, ....

Nonlinearities and Processes
The Gaussian wide-sense stationary random process X;, having mean zero and correlation function

Ry (7), is squared during signal processing: ¥, = X?.

(a) IsY; a wide-sense stationary process? Why or why not?
(b) What is the probability density of ¥;?

(c) Ifitexists, find the power density spectrum of ¥;.

Nonlinear Processing
A stationary, zero-mean Gaussian process is passed through a half-wave rectifier, which has an input-

output relationship given by
Kz{& X, >0

0 X <0

In other words, the output equals the positive-valued amplitudes of the input and is zero otherwise.

Y
— 3 HWR —>
Xt IYt
/4

t ‘ t
(a) What is the mean and variance of ¥;? Express your answer in terms of the correlation function of
X;.

(b) Isthe output Y; a stationary process? Indicate why or why not.

(c) What is the cross-correlation function between input and output? Express your answer in terms
of the correlation function of X, .

Intermodulation Distortion
X, and Y; are the outputs of identical bandpass filters having statistically independent, identically dis-
tributed white-noise processes W, , and W, , as inputs.
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SN W T f faw
BPF o o o To
W2,t Yt

The frequency f;, is much larger than the bandwidth W'.
(a) Find the correlation function of X;.

Z; consists of the sum of X;, Y; and an intermodulation distortion component aX;Y;, where a is an
unknown constant.

(b) What is the cross-correlation function of ¥; and Z,?

(¢) Find the correlation function of Z;.

(d) You want to remove the intermodulation distortion component from Z;. Can this removal be
accomplished by operating only on Z;? If so, how; if not, why not.

Predicting the Stock Market
The price of a certain stock can fluctuate during the day while the true value is rising or falling. To
facilitate financial decisions, a Wall Street broker decides to use stochastic process theory. The price P,
of a stock is described by

P =Kt+N,,0<t <1

where K is the constant our knowledgeable broker is seeking and N, is a stochastic process describing
the random fluctuations. N, is a white, Gaussian process having spectral height N,/2. The broker
decides to estimate K according to:

N 1
K= / Fig(t)dt
0
where the best function g(¢) is to be found.

(a) Find the probability density function of the estimate K for any g(¢) the broker might choose.

(b) A simple-minded estimate of K is to use simple averaging (i.e., set g(¢) = constant). Find the value

~.

of this constant which results in £[K] = K. What is the resulting percentage error as expressed by

7K 1K)

(c¢) Find g(#) which minimizes the percentage error and yields £[K] = K. How much better is this
optimum choice than simple averaging?

Constant or no Constant?
To determine the presence or absence of a constant voltage measured in the presence of additive, white
Gaussian noise (spectral height N,/2), an engineer decide to compute the average V of the measured

voltage V;.
_ 1T
V== Vidt
T/o !

The value of the constant voltage, if present, is ;. The presence and absence of the voltage are equally
likely to occur.

(a) Derive a good method by which the engineer can use the average to determine the presence or
absence of the constant voltage.

(b) Determine the probability that the voltage is present when the engineer’s method announces it is.
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(c¢) The engineer decides to improve the performance of his technique by computing the more com-
plicated quantity V given by

T
v=[ fwar
0
What function f(¢) maximizes the probability found in part (b)?

2.24 Estimating the Mean
Suppose you have stochastic process ¥,, produced by the depicted system. The input W, is discrete-time
white noise (not necessarily Gaussian) having zero mean and correlation function Ry, (1) = o3 8 (/).
The system relating X, to the white-noise input is governed by the difference equation

Xy =aX,_,+Wy, la|<1.

The quantity m is an unknown constant.

w X Y

n n n

— > ¥ >

(a) Is the process Y, stationary? Why or why not?

(b) What is the correlation function of Y,,?

(c) We want to estimate the constant m by averaging Y, over a finite time interval: m = %22’:—01 Y,.
What is the expected value and variance of this estimate?

2.25 Generating Random Processes
It is desired to generate a wide-sense stationary process with correlation function
Ry(t) =77,
Two methods are proposed.

1. Let X, = Acos(2mFt + 0) where A, F, and 6 are statistically independent random variables.
2. Define X; by:

X, = / h(e)N,_,, do
0
where N, is white and 4(¢) is the impulse response of the appropriate filter.

(a) Find at least two impulse responses A(¢) that will work in method 2.
(b) Specify the densities for A, F', 6 in method 1 that yield the desired results.

(c) Sketch sample functions generated by each method. Interpret your result. What are the technical
differences between these processes?

2.26 Multipath Channels
Let X, be a Gaussian random process with mean my (¢) and covariance function Ky (¢, u). The process
is passed through the depicted system.

(+)
Gain Delay \r

X, Y
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(a) IsY; a Gaussian process? If so, compute the pdf of Y;.

(b) What are the mean and covariance functions of ¥;?

(c) IfX, is stationary, is Y; stationary?

(d) Compute the cross-correlation function between X, and Y;.
2.27 A Simple Filter

The white process X; serves as the input to a system having output Y;. The input-output relationship of
this system is determined by the differential equation

Yt +2Y, =X,
(a) Find the mean and correlation function of ;.
(b) Compute the cross-correlation function between X, and Y;.
(c) Show that the correlation function of ¥; obeys a homogeneous version of the differential equation
governing the system for positive values of 7.
Ry (t)+2Ry(t)=0,t>0

Do not use your answer to part (a) to work this part. Rather, show the validity of this result in a
more general fashion.

2.28 Noise Reduction Filters
Noise reduction filters are used to reduce, as much as possible, the noise component of a noise-corrupted
signal. Let the signal of interest be described as a wide-sense stationary process X;. The observed signal
is given by Y; = X; + N;, where N, is a process modeling the noise that is statistically independent of the
signal.

(a) Assuming that the noise is white, find a relationship that the transfer function of the filter must
satisfy to maximize the signal-to-noise ratio (i.e., the ratio of the signal power to the noise power)
in the filtered output.

(b) Compute the resulting signal-to-noise ratio when the signal correlation function is
Ry (7) = o%e~dll.

2.29 Analog Communication
The message M, is to be transmitted using amplitude modulation. The transmitted signal has the form

X; = (14 M,)cos(2nfyt + ©), f, = constant,® ~ U(—m,x]

The message is a wide-sense stationary Gaussian process having zero mean. It is bandlimited to W Hz
and statistically independent of the random phase ©. A few technical details are not quite worked out. ..

(a) For technical reasons, the transmitter needs to clip the message so that it never exceeds 1 in
magnitude. What is the probability that the magnitude of M, at a randomly chosen time exceeds
1? Express your answer in terms of the mean and correlation function of M, .

(b) What is the power spectrum of X;? Assume that the probability of clipping the message is negli-
gible.

(¢) A standard receiver multiplies the incoming signal by a sinusoid having a frequency and phase
equal to that of the carrier, then passes the product through an ideal lowpass filter having a cutoff
frequency of W Hz. What is the power spectrum of the receiver’s output? Assume f, > W.

X Y,

t
)® > LPF >
W Hz

!

cos(2nf,t+0)
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230 Measuring the Power Spectrum with Analog Means
In practice, one often wants to measure the power density of a stochastic process. For the purposes of
this problem, assume the process X; is wide-sense stationary, zero mean, and Gaussian. The following
measurement system is proposed.

X, Y, Y7 z,
H,(f) (-)? Hy(f) |

—fo fo

—Af Af

where H, (f) is the transfer function of an ideal bandpass filter and H, (f) is an ideal lowpass. Assume
that Af is small compared to range of frequencies over which .%%(f) varies.

(a) Find the mean and correlation function of YI2 in terms of the second-order statistics of X;.

(b) Compute the power density spectrum of the process Z;.

(¢) Compute the expected value of Z,.

(d) By considering the variance of Z;, comment on the accuracy of this measurement of the power
density of the process X; .

231 Three Filters
Let X; be a stationary, zero-mean random process that serves as the input to three linear, time-invariant
filters. The power density spectrum of X, is .y (f) = N,;/2. The impulse responses of the filters are

1 0<r<1
hy(t) = T
0 otherwise

27t >0
hz(f):{ n

0 otherwise

V2sin2mt 0<t<2
hy(t) = 0 .
otherwise

The output of filter i is denoted by ¥;(¢).
(a) Compute &£[Y;(¢)] and £[Y?(¢)] fori=1,2,3.
(b) Compute Ryy, (¢,u). Interpret your result.

(¢) Is there any pair of processes for which £[Y;(z) - Y,(¢)] = 0 for all ?
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(d) Is there any pair of processes for which £[Y(t) -Y,(u)] = 0 for all  and u?

Generation of Processes
Let X; be a wide-sense stationary process having correlation function Ry(t) = 8(t). X, serves as the
input to a linear, time-invariant system having impulse response A(?).

(a) Determine an £(z0 so that the linear system is stable and causal, and yields an output ¥; having the
correlation function
Ry (1) = eIy el

(b) Show that your answer is not unique by finding at least three other alternatives.

Time-Bandwidth Product

It is frequently claimed that the relation between noise bandwidth and reciprocal duration of the ob-
servation interval play a key role in determining whether DFT values are approximately uncorrelated.
While the statements sound plausible, their veracity should be checked. Let the covariance function of
the observation noise be Ky (/) = al'l.

(a) How is the bandwidth (defined by the half-power point) of this noise’s power spectrum related to
the parameter a? How is the duration (defined to be two time constants) of the covariance function
related to a?

(b) Find the variance of the length-L DFT of this noise process as a function of the frequency index
k. This result should be compared with the power spectrum calculated in part (a); they should
resemble each other when the “memory” of the noise—the duration of the covariance function—
is much less than L while demonstrating differences as the memory becomes comparable to or
exceeds L.

(c) Calculate the covariance between adjacent frequency indices. Under what conditions will they be
approximately uncorrelated? Relate your answer to the relations of a to L found in the previous
part.

More Time-Bandwidth Product

The results derived in Problem 2.33 assumed that a length-L Fourier Transform was computed from
a length-L segment of the noise process. What will happen if the transform has length 2L with the
observation interval remaining unchanged?

(a) Find the variance of DFT values at index k.
(b) Assuming the conditions in Problem 2.33 for uncorrelated adjacent samples, now what is the

correlation between adjacent DFT values?

Sampling Stochastic Processes

(a) Let X, be a wide-sense stationary process bandlimited to W Hz. The sampling interval 7} satisfies
T < ﬁ What is the covariance of successive samples?

(b) Now let X, be Gaussian. What conditions on 7 will insure that successive samples will be statis-
tically independent?

(c) Now assume the process is not strictly bandmilited to W Hz. This process serves as the input
to an ideal lowpass filter having cutoff frequency W to produce the process Y;. This output is
sampled every ﬁ seconds to yield an approximate representation Z, of the original signal X;.
Show that the mean-squared value of the sampling error, defined to be £2 = £[(X, — Z,)?],is given
by €2 =2 .S (f) df.

Properties of the Poisson Process
Let N, be a Poisson process with intensity A ().

(a) What is the expected value and variance of the number of events occurring in the time interval
[t,u)?
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(b) Under what conditions is N, a stationary, independent increment process?

(¢) Compute Ry (t,u).

(d) Assume that A(z) = A, a constant. What is the conditional density Pww._ | (Wa|w,_,)? From this
relationship, find the density of T,, the time interval between W,, and W, _,.

Optical Communications

In optical communication systems, a photomultiplier tube is used to convert the arrival of photons into
electric pulses so that each arrival can be counted by other electronics. Being overly clever, a clever Rice
engineer bought a photomultiplier tube from AGGIE PMT, Inc. The AGGIE PMT device is unreliable.
When it is working, each photon is properly converted to an electric pulse. When not working, it has
“dead-time” effects: the conversion of a photon arrival blocks out the conversion of the next photon.
After a photon arrival has been missed, the device converts the next arrival properly. To detect whether
the Aggie device is working properly or not, the clever Rice engineer decides to use results from a
statistical signal processing course he is taking to help him. A calibrated light source is used to give
an average arrival rate of A photons/sec on the surface of the photomultiplier tube. Photon arrivals are
described by a Poisson process.

(a) Find the density of the time between electric pulses if the AGGIE device has these dead-time
effects.

(b) Can the times of occurrence of electric pulses be well-described by a Poisson process when the
dead-time effects are present? If so, find the parameters of the process; if not, state why.

(c) Assuming the device is as likely to not be working as it is to be working, find a procedure to
determine its mode of operation based on the observation of the time between two successive
electric pulses.

Shot Noise

Shot noise is noise measured in vacuum tube circuits which is due to the spontaneous emission of
electrons from each tube’s cathode. The electron emission is assumed to be described as a stationary
Poisson process of intensity A. The impact of each electron on a tube’s anode causes a current to flow
in the attached circuit equal to the impulse response of the circuit. Thus, shot noise is often modeled
as a sequence of impulses (whose times of occurrence are a Poisson process) passing through a linear,
time-invariant system.

(a) What is the correlation function of X, ?
Hint: Relate X; to the counting process N;.

(b) Show that for any wide-sense stationary process X; for which lim;_, Ry (t) = 0, the mean of X,
is zero. Use this result to show that if lim,_, Ry (T) exists, the value of the limit equals the square
of the mean of the process.

(¢c) Find the power density spectrum of the shot noise process Y;.

(d) Evaluate the mean and variance of ¥;.

Filtering Poisson Processes
An impulse is associated with the occurrence of each event in a stationary Poisson process. This derived
process serves as the input to a linear, time-invariant filter having transfer function H(f), which is given
by

H(f)=1—e /T4 72T T = constant .

(a) What is the mean and covariance function of the input to the filter?

(b) What is the mean and covariance function of the output of the filter?

(c) Now let the filter have any impulse response that has duration T’ (i.e., h(t) =0, <0 and ¢ > T).
Find the impulse response that yields the smallest possible coefficient of variation v(r). The
coefficient of variation, defined to be the ratio of the process’s standard deviation to its mean at
time ¢, measures the percentage variation of a positive-valued process.
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240 Linear Vector Spaces
Do the following classes of stochastic processes constitute a linear vector space? If so, indicate the

proof; if not, show why not.
1. All stochastic processes.

2. All wide-sense stationary processes.

3. All nonstationary stochastic processes.

241 Inner Products
Show that the inner product of two vectors satisfies the following relationships.

@) [y <|x]] - [|yl], the Schwarz inequality.
(b) [Jx+y| < []x]| + [|y]], the triangle inequality.
© [lx+y|)? +|1x = y|*> = 2||x||> + 2||y||%, the parallelogram equality.

(d) Find an expression for the inner product (x, y) using norms only.

242 Defining a Linear Vector Space
Let x and y be elements of a normed, linear vector space.

(a) Determine whether the following are valid inner products for the indicated space.

1. {(x,y) = x'Ay where A is a nonsingular, N x N matrix and x, y are elements of the space of
N-dimensional column matrices.
2. {x,y) = xy" where x, y are elements of the space of N-dimensional column matrices.

3. (x,y) = fyx(t)y(T —t) dt where x, y are finite-energy signals defined over [0, T].

4. (x,y) = Jdw(t)x(t)y(r)dr where w(r) is a non-negative function and x, y are finite-energy
signals defined over [0, T].
5. &[XY] where X and Y are real-valued random variables having finite mean-square values.

6. cov(X,Y), the covariance of the real-valued random variables X and Y. Assume that the
random variables have finite mean-square values.

(b) Under what conditions is
T (T
| [ ot wate)ytu) drdu
0 Jo
a valid inner product for the set of finite-energy functions defined over [0, T]?

243 Inner Products with Kernels
Let an inner product be defined with respect to the positive-definite, symmetric kernel Q.

<'xay>Q = 'ny

where xQy is the abstract notation for the mapping of the two vectors to a scalar. For example, if x and
y are column matrices, Q is a positive-definite square matrix and

<xa)’>Q =xQy.

If x and y are defined in [? , then

() = / / ()O(t, u)y(u) drdu.

Let v denote an eigenvector of Q: Qv = Av.

(a) Show that the eigenvectors of a positive-definite, symmetric kernel are orthogonal.

<Viavj>:0ai7£j'
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(b) Show that these eigenvectors are orthogonal with respect to the inner product generated by Q.
Consequently, the eigenvectors are orthogonal with respect to two different inner products.
(¢) Let é be the inverse kernel associated with Q. If Q is a matrix, then Q6 =1I. If Q is a continuous-
time kernel, then
/Q(r,u)é(u,v) du=08(t—v) .
Show that the eigenvectors of the inverse kernel are equal to those of the kernel. How are the
associated eigenvalues of these kernels related to each other?
244 A Karhunen-Loeve Expansion
Let the covariance function of a wide-sense stationary process be
I—|t| |7|<1
K, (1) = -
x(7) {0 otherwise
Find the eigenfunctions and eigenvalues associated with the Karhunen-Loeve expansion of X, over
(0,T) with T < 1.
245 Karhunen-Loeve Expansions

The purpose of this problem is to derive a general result which describes conditions for an orthonormal
basis to result in an uncorrelated representation of a process. Let X denote a stochastic process which
has the expansion

X= _EI<X 199
=
where {¢;} denotes a complete, orthonormal basis with respect to the inner product (-, -).
<¢ia ‘/’j> = 6ij
The process X may be nonstationary and may have non-zero mean.
(a) To require that the representation be an uncorrelated sequence is equivalent to requiring:
LK, ¢)(X,9))] = EUX, )] EU(X, 9)] = 4,6
Show that this requirement implies:
XX —my, §;)] = 4,9,
where my = &[X].

(b) Let X be a finite-length stochastic sequence so that it can be considered a random vector. Define
the inner product (X,Y) to be X"Y. Show that above equation is equivalent to

Kyp=21¢.
(¢) Let X be a continuous parameter process so that
T
(X,Y) = / XY, dt
0

Show that this inner product implies

/OTKX(I,MW(M) du=1¢(1).

(d) Again let X be a continuous parameter process. However, define the inner product to be

(X,Y) = /OT/OTQ(I, W)X,Y, dt du.

where Q(7,u) is a non-negative definite function. Find the equivalent relationship implied by the
requirements of the Karhunen-Loe¢ve expansion. Under what conditions will the ¢s satisfying this
relationship not depend on the covariance function of X?



Chapter 3

Estimation Theory

In searching for methods of extracting information from noisy observations, this chapter describes estima-
tion theory, which has the goal of extracting from noise-corrupted observations the values of disturbance
parameters (noise variance, for example), signal parameters (amplitude or propagation direction), or signal
waveforms. Estimation theory assumes that the observations contain an information-bearing quantity, thereby
tacitly assuming that detection-based preprocessing has been performed (in other words, do I have something
in the observations worth estimating?). Conversely, detection theory often requires estimation of unknown
parameters: Signal presence is assumed, parameter estimates are incorporated into the detection statistic, and
consistency of observations and assumptions tested. Consequently, detection and estimation theory form a
symbiotic relationship, each requiring the other to yield high-quality signal processing algorithms.

Despite a wide variety of error criteria and problem frameworks, the optimal detector is characterized
by a single result: the likelihood ratio test. Surprisingly, optimal detectors thus derived are usually easy
to implement, not often requiring simplification to obtain a feasible realization in hardware or software. In
contrast to detection theory, no fundamental result in estimation theory exists to be summoned to attack
the problem at hand. The choice of error criterion and its optimization heavily influences the form of the
estimation procedure. Because of the variety of criterion-dependent estimators, arguments frequently rage
about which of several optimal estimators is “better.” Each procedure is optimum for its assumed error
criterion; thus, the argument becomes which error criterion best describes some intuitive notion of quality.
When more ad hoc, noncriterion-based procedures* are used, we cannot assess the quality of the resulting
estimator relative to the best achievable. As shown later, bounds on the estimation error do exist, but their
tightness and applicability to a given situation are always issues in assessing estimator quality. At best,
estimation theory is less structured than detection theory. Detection is science, estimation art. Inventiveness
coupled with an understanding of the problem (what types of errors are critically important, for example) are
key elements to deciding which estimation procedure “fits” a given problem well.

3.1 Terminology in Estimation Theory

More so than detection theory, estimation theory relies on jargon to characterize the properties of estimators.
Without knowing any estimation technique, let’s use parameter estimation as our discussion prototype. The
parameter estimation problem is to determine from a set of L observations, represented by the L-dimensional
vector X, the values of parameters denoted by the vector 6. We write the estimate of this parameter vector
as 0(X), where the “hat” denotes the estimate, and the functional dependence on X explicitly denotes the
dependence of the estimate on the observations. This dependence is always present . but we frequently denote
the estimate compactly as 6. Because of the probabilistic nature of the problems considered in this chapter,
a parameter estimate is itself a random vector, having its own statistical characteristics. The estimation error

*This governmentese phrase concisely means guessing.
TEstimating the value of a parameter given no data may be an interesting problem in clairvoyance, but not in estimation theory.
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¢(X) equals the estimate minus the actual parameter value: &(X) = 6(X) — 0. It too is a random quantity and
is often used in the criterion function. For example, the mean-squared error is given by &[€’€]; the minimum
mean-squared error estimate would minimize this quantity. The mean-squared error matrix is £[¢¢€’]; on the
main diagonal, its entries are the mean-squared estimation errors for each component of the parameter vector,
whereas the off-diagonal terms express the correlation between the errors. The mean-squared estimation error
&[€"¢€] equals the trace of the mean-squared error matrix tr{&[e€’]}.

Bias. An estimate is said to be unbiased if the expected value of the estimate equals the true value of the
parameter: £[0|6] = 6. Otherwise, the estimate is said to be biased: £[0]0] # 6. The bias b(6) is usually
considered to be additive, so that b(6) = £[0]6] — 6. When we have a biased estimate, the bias usually
depends on the number of observations L. An estimate is said to be asymptotically unbiased if the bias tends
to zero for large L: lim;_, . b = 0. An estimate’s variance equals the mean-squared estimation error only if
the estimate is unbiased.

An unbiased estimate has a probability distribution where the mean equals the actual value of the param-
eter. Should the lack of bias be considered a desirable property? If many unbiased estimates are computed
from statistically independent sets of observations having the same parameter value, the average of these es-
timates will be close to this value. This property does not mean that the estimate has less error than a biased
one; there exist biased estimates whose mean-squared errors are smaller than unbiased ones. In such cases,
the biased estimate is usually asymptotically unbiased. Lack of bias is good, but that is just one aspect of how
we evaluate estimators.

Consistency. We term an estimate consistent if the mean-squared estimation error tends to zero as the
number of observations becomes large: lim; , . &[e'e] = 0. Thus, a consistent estimate must be at least
asymptotically unbiased. Unbiased estimates do exist whose errors never diminish as more data are collected:
Their variances remain nonzero no matter how much data are available. Inconsistent estimates may provide
reasonable estimates when the amount of data is limited, but have the counterintuitive property that the quality
of the estimate does not improve as the number of observations increases. Although appropriate in the proper
circumstances (smaller mean-squared error than a consistent estimate over a pertinent range of values of L),
consistent estimates are usually favored in practice.

Efficiency. As estimators can be derived in a variety of ways, their error characteristics must always be
analyzed and compared. In practice, many problems and the estimators derived for them are sufficiently
complicated to render analytic studies of the errors difficult, if not impossible. Instead, numerical simulation
and comparison with lower bounds on the estimation error are frequently used instead to assess the estimator
performance. An efficient estimate has a mean-squared error that equals a particular lower bound: the Cramér-
Rao bound. If an efficient estimate exists (the Cramér-Rao bound is the greatest lower bound), it is optimum
in the mean-squared sense: No other estimate has a smaller mean-squared error (see §3.2.4 {79} for details).
For many problems no efficient estimate exists. In such cases, the Cramér-Rao bound remains a lower
bound, but its value is smaller than that achievable by any estimator. How much smaller is usually not
known. However, practitioners frequently use the Cramér-Rao bound in comparisons with numerical error
calculations. Another issue is the choice of mean-squared error as the estimation criterion; it may not suffice
to pointedly assess estimator performance in a particular problem. Nevertheless, every problem is usually
subjected to a Cramér-Rao bound computation and the existence of an efficient estimate considered.

3.2 Parameter Estimation

Determining signal parameter values or a probability distribution’s parameters are the simplest estimation
problems. Their fundamental utility in signal processing is unquestioned. How do we estimate noise power?
What is the best estimator of signal amplitude? Examination of useful estimators, and evaluation of their
properties and performances constitute a case study of estimation problems. As expected, many of these
issues are interrelated and serve to highlight the intricacies that arise in estimation theory.

All parameters of concern here have unknown values; we classify parameter estimation problems accord-
ing to whether the parameter is stochastic or not. If so, then the parameter has a probability density known as
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the prior density (one that applies before the data become available). Choosing the prior, as we have said so
often, narrows the problem considerably, suggesting that measurement of the parameter’s density would yield
something like what was assumed! Said another way, if a prior is not chosen from fundamental considerations
(such as the physics of the problem) but from ad hoc assumptions, the results could tend to resemble the as-
sumptions you placed on the problem. On the other hand, if the density is not known, the parameter is termed
“nonrandom,”’ and its values range unrestricted over some interval. The resulting nonrandom-parameter es-
timation problem differs greatly from the random-parameter problem. We consider first the latter problem,
letting 6 be a scalar parameter having the prior density p,(6). The impact of the a priori density becomes
evident as various error criteria are established, and an “optimum” estimator is derived.

3.2.1 Minimum Mean-Squared Error Estimators

In terms of the densities involved in scalar random-parameter problems, the mean-squared error is given by

&l = //(9 — 0)%py o(x,0)dxd0

where py ,(X, 0) is the joint density of the observations and the parameter. To minimize this integral with

~

respect to 0, we rewrite it using the laws of conditional probability as

511 = [ a0 (f10- 5%y (01000 ) ax

The density py(-) is nonnegative. To minimize the mean-squared error, we must minimize the inner integral
for each value of X because the integral is weighted by a positive quantity. We focus attention on the inner
integral, which is the conditional expected value of the squared estimation error. The condition, a fixed value
of X, implies that we seek that constant [6(X)] derived from X that minimizes the second moment of the
random parameter 0. A well-known result from probability theory states that the minimum of &[(x — ¢)?]
occurs when the constant ¢ equals the expected value of the random variable x (see §1.2.2 {4}). The inner
integral and thereby the mean-squared error is minimized by choosing the estimator to be the conditional
expected value of the parameter given the observations.

~

Opmse (X) = €[01X]

Thus, a parameter’s minimum mean-squared error (MMSE) estimate is the parameter’s a posteriori (after the
observations have been obtained) expected value.

The associated conditional probability density p 9|X(9 IX) is not often directly stated in a problem defini-
tion and must somehow be derived. In many applications, the likelihood function Pxjo (X]0) and the a priori
density of the parameter are a direct consequence of the problem statement. These densities can be used to
find the joint density of the observations and the parameter, enabling us to use Bayes’s Rule to find the a
posteriori density if we knew the unconditional probability density of the observations.

leH(X|9)p9(9)

O ==X

Pox

This density py(X) is often difficult to determine. Be that as it may, to find the a posteriori conditional
expected value, it need not be known. The numerator entirely expresses the a posteriori density’s dependence
on 0; the denominator only serves as the scaling factor to yield a unit-area quantity. The expected value
is the center-of-mass of the probability density and does not depend directly on the “weight” of the density,
bypassing calculation of the scaling factor. If not, the MMSE estimate can be exceedingly difficult to compute.
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Example

Let L statistically independent observations be obtained, each of which is expressed by X (/) = 6 +
N(1). Bach N(1) is a Gaussian random variable having zero mean and variance o%. Thus, the unknown
parameter in this problem is the mean of the observations. Assume it to be a Gaussian random variable
a priori (mean m, and variance crg). The likelihood function is easily found to be

N2
[l er 05

so that the a posteriori density is given by

—oxp) -5 (o axp | 1 (K20’
o) = V2 { (5 )}HW { g N>}

px(X)

Pox

In an attempt to find the expected value of this distribution,lump all terms that do not depend explicitly
on the quantity 6 into a proportionality term.

2 2
Oy Oy

_ 2 —m 2
P9|X(9|X)ocexp{__ 2X()—6) +(9 0) H

After some manipulation, this expression can be written as

Pox(01) ocexp{—ﬁ [E)—a (ag + Ei}é ))] }

where 0 is a quantity that succinctly expresses the ratio aNag/ (aN + Lcrg) The form of the a
posteriori density suggests that it too is Gaussian; its mean, and therefore the MMSE estimate of 0,

is given by
~ m SX(1)
Onimise (X) = o’ <_9 + —)
o2 o

2

More insight into the nature of this estimate is gained by rewriting it as

~ aN/L 1l

0, X) = X

The term af, /L is the variance of the averaged observations for a given value of 6; it expresses the
squared error encountered in estimating the mean by simple averaging. If this error is much greater
than the a priori variance of 0 (aN /L> 09) implying that the observations are noisier than the
variation of the parameter, the MMSE estimate ignores the observations and tends to yield the a priori
mean m, as its value. If the averaged observations are less variable than the parameter, the second
term dominates, and the average of the observations is the estimate’s value. This estimate behavior
between these extremes is very intuitive. The detailed form of the estimate indicates how the squared
error can be minimized by a linear combination of these extreme estimates.
The conditional expected value of the estimate equals

oy /L %

_|_
o2+ o0y/L "o o2 +oy/L

&lOnmsi 0] =
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This estimate is biased because its expected value does not equal the value of the sought-after pa-
rameter. It is asymptotically unbiased as the squared measurement error af, /L tends to zero as L
becomes large. The consistency of the estimator is determined by investigating the expected value of
the squared error. Note that the variance of the a posteriori density is the quantity o?; as this quan-
tity does not depend on X, it also equals the unconditional variance. As the number of observations
increases, this variance tends to zero. In concert with the estimate being asymptotically unbiased, the
expected value of the estimation error thus tends to zero, implying that we have a consistent estimate.

3.2.2 Maximum a Posteriori Estimators

In those cases in which the expected value of the a posteriori density cannot be computed, a related but simpler
estimate, the maximum a posteriori (MAP) estimate, can usually be evaluated. The estimate 6y, ,p(X) equals
the location of the maximum of the a posteriori density. Assuming that this maximum can be found by
evaluating the derivative of the a posteriori density, the MAP estimate is the solution of the equation

0p9|X(9|X)
a0 ~

Any scaling of the density by a positive quantity that depends on X does not change the location of the
maximum. Symbolically, p o)x = Px|oPo /px; the derivative does not involve the denominator, and this term

can be ignored. Thus, the only quantities required to compute @M ap are the likelihood function and the
parameter’s a priori density.

Although not apparent in its definition, the MAP estimate does satisfy an error criterion. Define a criterion
that is zero over a small range of values about ¢ = 0 and a positive constant outside that range. Minimization
of the expected value of this criterion with respect to 0 is accomplished by centering the criterion function
at the maximum of the density. The region having the largest area is thus “notched out,” and the criterion is
minimized. Whenever the a posteriori density is symmetric and unimodal, the MAP and MMSE estimates
coincide. In Gaussian problems, such as the last example, this equivalence is always valid. In more general
circumstances, they differ.

Example
Let the observations have the same form as the previous example, but with the modification that the
parameter is now uniformly distributed over the interval [6,, 6,]. The a posteriori mean cannot be
computed in closed form. To obtain the MAP estimate, we need to find the location of the maximum

of
(I el B | 1/X()-6\*
Py (X16)p(6) = I] exp ——(7) b <6<a
X|6 0 92 _ 91 g /23'[0'1%] 2 Oy 1 2

Evaluating the logarithm of this quantity does not change the location of the maximum and simplifies
the manipulations in many problems. Here, the logarithm is

L rx()—6\?
lan|9(X|9)p9(t9):—1n(92—91)—‘z —o— ) +InC, 6,<6<6,
=0 N

where C is a constant with respect to 6. Assuming that the maximum is interior to the domain of the

parameter, the MAP estimate is found to be the sample average ¥ X(/)/L. If the average lies outside
this interval, the corresponding endpoint of the interval is the location of the maximum. To summarize,

R 6, > X()/L <6,
QMAP(X) = Elx(l)/l" 0, < Elx(l)/LS 6,
6,, 0, <3, X()/L
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The a posteriori density is not symmetric because of the finite domain of 6. Thus, the MAP estimate
is not equivalent to the MMSE estimate, and the accompanying increase in the mean-squared error is
difficult to compute. When the sample average is the estimate, the estimate is unbiased; otherwise it
is biased. Asymptotically, the variance of the average tends to zero, with the consequences that the
estimate is unbiased and consistent.

3.2.3 Linear Estimators

We derived the minimum mean-squared error estimator in the previous section with no constraint on the form
of the estimator. Depending on the problem, the computations could be a linear function of the observations
(which is always the case in Gaussian problems) or nonlinear. Deriving this estimator is often difficult, which
limits its application. We consider here a variation of MMSE estimation by constraining the estimator to
be linear while minimizing the mean-squared estimation error. Such linear estimators may not be optimum;
the conditional expected value may be nonlinear and it always has the smallest mean-squared error. Despite
this occasional performance deficit, linear estimators have well-understood properties, they interact well with
other signal processing algorithms because of linearity, and they can always be derived, no matter what the
problem. .

Let the parameter estimate 6(X) be expressed as .Z[X], where Z[-] is a linear operator: #[a,X, +
a,X,] = a, Z[X,] +a, Z[X,], a,,a, scalars. Although all estimators of this form are obviously linear, the
term linear estimator denotes that member of this family that minimizes the mean-squared estimation error.

H t
arg %1)1(1](55[8 el =0, n(X)

Because of the transformation’s linearity, the theory of linear vector spaces can be fruitfully used to
derive the estimator and to specify its properties. One result of that theoretical framework is the well-known
Orthogonality Principle [29: 407—-14]: The linear estimator is that particular linear transformation that yields
an estimation error orthogonal to all linear transformations of the data. The orthogonality of the error to
all linear transformations is termed the “universality constraint.” This principle provides us not only with
a formal definition of the linear estimator but also with the mechanism to derive it. To demonstrate this
intriguing result, let (-, -) denote the abstract inner product between two vectors and || - || the associated norm.

%[ = (x,x)

For example, if x and y are each column matrices having only one column,* their inner product might be
defined as (x,y) = x"y. Thus, the linear estimator as defined by the Orthogonality Principle must satisfy

g[(@LIN(X) -6, 2[X])] =0, forall linear transformations %] 3.1)

To see that this principle produces the MMSE linear estimator, we express the mean-squared estimation error
&[e'e] = &[||€||*] for any choice of linear estimator 6 as

EM0—6171= &0 N —6) — (O — 0)II*]
= &MON— 01T+ €110 — 0111 = 26[(0 i — 0, 6,5 — 0)]

As 0y — 0 is the difference of two linear transformations, it too is linear and is orthogonal to the estimation
error resulting from 0 . As a result, the last term is zero and the mean-squared estimation error is the sum

*There is a confusion as to what a vector is. “Matrices having one column” are colloquially termed vectors as are the field quantities
such as electric and magnetic fields. “Vectors” and their associated inner products are taken to be much more general mathematical
objects than these. Hence the prose in this section is rather contorted.
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of two squared norms, each of which is, of course, nonnegative. Only the second norm varies with estimator
choice; we minimize the mean-squared estimation error by choosing the estimator 6 to be the estimator 6 |y,
which sets the second term to zero.

The estimation error for the minimum mean-squared linear estimator can be calculated to some degree
without knowledge of the form of the estimator. The mean-squared estimation error is given by

— 6,6,y —0)]
= 0,0 )]+ SO —0,—0)]

Ell0 N — 0|1 = AL
= &[0y

The first term is zero because of the Orthogonality Principle. Rewriting the second term yields a general
expression for the MMSE linear estimator’s mean-squared error.

&llelP) = 81161 - £[(0Lix. 0)]

This error is the difference of two terms. The first, the mean-squared value of the parameter, represents the
largest value that the estimation error can be for any reasonable estimator. That error can be obtained by the
estimator that ignores the data and has a value of zero. The second term reduces this maximum error and
represents the degree to which the estimate and the parameter agree on the average.

Note that the definition of the minimum mean-squared error linear estimator makes no explicit assump-
tions about the parameter estimation problem being solved. This property makes this kind of estimator at-
tractive in many applications where neither the a priori density of the parameter vector nor the density of the
observations is known precisely. Linear transformations, however, are homogeneous: A zero-valued input
yields a zero output. Thus, the linear estimator is especially pertinent to those problems where the expected
value of the parameter is zero. If the expected value is nonzero, the linear estimator would not necessarily
yield the best result (see Problem 3.14).

Example
Express the first example {72} in vector notation so that the observation vector is written as

X=A0+N

where the matrix A has the form A = col[l, ..., 1]. The expected value of the parameter is zero. The

linear estimator has the form 6, ;,; = LX, where L is a 1 x L matrix. The Orthogonality Principle states
that the linear estimator satisfies

FI(LX—0)'MX] =0, forall 1xL matrices M

To use the Orthogonality Principle to derive an equation implicitly specifying the linear estimator, the
“for all linear transformations” phrase must be interpreted. Usually, the quantity specifying the linear
transformation must be removed from the constraining inner product by imposing a very stringent
but equivalent condition. In this example, this phrase becomes one about matrices. The elements of
the matrix M can be such that each element of the observation vector multiplies each element of the
estimation error. Thus, in this problem the Orthogonality Principle means that the expected value of
the matrix consisting of all pairwise products of these elements must be zero.

FI(LX—0)X]=0

Thus, two terms must equal each other: £[LXX'] = £[6X']. The second term equals £[62]A as the
additive noise and the parameter are assumed to be statistically independent quantities. The quantity
&[XX] in the first term is the correlation matrix of the observations, which is given by AA’ £[6%] +
K, . Here, K is the noise covariance matrix, and & [67] is the parameter’s variance. The quantity
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AA’ is a Lx L matrix with each element equaling 1. The noise vector has independent components;
the covariance matrix thus equals GI%,I. The equation that L must satisfy is therefore given by

2 2 2 2
oy +0g lop lop

2 2 2 . :

o Oy + O, . :

0 N 0 _ 2 2
[L,--L]- . ) ) =[o - of]

; : SR

2 2 2 2

lop O Oy+o0g

The components of L are equal and are given by L; = o 2/ (crN + Lcrg) Thus, the minimum mean-
squared error linear estimator has the form

O (X
un(X) = oz +0}/L GN/LL E

Note that this result equals the minimum mean-squared error estimate derived earlier under the
condition that £[6] = 0. Mean-squared error, linear estimators, and Gaussian problems are intimately

related to each other. The linear minimum mean-squared error solution to a problem is optimal if the
underlying distributions are Gaussian.

3.2.4 Maximum Likelihood Estimators

When the a priori density of a parameter is not known or the parameter itself is inconveniently described as
a random variable, techniques must be developed that make no presumption about the relative possibilities of
parameter values. Lacking this knowledge, we can expect the error characteristics of the resulting estimates
to be worse than those which can use it.

The maximum likelihood estimate @ML(X) of a nonrandom parameter is, simply, that value which maxi-

mizes the likelihood function (the a priori density of the observations). Assuming that the maximum can be
found by evaluating a derivative, 6, (X) is defined by

9 Pxje(X|0)

7] ~

0=0y.

The logarithm of the likelihood function may also be used in this maximization.

Example

Let X (/) be a sequence of independent, identically distributed Gaussian random variables having an
unknown mean 0 but a known variance cr[%,. Often, we cannot assign a probability density to a param-
eter of a random variable’s density; we simply do not know what the parameter’s value is. Maximum
likelihood estimates are often used in such problems. In the specific case here, the derivative of the
logarithm of the likelihood function equals

‘91n17x|9(X|9) i
a0 oA
The solution of this equation is the maximum likelihood estimate, which equals the sample average.

lLl

X(!
ML L‘E
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The expected value of this estimate éa[@ML| 0] equals the actual value 6, showing that the maximum
likelihood estimate is unbiased. The mean-square error equals af, /L and we infer that this estimate is
consistent.

Parameter Vectors

The maximum likelihood procedure (as well as the others being discussed) can be easily generalized to situa-
tions where more than one parameter must be estimated. Letting 6 denote the parameter vector, the likelihood
function is now expressed as leH(X| 6). The maximum likelihood estimate 6, of the parameter vector is
given by the location of the maximum of the likelihood function (or equivalently of its logarithm). Using
derivatives, the calculation of the maximum likelihood estimate becomes

Volnpy,(X10)|  =0],

0=0p\1

where V, denotes the gradient with respect to the parameter vector. This equation means that we must
estimate all of the parameters simultaneously by setting the partial of the likelihood function with respect to
each parameter to zero. Given P parameters, we must solve in most cases a set of P nonlinear, simultaneous
equations to find the maximum likelihood estimates.

Example
Let’s extend the previous example to the situation where neither the mean nor the variance of a se-
quence of independent Gaussian random variables is known. The likelihood function is, in this case,

poX10) = [ —gene {55 (¥ -0 |

Evaluating the partial derivatives of the logarithm of this quantity, we find the following set of two
equations to solve for 0, , representing the mean, and 0,, representing the variance.*

1 L—1
ry [X(l) - 91] =0
92 =0

L—I—LL_I[X(Z) 0,]*=0
20, 2922,20 B

The solution of this set of equations is easily found to be

ML 1 L—1

0 = I IZOX(Z)

~ 1 L=l —~ 2
ML _ 1 _ AML

=73 (x(z) 0] )

The expected value of @lML equals the actual value of 0;; thus, this estimate is unbiased. However,
the expected value of the estimate of the variance equals 6, - (L— 1)/L. The estimate of the variance
is biased, but asymptotically unbiased. This bias can be removed by replacing the normalization of L
in the averaging computation for QévlL by L—1.

*The variance rather than the standard deviation is represented by 6,. The mathematics is messier and the estimator has less attractive
properties in the latter case. Problem 3.8 illustrates this point.
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Cramér-Rao Bound

The mean-square estimation error for any estimate of a nonrandom parameter has a lower bound, the Cramér-
Rao bound [6: pp. 474—477], which defines the ultimate accuracy of any estimation procedure. This lower
bound, as shown later, is intimately related to the maximum likelihood estimator.

We seek a “bound” on the mean-squared error matrix M defined to be

M= £[(6—0)(6—6)]=&[ee'].

A matrix is “lower bounded” by a second matrix if the difference between the two is a non-negative definite
matrix. Define the column matrix x to be

6—6—b(6)
Vo lnpx|9(X|9)

bl

where b(6) denotes the column matrix of estimator biases. To derive the Cramér-Rao bound, evaluate £[xx'].

M-bb" I+Vyb ]

Gl I

where V, b represents the matrix of partial derivatives of the bias [db;/d 0 ;1 and the matrix F is the Fisher
information matrix

F=¢ [(vg In pyp(X[6) ) (Vglnpx|9(X|9))t] (3.2)

Note that this matrix can alternatively be expressed as
F ==& |V, ViInpy(X[0)]

The notation V, V{, means the matrix of all second partials of the quantity it operates on (the gradient of the
gradient). This matrix is known as the Hessian. Demonstrating the equivalence of these two forms for the
Fisher information is quite easy. Because [ Px|o (X]0) dX =1 for all choices of the parameter vector, the gra-

dient of this expression equals zero. Furthermore, V, lan|9(X| 0) =V, Pxjo (X] 9)/pX|9 (X]0). Combining
these results yields

[ (Vanpyge(x16)) py(x16)dx=0.
Evaluating the gradient of this quantity (using the chain rule) also yields zero.
t
[ (Vo Valnpyo(x10)) yo(x16)+ (V4 1y (x10)) (Vg (x16)) pygq(x10)dx =0
t
or & [(Vglnpx|9(X|9)) (VoInpy,(X10)) ] =& |V, Volnpy,(X[6)]

Calculating the expected value for the Hessian form is sometimes easier than finding the expected value of
the outer product of the gradient with itself. In the scalar case, we have

2
dInpy(X10)\ 7| . 9% 1n pyy(X10)
96 B 962

Returning to the derivation, the matrix £[xx'] is non-negative definite because it is a correlation matrix.
Thus, for any column matrix «, the quadratic form o £[xx’]a is non-negative. Choose a form for a that
simplifies the quadratic form. A convenient choice is

.
a = )
—F~' (I+vV,b)'B
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where f3 is an arbitrary column matrix. The quadratic form becomes in this case
of s[xx]a = B’ [M—bb' — (I1+V,b) F~' (I1+V,b)'] .

As this quadratic form must be non-negative, the matrix expression enclosed in brackets must be non-negative
definite. We thus obtain the well-known Cramér-Rao bound on the mean-square error matrix.

&lee'] > b(O)b' (0) + (I+V,b)F~' (1+v,b)’

This form for the Cramér-Rao bound does not mean that each term in the matrix of squared errors is
greater than the corresponding term in the bounding matrix. As stated earlier, this expression means that the
difference between these matrices is non-negative definite. For a matrix to be non-negative definite, each term
on the main diagonal must be non-negative. The elements of the main diagonal of &[e¢’] are the squared
errors of the estimate of the individual parameters. Thus, for each parameter, the mean-squared estimation
error can be no smaller than

£1(0,— 0)%1 > B3(0) + [ (T+ v, ) F~! (T4 v, b)']

114

This bound simplifies greatly if the estimator is unbiased (b = 0). In this case, the Cramér-Rao bound
becomes
~ ) B
&6, - 6)*] > F; .

Thus, the mean-squared error for each parameter in a multiple-parameter, unbiased-estimator problem can
be no smaller than the corresponding diagonal term in the inverse of the Fisher information matrix. In such
problems, the estimate’s error characteristics of any parameter become intertwined with the other parameters
in a complicated way. Any estimator satisfying the Cramér-Rao bound with equality is said to be efficient.

Example
Let’s evaluate the Cramér-Rao bound for the example we have been discussing: the estimation of the
mean and variance of a length L sequence of statistically independent Gaussian random variables. Let
the estimate of the mean 6, be the sample average 6, = Y X(/)/L; as shown in the last example, this
estimate is unbiased. Let the estimate of the variance 6, be the unbiased estimate @2 = (X (-
@l)z] /(L—1). Each term in the Fisher information matrix F is given by the expected value of the
paired products of derivatives of the logarithm of the likelihood function.

o [9Inpxo(X16) 91npy,(X]6)
A 90, d6;

The logarithm of the likelihood function is

L 1 L—1 )
Inpy,(X[0) = —5In270, - 20, ‘EO[X(I) -6,

its partial derivatives are

alnpx|9(X|6) 1 Ll
a6, 8, ZZO[X(Z) — 6] (33)

d1n py4(X|6) L | L=l

e N R _ 2
G0, = 20, T 2gz 2XW -0 (34)
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and its second partials are

PInpy,(X|0) L *Inpy,(X|0) 1L—1Xl o

367 __9_2 96,06, __9_221=0 =l
ﬁzlnpxlg(XW) _ 1 L_I[Xl 0 (921an|9()(|9) e L 1 L=l 5
30,00, ——9—2220 () =6 R ——2—922—9—2320[?((1)—91]

The Fisher information matrix has the surprisingly simple form

L

o 0

o -L_ |
207

F=

its inverse is also a diagonal matrix with the elements on the main diagonal equalling the reciprocal of
those in the original matrix. Because of the zero-valued off-diagonal entries in the Fisher information
matrix, the errors between the corresponding estimates are not inter-dependent. In this problem, the
mean-square estimation errors can be no smaller than

£1(6,- 0,71 > 2
N 2
(6, - 6,)°] %

Note that nowhere in the preceding example did the form of the estimator enter into the computation
of the bound. The only quantity used in the computation of the Cramér-Rao bound is the logarithm of the
likelihood function, which is a consequence of the problem statement, not how it is solved. Only in the
case of unbiased estimators is the bound independent of the estimators used.* Because of this property, the
Cramér-Rao bound is frequently used to assess the performance limits that can be obtained with an unbiased
estimator in a particular problem. When bias is present, the exact form of the estimator’s bias explicitly enters
the computation of the bound. All too frequently, the unbiased form is used in situations where the existence
of an unbiased estimator can be questioned. As we shall see, one such problem is time delay estimation,
presumably of some importance to the reader. This misapplication of the unbiased Cramér-Rao arises from
desperation: the estimator is so complicated and nonlinear that computing the bias is nearly impossible. As
shown in Problem 3.9, biased estimators can yield mean-squared errors smaller as well as larger than the
unbiased version of the Cramér-Rao bound. Consequently, desperation can yield misinterpretation when a
general result is misapplied.

In the single-parameter estimation problem, the Cramér-Rao bound incorporating bias has the well-known

form’
db\?
(1+45)
2
01an|9(X|t9)
00

Note that the sign of the bias’s derivative determines whether this bound is larger or potentially smaller than
the unbiased version, which is obtained by setting the bias term to zero.

&[e2] > b+

*That’s why we assumed in the example that we used an unbiased estimator for the variance.

Note that this bound differs somewhat from that originally given by Cramér [6: p. 480]; his derivation ignores the additive bias term
bb'.
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Efficiency

An interesting question arises: when, if ever, is the bound satisfied with equality? Recalling the details of
the derivation of the bound, equality results when the quantity &£[a'xx’a] equals zero. As this quantity is the
expected value of the square of ax, it can only equal zero if o’x = 0. Substituting in the form of the column
matrices o and x, equality in the Cramér-Rao bound results whenever

Vi Inpy(X|60) = [1+(V,b)] " F[6(X) -6 -] | (3.5)

This complicated expression means that only if estimation problems (as expressed by the a priori density)
have the form of the right side of this equation can the mean-square estimation error equal the Cramér-Rao
bound. In particular, the gradient of the log likelihood function can only depend on the observations through
the estimator. In all other problems, the Cramér-Rao bound is a lower bound but not a tight one; no estimator
can have error characteristics that equal it. In such cases, we have limited insight into ultimate limitations on
estimation error size with the Cramér-Rao bound. However, consider the case where the estimator is unbiased
(b = 0). In addition, note the maximum likelihood estimate occurs when the gradient of the logarithm of the
likelihood function equals zero: V4 1In leH(X| 6) =0 when 6 = 0, . In this case, the condition for equality
in the Cramér-Rao bound becomes L
F[6— 0y, ]=0.

As the Fisher information matrix is positive-definite, we conclude that if the estimator equals the maximum
likelihood estimator, equality in the Cramér-Rao bound can be achieved. To summarize, if the Cramér-Rao
bound can be satisfied with equality, only the maximum likelihood estimate will achieve it. To use estimation
theoretic terminology, if an efficient estimate exists, it is the maximum likelihood estimate. This result stresses

the importance of maximum likelihood estimates, despite the seemingly ad hoc manner by which they are
defined.

Example
Consider the Gaussian example being examined so frequently in this section. The components of the
gradient of the logarithm of the likelihood function were given earlier by equations (3.3) {79}. These
expressions can be rearranged to reveal

d1npy,(X]6) L /1

—6,— | [ &lzzxw)-e)
01nPX|9(X|9) B _L_FLE[X(Z)_QF
P A 2 4l 1

The first component, which corresponds to the estimate of the mean, is expressed in the form required
for the existence of an efficient estimate. The second component—the partial with respect to the vari-
ance 0,—cannot be rewritten in a similar fashion. No unbiased, efficient estimate of the variance
exists in this problem. The mean-squared error of the variance’s unbiased estimate, but not the max-
imum likelihood estimate, is lower-bounded by 2922 /(L— 1)2. This error is strictly greater than the
Cramér-Rao bound of 2922 /L?. As no unbiased estimate of the variance can have a mean-squared error
equal to the Cramér-Rao bound (no efficient estimate exists for the variance in the Gaussian problem),
one presumes that the closeness of the error of our unbiased estimator to the bound implies that it
possesses the smallest squared-error of any estimate. This presumption may, of course, be incorrect.

Properties of the Maximum Likelihood Estimator

The maximum likelihood estimate is the most used estimation technique for nonrandom parameters. Not only
because of its close linkage to the Cramér-Rao bound, but also because it has desirable asymptotic properties
in the context of any Problem [6: pp. 500-6].
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1. The maximum likelihood estimate is at least asymptotically unbiased. It may be unbiased for any num-
ber of observations (as in the estimation of the mean of a sequence of independent random variables)
for some problems.

2. The maximum likelihood estimate is consistent.

3. The maximum likelihood estimate is asymptotically efficient. As more and more data are incorporated
into an estimate, the Cramér-Rao bound accurately projects the best attainable error and the maximum
likelihood estimate has those optimal characteristics.

4. Asymptotically, the maximum likelihood estimate is distributed as a Gaussian random variable. Be-
cause of the previous properties, the mean asymptotically equals the parameter and the covariance
matrix is [LF(0)]7!.

Most would agree that a “good” estimator should have these properties. What these results do not provide
is an assessment of how many observations are needed for the asymptotic results to apply to some specified
degree of precision. Consequently, they should be used with caution; for instance, some other estimator may
have a smaller mean-square error than the maximum likelihood for a modest number of observations.

3.3 Signal Parameter Estimation

One extension of parametric estimation theory necessary for its application to signal processing is the estima-
tion of signal parameters. We assume that we observe a signal s(/, 6), whose characteristics are known save a
few parameters 0, in the presence of noise. Signal parameters, such as amplitude, time origin, and frequency
if the signal is sinusoidal, must be determined in some way. In many cases of interest, we would find it diffi-
cult to justify a particular form for the unknown parameters’ a priori density. Because of such uncertainties,
the minimum mean-squared error and maximum a posteriori estimators cannot be used in many cases. The
minimum mean-squared error linear estimator does not require this density, but it is most fruitfully used when
the unknown parameter appears in the problem in a linear fashion (such as signal amplitude as we shall see).

3.3.1 Linear Minimum Mean-Squared Error Estimator

The only parameter that is linearly related to a signal is the amplitude. Consider, therefore, the problem where
the observations are modeled as

X(I) = 0s(1)+N(l), 1=0,...L—1

The signal waveform s(/) is known and its energy normalized to be unity (3 s2(1) = 1). The linear estimate of
the signal’s amplitude is assumed to be of the form 6 = Sh(1)X(l), where h(l) minimizes the mean-squared
error. To use the Orthogonality Principle expressed by Eq. 3.1 {74}, an inner product must be defined for
scalars. Little choice avails itself but multiplication as the inner product of two scalars. The Orthogonality
Principle states that the estimation error must be orthogonal to all linear transformations defining the kind of
estimator being sought.

& =0 forallh()

(S hn(DX (1) - e) S h(X (k)
=0 k=0

Manipulating this equation to make the universality constraint more transparent results in

(Lf o DX(0) ~ e) X0
=0

Written in this way, the expected value must be 0 for each value of k to satisfy the constraint. Thus, the
quantity A\ (+) of the estimator of the signal’s amplitude must satisfy

=0 forall h(-)

S a5
k=0

jil h (D) X (D)X (k)] = £[6X (k)] for all k
=0



Sec. 3.3 Signal Parameter Estimation 83

Assuming that the signal’s amplitude has zero mean and is statistically independent of the zero-mean noise,
the expected values in this equation are given by

EX(DX (k)] = ogs(1)s(k) + Ky (k1)

where K (k, 1) is the covariance function of the noise. The equation that must be solved for the unit-sample
response /iy () of the optimal linear MMSE estimator of signal amplitude becomes

Lil hy (D Ky (k1) = o s(k) [1 —Lil hLlN(l)s(l)] for all k
=0 =

This equation is easily solved once phrased in matrix notation. Letting K, denote the covariance matrix of
the noise, s the signal vector, and h; | the vector of coefficients, this equation becomes

Kyh = 05[1 —s'hyJs

The matched filter for colored-noise problems consisted of the dot product between the vector of observations
and K;,ls (see the detector result {127}). Assume that the solution to the linear estimation problem is pro-
portional to the detection theoretical one: hy |\ = cK;,l s, where c is a scalar constant. This proposed solution
satisfies the equation; the MMSE estimate of signal amplitude corresponds to applying a matched filter to the
observations with

2
9y

_ -1
hy = H_GgszK;]lsKN S

The mean-squared estimation error of signal amplitude is given by

&[] = ag -&

0 3 hu(DX(0)

Substituting the vector expression for hy  yields the result that the mean-squared estimation error equals the
proportionality constant ¢ defined earlier.

2
Oy

2
¢le]= 1+ oZs'Kyls

Thus, the linear filter that produces the optimal estimate of signal amplitude is equivalent to the matched
filter used to detect the signal’s presence. We have found this situation to occur when estimates of unknown
parameters are needed to solve the detection problem. If we had not assumed the noise to be Gaussian,
however, this detection-theoretic result would be different, but the estimator would be unchanged. To repeat,
this invariance occurs because the linear MMSE estimator requires no assumptions on the noise’s amplitude
characteristics.

Example
Let the noise be white so that its covariance matrix is proportional to the identity matrix (K, = GI%,I).
The weighting factor in the minimum mean-squared error linear estimator is proportional to the signal

waveform.
o3 -~ o
hLlN(l) =—5——s(l) 0N = ‘E s()X (1)
oy + 0} oy +02 4
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This proportionality constant depends only on the relative variances of the noise and the parameter. If
the noise variance can be considered to be much smaller than the a priori variance of the amplitude,
then this constant does not depend on these variances and equals unity. Otherwise, the variances must
be known.

We find the mean-squared estimation error to be

2
Oy

2
Slef)=——7—=
1+ 0}%/0}
This error is significantly reduced from its nominal value crg only when the variance of the noise
is small compared with the a priori variance of the amplitude. Otherwise, this admittedly optimum
amplitude estimate performs poorly, and we might as well as have ignored the data and “guessed” that
the amplitude was zero.*

3.3.2 Maximum Likelihood Estimators

Many situations are either not well suited to linear estimation procedures, or the parameter is not well de-
scribed as a random variable. For example, signal delay is observed nonlinearly and usually no a priori
density can be assigned. In such cases, maximum likelihood estimators are more frequently used. Because
of the Cramér-Rao bound, fundamental limits on parameter estimation performance can be derived for any
signal parameter estimation problem where the parameter is not random.

Assume that the data are expressed as a signal observed in the presence of additive Gaussian noise.

X(I) =s(1,0)+N(l), 1=0,...L—1

The vector of observations X is formed from the data in the obvious way. Evaluating the logarithm of the
observation vector’s joint density,

1 1 -
Inpyjo(X|0) = -5 Indet[2K,] — S[X — s(0))/Ky'[X—s(6)]
where s(0) is the signal vector having P unknown parameters, and K, is the covariance matrix of the noise.
The partial derivative of this likelihood function with respect to the i parameter 0; is, for real-valued signals,
d 1npx|9(X|9) B

1 95(6)
N = XSOy

and, for complex-valued ones,
d lan|9(X| 0)
d6;

~ Re [[x_ s(0)/Ky! ‘93(9?)

If the maximum of the likelihood function can be found by setting its gradient to 0, the maximum likelihood
estimate of the parameter vector is the solution of the set of equations

X (0K S

0=0

The Cramér-Rao bound depends on the evaluation of the Fisher information matrix F. The elements of
this matrix are found to be

o ¢9s’(6))K_l ds(0)

RN 36
ij 091 N 091 ) ) ) ( )

*In other words, the problem is difficult in this case.



Sec. 3.3 Signal Parameter Estimation 85

Further computation of the Cramér-Rao bound’s components is problem dependent if more than one parameter
is involved, and the off-diagonal terms of F are nonzero. If only one parameter is unknown, the Cramér-Rao
bound is given by

When the signal depends on the parameter nonlinearly (which constitute the interesting cases), the maximum
likelihood estimate is usually biased. Thus, the numerator of the expression for the bound cannot be ignored.
One interesting special case occurs when the noise is white. The Cramér-Rao bound becomes

oy (1—1—%)2

Lil <0s(l, 9))2

= 7]

The derivative of the signal with respect to the parameter can be interpreted as the sensitivity of the signal
to the parameter. The mean-squared estimation error depends on the “integrated” squared sensitivity: The
greater this sensitivity, the smaller the bound.

For an efficient estimate of a signal parameter to exist, the estimate must satisfy the condition we derived
earlier (Eq. 3.5 {81}).

&l > b*(0) +

9

(Vo s(0)Ky' [X—s(0)] = [T+ (Vb)'] ™ [V, s(0)Ky' [V (0)][6(X) — 0~ b]

Because of the complexity of this requirement, we quite rightly question the existence of any efficient estima-
tor, especially when the signal depends nonlinearly on the parameter (see Problem 3.15).

Example
Let the unknown parameter be the signal’s amplitude; the signal is expressed as 0s(/) and is observed
in the presence of additive noise. The maximum likelihood estimate of the amplitude is the solution
of the equation R
[X — Oy s/ Ky's =0

The form of this equation suggests that the maximum likelihood estimate is efficient. The amplitude
estimate is given by
k=1
~  XK's
ML & gK-1
sSKy's

The form of this estimator is precisely that of the matched filter derived in the colored-noise situation
(see Eq. 4.9 {127}). The expected value of the estimate equals the actual amplitude. Thus the bias is
zero and the Cramér-Rao bound is given by

£le%) > ($Ky's) ™"
The condition for an efficient estimate becomes
SKy (X — 0s) £ S Ky's- (B, — 0)

whose veracity we can easily verify. N
In the special case where the noise is white, the estimator has the form 6,,; = X’s, and the Cramér-
Rao bound equals af, (the nominal signal is assumed to have unit energy). The maximum likelihood
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Figure 3.1: The three classical categories of linear signal waveform estimation are defined by the observation
interval’s relation to the time at which we want to estimate the signal value. As time evolves, so does the
observation interval so that /., the interval between the last observation and the estimation time, is fixed.

estimate of the amplitude has fixed error characteristics that do not depend on the actual signal ampli-
tude. A signal-to-noise ratio for the estimate, defined to be 682/ &[&?], equals the signal-to-noise ratio
of the observed signal.
When the amplitude is well described as a random variable, its linear minimum mean-squared
error estimator has the form
~  O}X'Ky's
LIN — l—l—ags’lels

which we found in the white-noise case becomes a weighted version of the maximum likelihood

estimate (see the example {83}).

2
n 9y t

QLI

N"T o2+ 0}

Seemingly, these two estimators are being used to solve the same problem: Estimating the amplitude of
a signal whose waveform is known. They make very different assumptions, however, about the nature
of the unknown parameter; in one it is a random variable (and thus it has a variance), whereas in the
other it is not (and variance makes no sense). Despite this fundamental difference, the computations
for each estimator are equivalent. It is reassuring that different approaches to solving similar problems
yield similar procedures.

3.4 Linear Signal Waveform Estimation

When the details of a signal’s waveform are unknown, describing the signal parametrically is usually unsat-
isfactory. We need techniques that estimate waveforms rather than numbers. For example, we may want to
know the propagating signal’s waveform contained in the noise-corrupted array output. Without some a priori
information, this task is impossible; if neither the signal nor the noise is known, how can anyone discriminate
one from the other? The key to waveform estimation is how much prior information we have about the signal
and the noise, and how valid that information is. Given noisy observations of a signal throughout the interval
L;, L f] , the waveform estimation problem is to estimate accurately the value of the signal at some moment
L+ l.. In most situations, the observation interval evolves with the passage of time while the estimation time
is fixed relative to the occurrence of the most recent observation (in other words, [, is a constant). Linear
waveform estimation results when we apply a linear filter to the observations.

Waveform estimation problems are usually placed into one of three categories [1: 9—11] based on the
value of /, (see Fig. 3.1):

Interpolation. The interpolation or smoothing problem is to estimate the signal at some moment within the
observation interval (I, < 0). Observations are thus considered before and after the time at which the
signal needs to be estimated. In practice, applying interpolation filtering means that the estimated signal
waveform is produced some time after it occurred.
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Filtering. We estimate the signal at the end of the observation interval (/, = 0). Thus, a waveform estimate is
produced as soon as the signal is observed. The filtering problem arises when we want to remove noise
(as much as possible) from noise-corrupted signal observations as they are obtained.

Prediction. Here, we attempt to predict the signal’s value at some future time (/, > 0). The signal’s structure
must be well known to enable us to predict what values the signal obtains. Prediction filters have
obvious applications in sonar/radar tracking and stock market analysis. Of all the waveform estimation
problems, this one produces the largest errors.

Waveform estimation algorithms are not defined by this categorization; each technique can be applied
to each type of problem (in most cases). Instead, the algorithms are defined according to the signal model.
Correctness of the signal model governs the utility of a given technique. Because the signal usually appears
linearly in the expression for the observations (the noise is usually additive), linear waveform estimation
methods —filters—are frequently employed.

3.4.1 General Considerations

In the context of linear waveform estimation, the signal as well as the noise is considered to be a stochastic
sequence. Furthermore, the signal component S in the observations is assumed to only be related to the
signal s to be estimated and not necessarily equal to it: X (/) = S(I) + N(l). For example, the observations
may contain a filtered version of the signal when we require an estimate of the prefiltered waveform. In
this situation, the signal filter is usually known. The noise and signal components are zero-mean random
sequences statistically independent of each other. The optimum filter that provides the waveform estimate
S(I) can be time invariant (Wiener filters), time varying (Kalman filters), or data dependent (adaptive filters).
Choosing an estimation strategy is determined by the signal’s characteristics and the degree to which these
characteristics are known. For generality, we allow the optimum filter’s unit-sample response &, (l, k) to be
time varying: It depends directly on the values of /, the “time variable” and k, the “time” at which the unit
sample is presented. When the filter is time invariant, the unit-sample response would be a function of the
interval [ — k, time since presentation of the unit sample. The fundamental form of the observations and the
estimated signal in all linear waveform estimators is

X(l) = SO)+N()
S(Ly+l) = Elk‘iLiho(Lf,k)X(k)

The estimate of the signal’s value at L+ I, is thus produced at time L, in the filter’s output. The duration of
the filter’s unit-sample response extends over the entire observation interval [L,, Lf].

The Orthogonality Principle that proved so useful in linear parameter estimation can be applied here.
It states that the estimation error must be orthogonal to all linear transformations of the observations (see
Eq. 3.1 {74}). For the waveform estimation problem, this requirement implies that

Ly

& | {S(Ly+1) = S(Lp+1)} Y, ALy, k)X (k)| =0 forall A(-, )
k=L,

i

This expression implies that each observed value must be orthogonal to the estimation error at time L r+ le.

L
& |{S(Lp+1e) - Etho(Lf, NX()}X(k)| =0 forallkin[L; L]
J=L;

Simplifying this expression, the fundamental equation that determines the unit-sample response of the linear
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minimum mean-squared error filter is

f—l—le, 2]( J k) ho( f,J) forallkin[Ll-,Lf]

where Ky (k, ) is the covariance function of the observations, equaling &£[X (k)X (/)], and K, ( ¢+ le k) is the
cross-covariance between the signal at L.+ l, and the signal-related component of the observatlon at k. When
the signal and noise are uncorrelated, K (k1) = Kg(k )+ Ky(k,1). Given these quantities, the preceding
equation must then be solved for the unit-sample response of the optimum filter. This equation is known as
the generalized Wiener-Hopf equation.

From the general theory of linear estimators, the mean-squared estimation error at index [/ equals the
variance of the quantity being estimated minus the estimate’s projection onto the signal.

le* (D] = Ky(1,1) - £15(1)S(1)]

Expressing the signal estimate as a linear filtering operation on the observations, this expression becomes

S0 = KlL)= 3 (L DK (1.0

Further reduction of this expression is usually problem dependent, as succeeding sections illustrate.
3.4.2 Wiener Filters

Wiener filters are the solutions of the linear minimum mean-squared waveform estimation problem for the
special case in which the noise and the signal are stationary random sequences [13: 100-18];[40: 481-
515];[43]. The covariance functions appearing in the generalized Wiener-Hopf equation thus depend on the
difference of their arguments. Considering the form of this equation, one would expect the unit-sample
response of the optimum filter to depend on its arguments in a similar fashion. This presumption is in fact
valid, and Wiener filters are always time invariant.

f—i—le EhoL—k (k)

We consider first the case in which the initial observation time L; equals —oo. The resulting filter uses all
of the observations available at any moment.* The errors that result from using this filter are smaller than
those obtained when the filter is constrained to use a finite number of observations (such as some number of
recent samples). The choice of L; = — corresponds to an infinite-duration impulse response (IIR) Wiener
filter; in a succeeding section, L, is finite and a finite-duration impulse response (FIR) Wiener filter results.
The error characteristics of the IIR Wiener filter generally bound those of FIR Wiener filters because more
observations are used. We write the generalized Wiener-Hopf equation for the IIR case as

Ly

K ALptle—k)= Y Ky(j—k) ho(Ly—j) forallkin(—o L]

e

Changing summation variables results in the somewhat simpler expression known as the Wiener-Hopf equa-
tion. It and the expression for the mean-squared estimation error are given by

K (l+1) = iKX(l—k)ho(k) for all  in [0, %)
3.7
1% = Ks(0) = 3 ho (KK o(le+ k)

*Presumably, observations have been continuously available since the beginning of the universe.
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The first term in the error expression is the signal variance. The mean-squared error of the signal estimate
cannot be greater than this quantity; this error results when the estimate always equals 0.

In many circumstances, we want to estimate the signal directly contained in observations: X = S+ N.
This situation leads to a somewhat simpler form for the Wiener-Hopf equation.

K (l+1,) = ;Eo [Ky(I— k) + Ky(l— k)] ho(k) forall [ in [0, )

It is this form we solve, but the previous one is required in its solution.

Solving the Wiener-Hopf equation. The Wiener-Hopf equation at first glance appears to be a convolu-
tion integral, implying that the optimum filter’s frequency response could be easily found. The constraining
condition—the equation applies only for the variable [ in the interval [0, %) —means, however, that Fourier
techniques cannot be used for the general case. If the Fourier Transform of the left side of the Wiener-Hopf
equation were evaluated only over the constraining interval, the covariance function on the left would be
implicitly assumed O outside the interval, which is usually not the case. Simply stated but mathematically
complicated, the covariance function of the signal outside this interval is not to be considered in the solution
of the equation.

One set of circumstances does allow Fourier techniques. Let the Wiener filter be noncausal with L F=T.
In this case, the Wiener-Hopf equation becomes

Ky(l) = i Ky (I —k)ho(k) forall I

k=—o0

As this equation must be valid for all values of /, a convolution sum emerges. The frequency response H.,(f)
of the optimum filter is thus given by

Zs(f)

H1) = Z 0+ )

where .7(f) and .7 (f) are, respectively, the signal and the noise power spectra. Because this expression
is real and even, the unit-sample response of the optimum filter is also real and even. The filter is therefore
noncausal and usually has an infinite duration unit-sample response. This result is not often used in temporal
signal processing but may find applications in spatial problems. Be that as it may, because this filter can use
the entire set of observations to estimate the signal’s value at any moment, it yields the smallest estimation
error of any linear filter. Computing this error thus establishes a bound on how well any causal or FIR Wiener
filter performs. The mean-squared estimation error of the noncausal Wiener filter can be expressed in the time
domain or frequency domain.

S = K0)— S ha(DKsll)
b SN
/—% 7 +n Y

The causal solution to the Wiener-Hopf equation, the frequency response of the causal Wiener filter, is the
product of two terms: the frequency response of a whitening filter and the frequency response of the signal
estimation filter based on whitened observations [40: 482-93].

1

H D= 175770

etJ2nfle ys( f)
mﬂmwA
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[ (f)]+ means the Fourier Transform of a covariance function’s causal part, which corresponds to its values
at nonnegative indices and .% % (f) the stable, causal, and minimum-phase square root of .%(f). Evaluation
of this expression therefore involves both forms of causal-part extraction. This solution is clearly much more
complicated than anticipated when we first gave the Wiener-Hopf equation. How to solve it is best seen by
example, which we provide once we determine an expression for the mean-squared estimation error.

Error characteristics of Wiener filter output. Assuming that gequals S, the expression for the mean-
squared estimation error given in Eq. 3.7 {88}, can be simplified with the result

&le?] = K (0) — tho(k)l(s(le + k) (3.8)

Applying Parseval’s Theorem to the summation, this expression can also be written in the frequency domain

as
1

3 1
&le?] = K(0) — /_% [+ Ayt (f)

eti2nfle Fo(f)
[Fs+ N (f)

] {e—jzﬂfleys(f) . df
+

Noting that the first and third terms in the integral can be combined, the mean-squared error can also be
written as

1

2

sl = K5(0) - [

L
2

2
df

eti2ufle Fo(f)
L%ﬂ%WUJ+

The expression within the magnitude bars equals the frequency response of the second component of the
Wiener filter’s frequency response. Again using Parseval’s Theorem to return to the time domain, the mean-
squared error can be expressed directly either in terms of the filter’s unit-sample response or in terms of signal
and noise quantities by

£16% = Ky(0) = 3 K, (1 +
k=0

where the latter quantity is the cross-covariance function between the signal and the signal after passage
through the whitening filter.

Example
Let’s estimate the value of § (Lf + [.) with a Wiener filter using the observations obtained up to and
including time L /- The additive noise in the observations is white, having variance 8/7. The power
spectrum of the signal is given by

1
5/4—cos2nf

1 1
1-0.5¢=72tf 1-0.5¢+722f

ys(f) =

The variance of the signal equals the value of the covariance function (found by the inverse Fourier
Transform of this expression) at the origin. In this case, the variance equals 4/3; the signal-to-noise
ratio of the observations, taken to be the ratio of their variances, equals 7/6.

The power spectrum of the observations is the sum of the signal and noise power spectra.

1 1 8

ys(f) +yN(f) = 1—=0.5¢727f 1 —(.5¢ti2nf + 5

16 (1—0.25¢7727) (1 —0.25¢+/277)

7 (1=0.5¢=72f) (1 —0.5¢*727f)
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The noncausal Wiener filter has the frequency response

Z5(f) 7 1

L) +I5(f) ~ 16 (1—0.25¢=727f) (1 —0.25¢+727])

The unit-sample response corresponding to this frequency response and the covariance function of the

signal are found to be
7 (1\ 4 1\
h =—| - d K =—| =
(=15 (4) and  Ks(0) 3(2)

Using Eq. 3.8 {90}, we find that the mean-squared estimation error for the noncausal estimator equals
4/3—-4/5=238/15.

The convolutionally causal part of signal-plus-noise power spectrum consists of the first terms in
the numerator and denominator of the signal-plus-noise power spectrum.

4 1-0.25¢"727f

EREMUE 1050 7T

The second term in the expression for the frequency response of the optimum filter is given by

, eti2nfle
e+,/2ﬂfleys (f) . (1—0.587-1'27””) (1_0.5‘3#;2”]”)
[F5+ A1) A 1easey
\/7 1—0.58+.i2”.f
V7 et i2nfle
4 (1=0.5¢=727) (1= 0.25¢+ 7277

The additively causal part of this Fourier Transform is found by evaluating its partial fraction expan-
sion.

Vi et i2afle et i2afle 4 Detinf
4 (1—0.5e=7271) (1 =0.25¢+727) —  2./7 [ 1—0.5¢=727f 1 —0.25¢+727f

The simplest solution occurs when /, equals zero: Estimate the signal value at the moment of the
most recent observation. The first term on the right side of the preceding expression corresponds to
the additively causal portion.

[ys—m] 21
[ S+ AN ()], VT1-05e 7277

The frequency response of the Wiener filter is found to be

V7 1-05e7727F 2 1

4 1-025¢=27f \[71-0.5¢727]
1 1

21—0.25¢727f

Ho(f) =

The Wiener filter has the form of a simple first-order filter with the pole arising from the whitening
filter. The difference equation corresponding to this frequency response is

S0 = %§(z— 1)+%x(1)

The waveforms that result in this example are exemplified in Fig. 3.2.
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Figure 3.2: The upper panel displays observations having statistic characteristics corresponding to those
given in the accompanying example. The output of the causal Wiener filter is shown in the bottom panel
along with the actual signal, which is shown as a dashed line.

To find the mean-squared estimation error, the cross-covariance between the signal and its
whitened counterpart is required. This quantity equals the inverse transform of the Wiener filter’s
second component and thus equals (2/+/7) (1/2)", [ > 0. The mean-squared estimation error is nu-

mer ically equal to
2
l \/_

57

&le?] =

)

Nl A WA

which compares with the smallest possible value of 0.53 provided by the noncausal Wiener filter.
Thus, little is lost by using the causal filter. The signal-to-noise ratio of the estimated signal is equal to
K(0)/ &[€?]. The causal filter yields a signal-to-noise ratio of 2.33, which should be compared with
the ratio of 1.17 in the observations. The ratio of the signal-to-noise ratios at the output and input of a
signal processing operation is usually referred to as the processing gain. The best possible processing
gain is 2.14 and equals 2.0 in the causal case. These rather modest gains are because of the close
similarity between the power spectra of the signal and the noise. As the parameter of this signal’s
power spectrum is increased, the two become less similar, and the processing gain increases.
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Now consider the case in which /, > 0: We want to predict the signal’s future value. The whitening
filter portion of the solution does not depend on the value of /, and is therefore identical to that just
given. The second component of the Wiener filter’s frequency response does depend on /, and is given
for positive values of /, by

/ 2 tj2mfle
[Fs+ AN (], 1—0.5¢- 727 .

The causal portion of this frequency response is found by shifting the unit-sample response to the
left and retaining the positive-time portion. Because this frequency response has only one pole, this
manipulation is expressed simply as a scaling.

ertgn | 2 (B
[Fs+ ST ()], VT1-05e7727

The frequency response of the prediction filter is thus given by

I 2l
o(f)= 21—0.25¢727f

The optimum linear predictor is a scaled version of the signal estimator. The mean-squared error in-
creases as the desired time of the predicted value exceeds the time of the last observation. In particular,
the signal-to-noise ratio of the predicted value is given by

Ks(0) _ 1

ST -5

The signal-to-noiseratio decreases rapidly as the prediction time extends into the future. This decrease
is directly related to the reduced correlation between the signal and its future values in this example.
This correlation is described by the absolute value of the signal’s covariance function relative to its
maximum value at the origin. As a covariance function broadens (corresponding to a lower frequency
signal), the prediction error decreases. If a covariance function oscillates, the mean-squared prediction
error varies in a similar fashion.

Finite-duration Wiener filters. Another useful formulation of Wiener filter theory is to constrain the
filter’s unit-sample response to have finite duration. To find this solution to the Wiener-Hopf equation, the
values of L ’ and L, are chosen to be finite. Letting L represent the duration of the filter’s unit-sample response
L= L,—L;+ 1), the Wiener-Hopf equation becomes

L—1
K ll+1) = ; Ky (k—1)ho(k), foralllin[0,L—1]
=0

This system of equations can be written in matrix form as ksg(le) =Kyh,.

K. (1) K0) K1) o Kyl—1) 1e(0)
Klet)) | | KD K0 e Ky(L-2) he((1)
: - Ky(—1)

ng(le—i—L—l) KX(—.L—I-I) Ky(—=1) Ky (0) ho(L._ 1)
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When the signal component of the observations equals the signal being estimated (§ = S), the Wiener-Hopf
equation becomes kg(l.) = Kyh,. The Lx L matrix Ky is the covariance matrix of the sequence of L obser-
vations. In the simple case of uncorrelated signal and noise components, this covariance matrix is the sum of
those of the signal and the noise (Ky = K¢+ K). This matrix has an inverse in all but unusual circumstances
with the result that the unit-sample response of the FIR Wiener filter is given by

h, = K k(L)

Because this covariance matrix is Toeplitz and Hermitian, its inverse can be efficiently computed using a
variety of algorithms [23: 80-90]. The mean-squared error of the estimate is given by

£l = K0)— thka(lﬁk)
= KS(O)_kts(le)K)?lks(le)

Linear prediction. One especially important variation of the FIR Wiener filter occurs in the unique situ-
ation in which no observation noise is present, and the signal generation model contains only poles [21, 22].
Thus, the signal S(/) is generated by passing white noise w(/) through a linear system given by the difference
equation

S(y=a,S(I—1)+a,S(I=2)+---+a,S(l—p)+w(l)

The coefficients a,...,a, are unknown. This signal modeling approach is frequently used to estimate the
signal’s spectrum.

As no noise is present in the observations, the filtered estimate of the signal (I, = 0) equals S(/) and the
estimation error is exactly 0. The concern of linear prediction is not this trivial problem, but the so-called one-
step prediction problem (I, = 1): Predict the value of the signal at index / given values of S(I — 1),S(/ — 2),....
Thus, we seek a FIR Wiener filter predictor, which has the form

©»)

() =h0)SU-—1)+n(1)SU=2)+---+h(p—1)S(I-p)

Comparing the signal model equation to that for the Wiener filter predictor, we see that the model parameters
{ay,...,a,} equal the Wiener filter’s unit-sample response 4(-) because the input w(/) is uncorrelated from
sample to sample. In linear prediction, the signal model parameters are used notationally to express the filter
coefficients.

The Orthogonality Principle can be used to find the minimum mean-squared error predictor of the next
signal value. By requiring orthogonality of the prediction error to each of the observations used in the estimate,
the following set of equations results.

a,Ks(0) +a,Kg(1) +---+apKg(p—1) = K1)
a,Kg(1) +a,Kg(0) + -+ apKg(p—2) = K(2)
a\Kg(p—1) +a,K(p—2)+--+apKs(0) = Kg(p)

In linear prediction, these are known as the Yule-Walker equations. Expressing them concisely in matrix form
Ka — kg, the solutionis a = Ks_lks.

From the signal model equation, we see that the mean-squared prediction error £[{S(/) — y (1)}?] equals
the variance 02 of the white-noise input to the model. Computing the mean-squared estimation error accord-
ing to Eq. 3.7 {88}, this variance is expressed by

GM% =K((0) —a,K¢(1) — - — apKy(p)
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This result can be combined with the previous set of equations to yield a unified set of equations for the
unknown parameters and the mean-squared error of the optimal linear predictive filter.

Ks(0) Kg(1) - Ky(p) 1 o2
Kg(1)  K(0) Ks(p—1) —a, 0
= (3.9)
K(1) :
Ki(p) - K(1) K,(0) —dp 0

To solve this set of equations for the model coefficients and the input-noise variance conceptually, we compute
the preliminary result KS_l 8. The first element of this vector equals the reciprocal of 02; normalizing KS_l 0
so that its leading term is unity yields the coefficient vector a. Levinson’s algorithm can be used to solve these
equations efficiently and simultaneously obtain the noise variance [23: 211-16].

3.5 Probability Density Estimation

Many signal processing algorithms, implicitly or explicitly, assume that the signal and the observation noise
are each well described as Gaussian random sequences. Virtually all linear estimation and prediction filters
minimize the mean-squared error while not explicitly assuming any form for the amplitude distribution of
the signal or noise. In many formal waveform estimation theories where probability density is, for better
or worse, specified, the mean-squared error arises from Gaussian assumptions. A similar situation occurs
explicitly in detection theory. The matched filter is provably the optimum detection rule only when the ob-
servation noise is Gaussian. When the noise is non-Gaussian, the detector assumes some other form. Much
of what has been presented in this chapter is based implicitly on a Gaussian model for both the signal and
the noise. When non-Gaussian distributions are assumed, the quantities upon which optimal linear filtering
theory are based, covariance functions, no longer suffice to characterize the observations. While the joint am-
plitude distribution of any zero-mean, stationary Gaussian stochastic process is entirely characterized by its
covariance function; non-Gaussian processes require more. Optimal linear filtering results can be applied in
non-Gaussian problems, but we should realize that other informative aspects of the process are being ignored.

This discussion would seem to be leading to a formulation of optimal filtering in a non-Gaussian setting.
Would that such theories were easy to use; virtually all of them require knowledge of process characteristics
that are difficult to measure and the resulting filters are typically nonlinear [20: chapter §8]. Rather than present
preliminary results, we take the tack that knowledge is better than ignorance: At least the first-order amplitude
distribution of the observed signals should be considered during the signal processing design. If the signal is
found to be Gaussian, then linear filtering results can be applied with the knowledge than no other filtering
strategy will yield better results. If non-Gaussian, the linear filtering can still be used and the engineer must
be aware that future systems might yield “better” results.”

3.5.1 Types

When the observations are discrete-valued or made so by digital-to-analog converters, estimating the prob-
ability mass function is straightforward: Count the relative number of times each value occurs. Let
X(0),...,X(L—1) denote a sequence of observations, each of which takes on values from the set &/ =
{ay,...,ay}. This set is known as an alphabet and each a, is a letter in that alphabet. We estimate the
probability that an observation equals one of the letters according to

1L—l

Pelan) = 3 1(X(0) =)

*Note that linear filtering optimizes the mean-squared error whether the signals involved are Gaussian or not. Other error criteria might
better capture unexpected changes in signal characteristics and non-Gaussian processes contain internal statistical structure beyond that
described by the covariance function.
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where I(-) is the indicator function, equaling one if its argument is true and zero otherwise. This kind of
estimate is known in information theory as a type [5: Chap. 12], and types have remarkable properties. For
example, if the observations are statistically independent, the probability that a given sequence occurs equals

L—-1

Pr[X = {X(0),....X(L—-1)}]= HPX(X(I)) .

Evaluating the logarithm, we find that
L-1
logPr[X] = ‘E logPy (X (1))
=0

Note that the number of times each letter occurs equals LISX(a,,). Using this fact, we can convert this sum to
a sum over letters.

N-1
logPr[X] = E LPy(ap)logPy(ay)
n=0
S 5 Py(an)
=LY Py(a,) |logPy(a,) —log X
3, Pelan) 108y ) ~log 00
logPr{X] = — L |2 (Py) + 7(Py|P,)]
which yields
—L | (Py) + Z(Py||P
pex) =L [ B+ Z(BIRY)| G10)
We introduce the entropy [5: §2.1] and Kullback-Leibler distance.
N-1
H(P) ==Y Plan)logP(an)
n=0
3 P@)
Z(P||Fy) = Y Py(an)log .
1170 nZO 1\¥n Po(an)

Because the Kullback-Leibler distance is non-negative, equaling zero only when the two probability distribu-
tions equal each other, we maximize Eq. (3.10) with respect to P by choosing P = P: The type estimator is
the maximum likelihood estimator of Py.

The number of length-L observation sequences having a given type P approximately equals e~2% P,
The probability that a given sequence has a given type approximately equals e~2? (PIIP) | which means that
the probability a given sequence has a type not equal to the true distribution decays exponentially with the
number of observations. Thus, while the coin flip sequences {H,H,HHH} and {T,THH.,T} are equally

likely (assuming a fair coin), the second is more typical because its type is closer to the true distribution.
3.5.2 Histogram Estimators

By far the most used technique for estimating the probability distribution of a continuous-valued random
variable is the histogram; more sophisticated techniques are discussed in [36]. For real-valued data, subdivide
the real line into N intervals (X;,X;,,] having widths 6, = X; | — X;, i =1,...,N. These regions are called
“bins” and they should encompass the range of values assumed by the data. For large values, the “edge bins”

can extend to infinity to catch the overflows. Given L observations of a stationary random sequence X (/),
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1=0,...,L—1, the histogram estimate /(i) is formed by simply forming a type from the number L; of these
observations that fall into the i bin and dividing by the binwidth 0;.

L

hl)=7& X <X<X,
A h2)=7% X <X<X
px(X) =
L
h(N)= 7 Xy <X <Xy,

The histogram estimate resembles a rectangular approximation to the density. Unless the underlying
density has the same form (a rare event), the histogram estimate does not converge to the true density as
the number L of observations grows. Presumably, the value of the histogram at each bin converges to the
probability that the observations lie in that bin.

L. Xt
lim =t = / X)dX
Lo [, Xl» p X ( )
To demonstrate this intuitive feeling, we compactly denote the histogram estimate by using indicator func-
tions. An indicator function Z,[X (1)] for the i bin equals one if the observation X (/) lies in the bin and is zero
otherwise. The estimate is simply the average of the indicator functions across the observations.

1 L—-1
i) = g 3 HX0)

The expected value of I,[X (/)] is simply the probability P, that the observation lies in the i bin. Thus, the
expected value of each histogram value equals the integral of the actual density over the bin, showing that the
histogram is an unbiased estimate of this integral. Convergence can be tested by computing the variance of
the estimate. The variance of one bin in the histogram is given by

_p?
V)= s s S (XWX ) )

To simplify this expression, the correlation between the observations must be specified. If the values are
statistically independent (we have white noise), each term in the sum becomes zero and the variance is given
by ¥ [h(i)] = (P,— P?)/(LS8?). Thus, the variance tends to zero as L— o and the histogram estimate is con-
sistent, converging to P,/9,. If the observations are not white, convergence becomes problematical. Assume,
for example, that [,[X (k)] and [,[X ()] are correlated in a first-order, geometric fashion.

ELIX(KLIX (1]} — P? = PPpl]

The variance does increase with this presumed correlation until, at the extreme (p = 1), the variance is a
constant independent of L! In summary, if the observations are mutually correlated and the histogram estimate
converges, the estimate converges to the proper value but more slowly than if the observations were white.
The estimate may not converge if the observations are heavily dependent from index to index. This type of
dependence structure occurs when the power spectrum of the observations is lowpass with an extremely low
cutoff frequency.

Convergence to the density rather than its integral over a region can occur if, as the amount of data grows,
we reduce the binwidth §; and increase N, the number of bins. However, if we choose the binwidth too small
for the amount of available data, few bins contain data and the estimate is inaccurate. Letting X’ denote the
midpoint of a bin, using a Taylor expansion about this point reveals that the mean-squared error between the
histogram and the density at that point is [38: 44-59]

! 4 )
(e =iy = X O [d px(X)

2
1
L= +0<—)+0(5i5)
2L5, 36| ax? XZX,] L
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This mean-squared error becomes zero only if L— %, L§,— %, and 8;— 0. Thus, the binwidth must decrease
more slowly than the rate of increase of the number of observations. We find the “optimum” compromise
between the decreasing binwidth and the increasing amount of data to be*
, 1/5
9px(X') 115
2
2[d?py(X)/dX?|y_xi]

i

Using this binwidth, we find the the mean-squared error to be proportional to L~*/5. We have thus discovered
the famous “4/5” rule of density estimation; this is one of the few cases where the variance of a convergent
statistic decreases more slowly than the reciprocal of the number of observations. In practice, this optimal bin-
width cannot be used because the proportionality constant depends of the unknown density being estimated.
Roughly speaking, wider bins should be employed where the density is changing slowly. How the optimal
binwidth varies with L can be used to adjust the histogram estimate as more data become available.

3.5.3 Density Verification

Once a density estimate is produced, the class of density that best coincides with the estimate remains an
issue: Is the density just estimated statistically similar to a Gaussian? The histogram estimate can be used
directly in a hypothesis test to determine similarity with any proposed density. Assume that the observations
are obtained from a white, stationary, stochastic sequence. Let .#|, denote the hypothesis that the data have
an amplitude distribution equal to the presumed density and .#, the dissimilarity hypothesis. If .# is true,
the estimate for each bin should not deviate greatly from the probability of a randomly chosen datum lying
in the bin. We determine this probability from the presumed density by integrating over the bin. Summing
these deviations over the entire estimate, the result should not exceed a threshold. The theory of standard
hypothesis testing requires us to produce a specific density for the alternative hypothesis .#,. We cannot
rationally assign such a density; consistency is being tested, not whether either of two densities provides the
best fit. However, taking inspiration from the Neyman-Pearson approach to hypothesis testing (§4.1.2 {113}),
we can develop a test statistic and require its statistical characteristics only under .#,. The typically used, but
ad hoc test statistic S(L, N) is related to the histogram estimate’s mean-squared error [6: 416-41].

No(L,—LP)? XL
S(L,N):_Zli’u)_l :E——L

This statistic sums over the various bins the squared error of the number of observations relative to the ex-
pected number. For large L, S(L,N) has a % probability distribution with N — 1 degrees of freedom [6: 417].
Thus, for a given number of observations L we establish a threshold 1), by picking a false-alarm probability
Py and using tables to solve Pr[xl%,_l > ny] = Pr. To enhance the validity of this approximation, statisticians
recommend selecting the binwidth so that each bin contains at least ten observations. In practice, we fulfill
this criterion by merging adjacent bins until a sufficient number of observations occur in the new bin and
defining its binwidth as the sum of the merged bins’ widths. Thus, the number of bins is reduced to some
number N’, which determines the degrees of freedom in the hypothesis test. The similarity test between the
histogram estimate of a probability density function and an assumed ideal form becomes

M\

S(L,N') Z n,,
(a )/;/0771\1

In many circumstances, the formula for the density is known but not some of its parameters. In the
Gaussian case, for example, the mean or variance are usually unknown. These parameters must be determined

*This result assumes that the second derivative of the density is nonzero. If it is not, either the Taylor series expansion brings higher
order terms into play or, if all the derivatives are zero, no optimum binwidth can be defined for minimizing the mean-squared error.
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from the same data used in the consistency test before the test can be used. Doesn’t the fact that we use
estimates rather than actual values affect the similarity test? The answer is “yes,” but in an interesting way:
The similarity test changes only in that the number of degrees of freedom of the x> random variable used to
establish the threshold is reduced by one for each estimated parameter. If a Gaussian density is being tested,
for example, the mean and variance usually need to be found. The threshold should then be determined
according to the distribution of a Xl%],_S random variable.

Example

Three sets of observations are considered: Two are drawn from a Gaussian distribution and the other
not. The first Gaussian example is white noise, a signal whose characteristics match the assumptions
of this section. The second is non-Gaussian, which should not pass the test. Finally, the last test
consists of colored Gaussian noise that, because of dependent samples, does not have as many degrees
of freedom as would be expected. The number of data available in each case is 2000. The histogram
estimator uses fixed-width bins and the x? test demands at least ten observations per merged bin. The
mean and variance estimates are used in constructing the nominal Gaussian density. The histogram
estimates and their approximation by the nominal density whose mean and variance were computed
from the data are shown in Fig. 3.3. The chi-squared test (P, = 0.1) yielded the following results.

Density | N | x3_5 | S(2000,N') |
White Gaussian 70 | 822 78.4
White sech 65 | 76.6 232.6
Colored Gaussian | 65 | 76.6 77.8

The white Gaussian noise example clearly passes the x> test. The test correctly evaluated the non-
Gaussian example, but declared the colored Gaussian data to be non-Gaussian, yielding a value near
the threshold. Failing in the latter case to correctly determine the data’s Gaussianity, we see that the
x? test is sensitive to the statistical independence of the observations.

Problems

31

Estimates of identical parameters are heavily dependent on the assumed underlying probability densi-
ties. To understand this sensitivity better, consider the following variety of problems, each of which
asks for estimates of quantities related to variance. Determine the bias and consistency in each case.

(a) Compute the maximum a posteriori and maximum likelihood estimates of 6 based on L statisti-
cally independent observations of a Maxwellian random variable X .

2
Pyo(X10) =/ 207X 20 x> 0,050
po(8) = re™?9, 6>0

(b) Find the maximum a posteriori estimate of the variance o> from L statistically independent ob-
servations having the exponential density

1 —X/ o2
py(X) = —=e X>0
() = e
where the variance is uniformly distributed over the interval [0, crr%]ax).

(¢) Find the maximum likelihood estimate of the variance of L identically distributed, but depen-
dent Gaussian random variables. Here, the covariance matrix is written Ky = crzKX, where the

normalized covariance matrix has trace tr[Ky ] = L. Assume the random variables have zero mean.
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Figure 3.3: Three histogram density estimates are shown and compared with Gaussian densities having the
same mean and variance. The histogram on the top is obtained from Gaussian data that are presumed to
be white. The middle one is obtained from a non-Gaussian distribution related to the hyperbolic secant
[py(X)= %sechz(nX /20)]. This density resembles a Gaussian about the origin but decreases exponentially
in the tails. The bottom histogram is taken from a first-order autoregressive Gaussian signal. Thus, these data
are correlated, but yield a histogram resembling the true amplitude distribution. In each case, 2000 data points
were used and the histogram contained 100 bins.

3.2 Imagine yourself idly standing on the corner in a large city when you note the serial number of a passing
beer truck. Because you are idle, you wish to estimate (guess may be more accurate here) how many
beer trucks the city has from this single observation.

(a) Making appropriate assumptions, the beer truck’s number is drawn from a uniform probability
density ranging between zero and some unknown upper limit, find the maximum likelihood esti-
mate of the upper limit.

(b) Show that this estimate is biased.
(¢) In one of your extraordinarily idle moments, you observe throughout the city L beer trucks. As-
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33

34

3.5

suming them to be independent observations, now what is the maximum likelihood estimate of
the total?

(d) Is this estimate of 0 biased? asymptotically biased? consistent?

Estimating a Bit

To send a bit, a discrete-time communications system transmits either +1 or —1 for L successive in-
dices. The channel adds white Gaussian noise and the receiver must determine which bit was sent from
these noise-corrupted observations. The bit’s values are equally likely.

(a) What is the MAP estimate of the bit’s value?

(b) Determine the bias, if any, of the MAP estimate?

(c¢) Is the MAP estimate in this case consistent?

(d) Find the minimum mean-squared error estimator of the bit.

We make L observations X, ..., X; of a parameter 0 corrupted by additive noise (X; = 6 +N,). The pa-
rameter 0 is a Gaussian random variable [0 ~ .47(0, crg)] and N, are statistically independent Gaussian
random variables [N, ~ .#"(0, 03)].

(a) Find the MMSE estimate of 6.

(b) Find the maximum a posteriori estimate of 0.

(¢) Compute the resulting mean-squared error for each estimate.

(d) Consider an alternate procedure based on the same observations X;. Using the MMSE criterion,
we estlmate 0 1mmed1ately after each observation. ThlS procedure ylelds the sequence of esti-

mates 0, (X)), 92( X,),. QL( .., X;). Express 9 as a function of Ql \» 07, and X,. Here,
crl denotes the variance of the estlmatlon error of the l’h estimate. Show that
1 n [
2T 2T 2
0 o5 Oy

Estimating Phase, Amplitude and Frequency

You are given the discrete-time signal Acos(27f,)/ — ) observed in the presence of white Gaussian
noise having zero-mean and variance 0. Eventually, we want to find all the parameters, but let’s build
up to that by estimating first the phase 0, then the amplitude A, finally incorporating the frequency
fo- Throughout assume the number of observations L contains an integer number of periods of the
sinusoidal signal.

(a) What is the maximum likelihood estimate for the phase assuming the amplitude and frequency
are known?

(b) Find the Cramér-Rao bound for your estimate.

(¢c) Create a MATLAB simulation of your estimation procedure. Let A =1 and f, = 100/L, with
L =1024. Run 1,000-trial simulations to estimate the phase for 6 = 7r/4 for signal-to-noise ratios
A?/0? of 1.0 and 0.04. Calculate the empirical mean and standard deviation of your estimates.
Do they agree with theory?

(d) What are the maximum likelihood estimates of the phase and the amplitude? Find the Cramér-Rao
bound for this case.

(e) Using the same simulations as in part (c), do these estimates have the predicted statistics?

(f) Find the joint maximum likelihood estimates for all three parameters. Calculate the Cramér-Rao
lower bound for each parameter’s estimation error.
Note: The analytic maximum likelihood estimate of the frequency is difficult to apply to data.
Find an equivalent empirical estimate.

(g) For the data file sineinnoise.mat, estimate the amplitude, frequency and phase. Indicate the
possible range of values for your estimates (i.e., provide error bars).
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3.6

3.7
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Although the maximum likelihood estimation procedure was not clearly defined until early in the 20th
century, Gauss showed in 1805 that the Gaussian density* was the sole density for which the maximum
likelihood estimate of the mean equaled the sample average. Let {X,,...,X, ,} be a sequence of
statistically independent, identically distributed random variables.

(a) What equation defines the maximum likelihood estimate ﬁzML of the mean m when the common
probability density function of the data has the form p(X —m)?

(b) The sample average is, of course, ¥, X, /L. Show that it minimizes the mean-squared error > [Xl —
m]?.

(c) Equating the sample average to 7y, , combine this equation with the maximum likelihood equa-
tion to show that the Gaussian density uniquely satisfies the equations.

Note: Because both equations equal 0, they can be equated. Use the fact that they must hold for all L
to derive the result. Gauss thus showed that mean-squared error and the Gaussian density were closely
linked, presaging ideas from modern robust estimation theory.

What’s In-Between the Samples?
We sample a stationary random process X; every T seconds, ignoring whether the process is bandlimited
or not. To reconstruct the signal from the samples, we use linear interpolation.

X, = aX,_yp+bX,r, (n—1T <1<nT

(a) Find the minimum mean-squared error linear interpolator. In other words, what are the best values
for a and b?

(b) Show that the maximum likelihood interpolator is also linear when X; is a wide-sense stationary,
zero-mean, Gaussian process. In other words, if X(n_ 0T and X, comprise your observations,
show that the maximum likelihood estimate of X; has the linear form given above. For this part,
you do not need to find @ and b.

(¢) Find the Cramér-Rao bound for the interpolation estimate of X;.

In an example {77}, we derived the maximum likelihood estimate of the mean and variance of a Gaus-

sian random vector. You might wonder why we chose to estimate the variance o rather than the stan-
dard deviation o. Using the same assumptions provided in the example, let’s explore the consequences
of estimating a function of a parameter [40: Probs.2.4.9,2.4.10].

(a) Assuming that the mean is known, find the maximum likelihood estimates of first the variance,
then the standard deviation.

(b) Are these estimates biased?
(c) Describe how these two estimates are related. Assuming that f(-) is a monotonic function, how

are @ML and ﬂ5 )wm related in general?

These results suggest a general question. Consider the problem of estimating some function of
a parameter 6, say f,(0). The observed quantity is X and the conditional density pX|9(X |6) is

known. Assume that 0 is a nonrandom parameter.
e —

(d) What are the conditions for an efficient estimate f (0) to exist?

(e) What is the lower bound on the variance of the error of any unbiased estimate of f,(6)?

(f) Assume an efficient estimate of f| (0) exists; when can an efficient estimate of some other function
£>(0) exist?

Let the observations X (/) consist of statistically independent, identically distributed Gaussian random
variables having zero mean but unknown variance. We wish to estimate o, their variance.

*It wasn’t called the Gaussian density in 1805; this result is one of the reasons why it is.
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311

3.12

313

(a) Find the maximum likelihood estimate 62,,; and compute the resulting mean-squared error.
(b) Show that this estimate is efficient.

(¢) Consider a new estimate GzNEW given by GzNEW :/\otcr2 ML+ Where a is a constant. Find the value
of o that minimizes the mean-squared error for 0%y . Show that the mean-squared error of
0% \gw is less than that of 02, . Is this result compatible with part b?

Optimal and Simple Communications

A multiplexed communication system needs to be designed that sends two numbers simultaneously.

Perhaps the simplest design represents the numbers as the amplitudes of two carrier signals. The re-
ceived signal has the form

R =Ac,()+Ayc,()+N,, 1=0,...,L—1

where N, is ubiquitous additive (not necessarily white) Gaussian noise. The carrier signals ¢, (/) and
¢, (1) have unit energy; their detailed waveforms need to be selected to provide the best possible system
design.

(a) What is the maximum likelihood estimate of the amplitudes?

(b) Is the maximum likelihood estimate biased or not? If it is biased, what are the most general
conditions on the carrier signals and the noise would it make it unbiased?

(¢) Under what conditions are the amplitude estimation errors uncorrelated and as small as possible?
MIMO Channels

Two parameters 6,, 6, are transmitted over a MIMO (Multiple-Input, Multiple-Output) channel. The
two parameters constitute the channel’s two-dimensional vector input 8, and the channel output is HO.

H is the non-square “transfer function” matrix that represents the set of linear combinations of the
parameters found in the output. The observations consist of

R=HO+N,

where the noise vector N is Gaussian, having zero mean and covariance matrix K.

(a) What is the maximum likelihood estimate of 67

(b) Find this estimate’s total mean-squared error.

(¢) Is this estimate biased? Is it efficient?

Prediction

A signal s(/) can be described as a stochastic process that has zero mean and covariance function

K(0) = crszaw. This signal is observed in additive white Gaussian noise having variance o>. The signal
and noise are statistically independent of each other.

(a) Find the optimal predictor 5(/ 4 1) that is based on observations that end at time / and begin at
time [ — L+ 1.

(b) How does this predictor change if we want to estimate s(/ + k) based on observations made over
..., l+L—1]?

(c) How does the predictor’s mean-squared error vary with k?

Let the observations be of the form X = HO + n where 0 and n are statistically independent Gaussian
random vectors.
0~ .4(0K,) n~ 40, K,)

The vector 6 has dimension M the vectors X and n have dimension N.

(a) De[tgir;?] the minimum mean-squared error estimate of 0, @MMSE, from the relationship @MMSE =
& .
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3.16
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(b) Show that this estimate and the optimum linear estimate @LIN derived by the Orthogonality Prin-
ciple are equal.

(¢) Find an expression for the mean-squared error when these estimates are used.

Suppose we consider an estimate of the parameter 6 having the form 6 = % (X) + C, where X denotes
the vector of the observables and % () is a linear operator. The quantity C is a constant. This estimate
is not a linear function of the observables unless C = 0. We are interested in finding applications for
which it is advantageous to allow C # 0. Estimates of this form we term “quasi-linear.”

(a) Show that the optimum (minimum mean-squared error) quasi-linear estimate satisfies
ELX)+Co— 0, 2(X)+C)] =0, forall #(-)andC

where @QLIN = %(X)+C..

(b) Find a general expression for the mean-squared error incurred by the optimum quasi-linear esti-
mate.

(¢) Such estimates yield a smaller mean-squared error when the parameter 6 has a nonzero mean. Let
0 be a scalar parameter with mean m. The observables comprise a vector X having components
given by X, = 0+ N,,l =1,...,L where N, are statistically independent Gaussian random vari-

albles [N, ~ A4(0, cr[%,)] independent of 6. Compute expressions for @QLIN and §LIN' Verity that

QQLIN yields a smaller mean-squared error when m % 0.

On Page 85, we questioned the existence of an efficient estimator for signal parameters. We found
in the succeeding example that an unbiased efficient estimator exists for the signal amplitude. Can a
nonlinearly represented parameter, such as time delay, have an efficient estimator?

(a) Simplify the condition for the existence of an efficient estimator by assuming it to be unbiased.
Note carefully the dimensions of the matrices involved.

(b) Show that the only solution in this case occurs when the signal depends “linearly” on the parameter
vector.

Cramér-Rao Bound for Signal Parameters

In many problems, the signal as well as the noise are sometimes modeled as Gaussian processes. Let’s
explore what differences arise in the Cramér-Rao bounds for the stochastic and deterministic signal
cases. Assume that the signal contains unknown parameters 0, that it is statistically independent of the
noise, and that the noise covariance matrix is known.

(a) What forms do the conditional densities of the observations take under the two assumptions?
What are the two covariance matrices?

(b) As a preliminary, show that
IA” — _A! %
a0 a0
(¢) Assuming the stochastic signal model, show that each element of the Fisher information matrix
has the form

AL,

1
F..= Etl' [K_

JK__, 9K
g el ¢ 1_]

a6, a0,

where K denotes the covariance matrix of the observations. Specialize this expression by assum-
ing the noise component has no unknown parameters.

Estimating the Amplitude of a Sinusoid
Suppose you observe a discrete-time sinusoid in additive Laplacian white noise having variance per
sample of o2.

X, = Asin(2nfy)l)+N,, 1=0,...,.L—1

The frequency is known and is harmonic with the observation interval (f, = n/L for some integer n).
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(a) What equation determines the maximum likelihood amplitude estimate?

(b) Because no closed form solution for the estimate is evident, write a MATLAB program that sim-
ulates the observations and finds the estimate. Set L = 1024 and f, = 100/L. Let A =1 and
0% = 1. Compute and plot the derivative of the log likelihood function for values of A close to the
true amplitude. What do you conclude from this result?

(¢) For your dataset, find the maximum likelihood estimate of A.
(d) Find the Cramér-Rao bound for the error variance.

(e) In practice, using Gaussian-noise assumption provides far simpler answers than using a model
more closely describing the data. Simulate 1,000 observational trials using the Laplacian noise
description. Use two values for the noise variance—1 and 25 —in each set of trials. Determine
the mean and variance of the Gaussian-derived amplitude estimate. What is the theoretical value
for the mean-squared error when the Gaussian-based estimate for the amplitude is used? Does the
simulated variance agree with this result?

3.18 In Poisson problems, the number of events n occurring in the interval [0, T) is governed by the proba-
bility distribution {38}

where A is the average rate at which events occur.

(a) What is the maximum likelihood estimate of average rate?
(b) Does this estimate satisfy the Cramér-Rao bound?

(c) Now suppose the rate varies sinusoidally according to
At) = Agexp{acos2nafyt} 0<t<T
where the frequency f; is a harmonic of 1/7". What are the maximum likelihood estimates of A,

and a in this case?
Note: The following facts will prove useful.

1 27
Iy(a) = oy /0 "% 46 is the modified Bessel function of the first kind, order 0.

Iy(a) = I,(a), the modified Bessel function of the first kind, order 1.
L(a) +1y(a)

@ =22

(d) Find the Cramér-Rao bounds for the mean-squared estimation errors for A, and & assuming unbi-
ased estimators.

3.19 In the “classic” radar problem, not only is the time of arrival of the radar pulse unknown but also
the amplitude. In this problem, we seek methods of simultaneously estimating these parameters. The
received signal X (/) is of the form

X(1) = 60,s(1— 6,) + N(I)

where 0, is Gaussian with zero mean and variance crl2 and 0, is uniformly distributed over the observa-
tion interval. Find the receiver that computes the maximum a posteriori estimates of 0, and 6, jointly.
Draw a block diagram of this receiver and interpret its structure.

3.20 We can derive the Cramér-Rao bound for estimating a signal’s delay.

(a) The parameter 6 is the delay of the signal s(-) observed in additive, white Gaussian noise:
X(l)=s(l—0)+N(l),l =0,...,L— 1. Derive the Cramér-Rao bound for this problem.
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(b) This bound is claimed to be given by af, /EB?, where B2 is the mean-squared bandwidth. Derive
this result from your general formula. Does the bound make sense for all values of signal-to-noise
ratio E/ 03?

(c) Using optimal detection theory, derive the expression for the probability of error incurred when
trying to distinguish between a delay of T and a delay of T+ A. Consistent with the problem posed
for the Cramér-Rao bound, assume the delayed signals are observed in additive, white Gaussian
noise.

Estimating Model Probabilities

We want to estimate the a priori probability i, based on data obtained over N statistically independent
observation intervals. During each length-L observation interval, the observations consist of white
Gaussian noise having variance of either (Ig or 012 (012 > Cfg). m, is the probability that the observations

have variance crg and we do not know which model applies for any observation interval.

(a) One approach is to classify each observation interval according to its variance, count the number
of times the variance equals crg, and divide this count by N. What is the classification algorithm
that lies at the heart of this estimator?

(b) What classifier threshold yields an unbiased estimate of 7,? Comment on the feasibility of this
approach.

(c) Rather than use this ad hoc approach, let’s use a systematic estimation approach: what is the
maximum likelihood estimate of i, based on the N observation intervals?

The signal has a power spectrum given by

F(f) = 17 1+%cos2zrf
S\ 20 1—%cos2jrf

This signal is observed in additive white noise having variance equaling 6.

(a) Find the unit-sample response of the noncausal Wiener filter.

(b) Find the difference equation governing the causal Wiener filter (I, = 0).

(c) Calculate the signal processing gain of Wiener filter.

The Eckhart filter is an optimum linear filter that maximizes the signal-to-noise ratio of its output [10].
To find the unit-sample response of the FIR Eckhart filter, consider observations of the form X =s+ N
where the covariance matrix of the noise is known. The signal-to-noise ratio is computed according to
&[||h's||*]/ &[||h'N||?], where h is the desired unit-sample response.

(a) Assuming the signal is nonrandom, find the Eckhart filter’s unit-sample response.

(b) What is the signal-to-noise ratio produced by the Eckhart filter? How does it compare with that
produced by the corresponding Wiener filter?

(c) Now assume the signal is random, having covariance matrix K. Characterize the Eckhart filter.
Optimal Spectral Estimation
While many spectral estimation procedures are found in the literature, few take into account the pres-

ence of additive noise. Assume that the observations consist of a signal s and statistically independent,
additive, zero-mean noise N.

X(1)=s(l)+N(l),1=0,....L—1

Treat finding the optimal estimate of the signal’s spectrum as an optimal FIR filtering problem, where
the quantity to be estimated is 3, s(/)e™/>"/!.

(a) Find the spectral estimate that minimizes the mean-squared estimation error.

(b) Find this estimate’s mean-squared error.
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(¢) Under what conditions is this estimate unbiased?

3.25 The covariance function estimate is claimed to be biased because the number of terms used at each lag
varied without a corresponding variation in the normalization. Let’s explore that claim closely. Assume
that we now estimate the covariance function according to

R 1 D—|m|—-1
m Yy X(m)X(n+m), 0<|ml <D-1
- n=0

(a) Find the expected value of this revised estimator, and show that it is indeed unbiased.

(b) To derive the variance of this estimate, we need the fourth moment of the observations, which
is conveniently given in Chapter 1 (§1.4.1 {12}). Derive the covariance estimate’s variance and
determine whether it is consistent or not.

(c) Evaluate the expected value and variance of the spectral estimate corresponding to this covariance
estimate.

(d) Does spectral estimate consistency become a reality with this new estimation procedure?

3.26 Let’s see how spectral estimators work on a “real” dataset. The file spectral.mat contains a signal
comprised of a sinusoid and additive noise.

(a) Evaluate the periodogram for this signal. What is your best guess for the sine wave’s frequency
and amplitude based on the periodogram? Are your estimates “good” in any sense?

(b) Use the Barlett spectral estimation procedure instead of the periodogram. Use a section length of
500, a Hanning window, and half-section overlap. Now what are your estimates of the sinusoid’s
frequency and amplitude?

(¢) The default transform size in MATLAB’s ££t function is the data’s length. Instead of using
the section length in your Bartlett estimate, use a longer transform to determine the frequency
resolution of the spectral peak presumably corresponding to the sinusoid. Compare the resolutions
that section lengths of 500 and 1000 provide. Also compare the resolutions the Hanning and
rectangular windows provide for these section lengths.

3.27 Optimal Spectral Estimation
While many spectral estimation procedures are found in the literature, few take into account the pres-
ence of additive noise. Assume that the observations consist of a signal s and statistically independent,
additive, zero-mean noise N.

X(1)=s(l)+N(1), [=0,....L—1

Treat finding the optimal estimate of the 51§nal’s spectrum as an optimal FIR filtering problem, where
the quantity to be estimated is ¥, s(/)e —J2afl
(a) Find the spectral estimate that minimizes the mean-squared estimation error.
(b) Find this estimate’s mean-squared error.
(¢) Under what conditions is this estimate unbiased?
3.28 Filter Coefficient Estimation
White Gaussian noise W(/) serves as the input to a simple digital filter governed by the difference

equation
X =aX,_+W,.

We want to estimate the filter’s coefficient a by processing the output observed over [ =0,...,L—1.
Prior to [ = 0, the filter’s input is zero.

(a) Find an estimate of a.
(b) What is the Cramér-Rao bound for your estimate?
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3.29 The histogram probability density estimator is a special case of a more general class of estimators

known as kernel estimators.
1 L—1

pul) = 3 K= X(0)

Here, the kernel k(-) is usually taken to be a density itself.

(a) What is the kernel for the histogram estimator?

(b) Interpret the kernel estimator in signal processing terminology. Predict what the most time con-
suming computation of this estimate might be. Why?

(c) Show that the sample average equals the expected value of a random variable having the density
Dy (x) regardless of the choice of kernel.



Chapter 4

Detection Theory

4.1 Elementary Hypothesis Testing

In statistics, hypothesis testing is some times known as decision theory or simply testing. Here, one of several
models .# are presumed to describe a set of observed data, and you want to find which model best describes
the observations. The key result around which all decision theory revolves is the likelihood ratio test.

4.1.1 The Likelihood Ratio Test

In a binary hypothesis testing problem, four possible outcomes can result. Model .#, did in fact represent the
best model for the data and the decision rule said it was (a correct decision) or said it wasn’t (an erroneous
decision). The other two outcomes arise when model .#, was in fact true with either a correct or incorrect
decision made. The decision process operates by segmenting the range of observation values into two disjoint
decision regions Ry and R,. All values of X fall into either R, or N,. If a given X lies in R, for example,
we will announce our decision “model .#|, was true”; if in Eﬁl , model .#, would be proclaimed. To derive
a rational method of deciding which model best describes the observations, we need a criterion to assess the
quality of the decision process. Optimizing this criterion will specify the decision regions.

The Bayes’ decision criterion seeks to minimize a cost function associated with making a decision. Let
C;; be the cost of mistaking model j for model i (i # j) and C;; the presumably smaller cost of correctly

..,i # j. Let m; be the a priori probability of model i. The so-called Bayes’ cost C
is the average cost of makmg a decision.

choosing model i: C;; > C;

C= EC Prlsay .#; when ./ true]
EC”Jr]Pr say /|4 true]
The Bayes’ cost can be expressed as

C= ZC”Jr]Pr (X € N[ true]

z/ // pX|/// X|'//l)
= [R {C00”0Px|///0(x|//lo) +Co1mi Py, (X|.2,)}dX
0

+ [R {C10”0Px|///0(x|//lo) ‘|‘C11”11’7x|///1 (X|.#,)}dX
“1
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Px|.«, (X|.;) is the conditional probability density function of the observed data X given that model .#; was
true. To minimize this expression with respect to the decision regions R, and R,, ponder which integral
would yield the smallest value if its integration domain included a specific observation vector. This selection
process defines the decision regions; for example, we choose .#, for those values of X which yield a smaller
value for the first integral.

Ro = X 1CooPxy., X|-#0) + 1 Co1Px) ., (X|-#1) < 76Cr0Px) g, X|4) +7,C11Py g (X[41)

We choose .#| when the inequality is reversed. This expression is easily manipulated to obtain the decision
rule known as the likelihood ratio test.

M
Px|.a, (X].2,) zl 7y(C1o— Coo)
PX|///0(X|//10) My (Co; —Cyy)

“4.n

The comparison relation means selecting model .# if the left-hand ratio exceeds the value on the right;
otherwise, .4, is selected. Thus, the likelihood ratio Px|.a (X|//ll)/px|///0(X|//lo), symbolically represented
1

by A(X), is computed from the observed value of X and then compared with a threshold n equaling [Jro (Cio—
COO)] / [ﬂfl (Cyy —Cyy )] . Thus, when two models are hypothesized, the likelihood ratio test can be succinctly
expressed as the comparison of the likelihood ratio with a threshold.

AX) <m 42)

0

The data processing operations are captured entirely by the likelihood ratio Px|.a (X|.,)/ Px|.4 (X|.4,).
1 0

Furthermore, note that only the value of the likelihood ratio relative to the threshold matters; to simplify the
computation of the likelihood ratio, we can perform any positively monotonic operations simultaneously on
the likelihood ratio and the threshold without affecting the comparison. We can multiply the ratio by a positive
constant, add any constant, or apply a monotonically increasing function which simplifies the expressions. We
single one such function, the logarithm, because it simplifies likelihood ratios that commonly occur in signal
processing applications. Known as the log-likelihood, we explicitly express the likelihood ratio test with it as

AAVA

InA(X) < Inn |. (43)

Useful simplifying transformations are problem-dependent; by laying bare that aspect of the observations
essential to the model testing problem, we reveal the sufficient statistic Y(X): the scalar quantity which best
summarizes the data [19: pp. 18-22]. The likelihood ratio test is best expressed in terms of the sufficient
statistic.

Y(X) = y 44

0

We will denote the threshold value by y when the sufficient statistic is used or by 1 when the likelihood ratio
appears prior to its reduction to a sufficient statistic.

As we shall see, if we use a different criterion other than the Bayes’ criterion, the decision rule often
involves the likelihood ratio. The likelihood ratio is comprised of the quantities Py y(X|#;), termed the
likelihood function, which is also important in estimation theory. It is this conditional ldensity that portrays
the probabilistic model describing data generation. The likelihood function completely characterizes the kind
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Figure 4.1: Conditional densities for the grade distributions assuming that a student did not study (.#,,) or did
(-#,) are shown in the top row. The lower portion depicts the likelihood ratio formed from these densities.

of “world” assumed by each model; for each model, we must specify the likelihood function so that we can
solve the hypothesis testing problem.

A complication, which arises in some cases, is that the sufficient statistic may not be monotonic. If mono-
tonic, the decision regions :, and R, are simply connected (all portions of a region can be reached without
crossing into the other region). If not, the regions are not simply connected and decision region islands are
created (see Problem 4.2). Such regions usually complicate calculations of decision performance. Monotonic
or not, the decision rule proceeds as described: the sufficient statistic is computed for each observation vector
and compared to a threshold.

Example
An instructor in a course in detection theory wants to determine if a particular student studied for his
last test. The observed quantity is the student’s grade, which we denote by X . Failure may not indicate
studiousness: conscientious students may fail the test. Define the models as

M. did not study
A studied

The conditional densities of the grade are shown in Fig. 4.1. Based on knowledge of student behavior,
the instructor assigns a priori probabilities of m, = 1/4 and m; = 3/4. The costs C;; are chosen to
reflect the instructor’s sensitivity to student feelings: C;; = 1 = C,,, (an erroneous decision either way
is given the same cost) and C,; = 0 = C,,. The likelihood ratio is plotted in Fig. 4.1 and the threshold
value 7, which is computed from the a priori probabilities and the costs to be 1/3, is indicated. The
calculations of this comparison can be simplified in an obvious way.

x ///‘5

> >

£ 22 xZ2X 167
50.7,3 O C43

The multiplication by the factor of 50 is a simple illustration of the reduction of the likelihood ratio to
a sufficient statistic. Based on the assigned costs and a priori probabilities, the optimum decision rule
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says the instructor must assume that the student did not study if the student’s grade is less than 16.7;
if greater, the student is assumed to have studied despite receiving an abysmally low grade such as 20.
Note that as the densities given by each model overlap entirely: the possibility of making the wrong
interpretation always haunts the instructor. However, no other procedure will be better!

4.1.2 Criteria in Hypothesis Testing

The criterion used in the previous section—minimize the average cost of an incorrect decision—may seem to
be a contrived way of quantifying decisions. Well, often it is. For example, the Bayesian decision rule depends
explicitly on the a priori probabilities; a rational method of assigning values to these—either by experiment
or through true knowledge of the relative likelihood of each model—may be unreasonable. In this section,
we develop alternative decision rules that try to answer such objections. One essential point will emerge from
these considerations: the fundamental nature of the decision rule does not change with choice of optimization
criterion. Even criteria remote from error measures can result in the likelihood ratio test (see Problem 4 .4).
Such results do not occur often in signal processing and underline the likelihood ratio test’s significance.

Maximum Probability of a Correct Decision
As only one model can describe any given set of data (the models are mutually exclusive), the probability of
being correct P, for distinguishing two models is given by

P. = Pr[say .#, when .#,, true] + Pr[say .#, when .#, true].

We wish to determine the optimum decision region placement by maximizing P.. Expressing the probability
correct in terms of the likelihood functions Px|.4 (X|.#;), the a priori probabilities, and the decision regions,

Po= [ Topyg (Xt aX+ [ 7py 4 (X)) dX.
0 M

We want to maximize P, by selecting the decision regions N, and R, . The probability correct is maximized
by associating each value of X with the largest term in the expression for P.. Decision region 3, for example,
is defined by the collection of values of X for which the first term is largest. As all of the quantities involved
are non-negative, the decision rule maximizing the probability of a correct decision is

Given X, choose .#; for which the product Py (X[} is largest.

Simple manipulations lead to the likelihood ratio test.

A,
Px|.x, (X[-2,) ! T
KA T >
Px).q, X|-#y) 4, 7,

Note that if the Bayes’ costs were chosen so that C;; = 0 and Cl.j =C, (i # j), we would have the same
threshold as in the previous section.

To evaluate the quality of the decision rule, we usually compute the probability of error P, rather than the
probability of being correct. This quantity can be expressed in terms of the observations, the likelihood ratio,
and the sufficient statistic.

Pe:%[R px%(xpfzo)dXJrnl[R Px.a (XI-2,)dX
1 0
=70 [ Py M) aA [ py g (A, dA @3)
>n A<n 1

= | i o) Y /  Pia, )Y
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When the likelihood ratio is non-monotonic, the first expression is most difficult to evaluate. When monotonic,
the middle expression proves the most difficult. Furthermore, these expressions point out that the likelihood
ratio and the sufficient statistic can be considered a function of the observations X; hence, they are random
variables and have probability densities for each model. Another aspect of the resulting probability of error is
that no other decision rule can yield a lower probability of error. This statement is obvious as we minimized
the probability of error in deriving the likelihood ratio test. The point is that these expressions represent a
lower bound on performance (as assessed by the probability of error). This probability will be non-zero if the
conditional densities overlap over some range of values of X, such as occurred in the previous example. In
this region of overlap, the observed values are ambiguous: either model is consistent with the observations.
Our “optimum” decision rule operates in such regions by selecting that model which is most likely (has the
highest probability) of generating any particular value.

Neyman-Pearson Criterion

Situations occur frequently where assigning or measuring the a priori probabilities P, is unreasonable. For
example, just what is the a priori probability of a supernova occurring in any particular region of the sky?
We clearly need a model evaluation procedure which can function without a priori probabilities. This kind of
test results when the so-called Neyman-Pearson criterion is used to derive the decision rule. The ideas behind
and decision rules derived with the Neyman-Pearson criterion [27] will serve us well in sequel; their result is
important!

Using nomenclature from radar, where model .#, represents the presence of a target and .4, its absence,
the various types of correct and incorrect decisions have the following names [44: pp. 127-9].*

P, = Prl[say .#,|.#, true]  Detection—we say it’s there when it is
Pp = Pr[say .#,|.#true]  False-alarm—we say it’s there when it’s not
Py, = Prl[say .#,|.#, true] Miss—we say it’s not there when it is

The remaining probability Pr[say .#|.#, true| has historically been left nameless and equals 1 — P,. We
should also note that the detection and miss probabilities are related by P, = 1 — P;,. As these are conditional
probabilities, they do not depend on the a priori probabilities and the two probabilities P and P, characterize
the errors when any decision rule is used.

These two probabilities are related to each other in an interesting way. Expressing these quantities in
terms of the decision regions and the likelihood functions, we have

Pe= [ pxa XLt dX. By= [y (XL dX.
1 1

As the region R, shrinks, both of these probabilities tend toward zero; as R, expands to engulf the entire
range of observation values, they both tend toward unity. This rather direct relationship between P}, and Py
does not mean that they equal each other; in most cases, as ), expands, Py, increases more rapidly than Py
(we had better be right more often than we are wrong!). However, the “ultimate” situation where a rule is
always right and never wrong (P, = 1, P = 0) cannot occur when the conditional distributions overlap. Thus,
to increase the detection probability we must also allow the false-alarm probability to increase. This behavior
represents the fundamental tradeoff in hypothesis testing and detection theory.

One can attempt to impose a performance criterion that depends only on these probabilities with the
consequent decision rule not depending on the a priori probabilities. The Neyman-Pearson criterion assumes
that the false-alarm probability is constrained to be less than or equal to a specified value a while we attempt
to maximize the detection probability P,.

rrglRaxPD subjectto P <
1

*In hypothesis testing, a false-alarm is known as a type I error and a miss a type II error.
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A subtlety of the succeeding solution is that the underlying probability distribution functions may not be
continuous, with the result that P, can never equal the constraining value c.. Furthermore, an (unlikely)
possibility is that the optimum value for the false-alarm probability is somewhat less than the criterion value.
Assume, therefore, that we rephrase the optimization problem by requiring that the false-alarm probability
equal a value o' that is less than or equal to .

This optimization problem can be solved using Lagrange multipliers; we seek to find the decision rule that
maximizes

F=Py+A(Pr—d'),

where A is the Lagrange multiplier. This optimization technique amounts to finding the decision rule that
maximizes F, then finding the value of the multiplier that allows the criterion to be satisfied. As is usual in
the derivation of optimum decision rules, we maximize these quantities with respect to the decision regions.
Expressing Pp, and Py in terms of them, we have

, %,
_ —Aa'+[R {pXM/l (X|//ll)—|—)\.pxl///0(X|//[0)} JX.
“M

To maximize this quantity with respect to :,, we need only to integrate over those regions of X where
the integrand is positive. The region R, thus corresponds to those values of X where Px|.« (X|.#,) >
1

—)LpXM/O (X|.#,,) and the resulting decision rule is

M
PoaXa s
"z _
pX|///0 (X|//lo) R

The ubiquitous likelihood ratio test again appears; it is indeed the fundamental quantity in hypothesis testing.
Using the logarithm of the likelihood ratio or the sufficient statistic, this result can be expressed as either

///1 ///1
lnA(X);/ In(—A) or Y(X);/y.
0 0

We have not as yet found a value for the threshold. The false-alarm probability can be expressed in terms
of the Neyman-Pearson threshold in two (useful) ways.

Pe= [ Papa (Al dA
P (4.6)
= /y Py, (YI-4) dY

One of these implicit equations must be solved for the threshold by setting P, equal to a'. The selection
of which to use is usually based on pragmatic considerations: the easiest to compute. From the previous
discussion of the relationship between the detection and false-alarm probabilities, we find that to maximize
P, we must allow o' to be as large as possible while remaining less than a. Thus, we want to find the
smallest value of —A (note the minus sign) consistent with the constraint. Computation of the threshold is
problem-dependent, but a solution always exists.

Example
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An important application of the likelihood ratio test occurs when X is a Gaussian random vector for
each model. Suppose the models correspond to Gaussian random vectors having different mean values
but sharing the same identity covariance.

My: X ~ N (0, 0%T)
My X ~ AN (m, %)

Thus, X is of dimension L and has statistically independent, equal variance components. The vector of
means m = col[m,, ...,m; _,] distinguishes the two models. The likelihood functions associated this

problem are
- 1 (X, 2
PX\., (X|-#,) H sepy —5 (5

L1 1 /X —m\?>
Px|.x, (X)) H\/—CXP{ 5(%) }

The likelihood ratio A(X) becomes

[\

This expression for the likelihood ratio is complicated. In the Gaussian case (and many others), we
use the logarithm the reduce the complexity of the likelihood ratio and form a sufficient statistic.

Eho1(x,—m)?  1X?
InA(X) = ZZO{—ET-FEg}

1L—l 1 L—1 )
= — mX—— m

22 141 22 ]

0" = 20° &

The likelihood ratio test then has the much simpler, but equivalent form

L-1 /i/l R 1L
mX, <o lnn—l——lzml.
120 #y 2 &

To focus on the model evaluation aspects of this problem, let’s assume means be equal to a positive
constant: m; =m (> 0).*

>0 m
Z;ﬁ 5

Note that all that need be known about the observations {X, } is their sum. This quantity is the sufficient
statistic for the Gaussian problem: Y(X) = $X, and y = 0*Inn/m+Lm/2.

When trying to compute the probability of error or the threshold in the Neyman-Pearson criterion,
we must find the conditional probability density of one of the decision statistics: the likelihood ratio,
the log-likelihood, or the sufficient statistic. The log-likelihood and the sufficient statistic are quite

*Why did the author assume that the mean was positive? What would happen if it were negative?
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| x [0 |
1071 [ 1.281
1072 | 2.396
1073 | 3.090
10~* | 3719
1075 | 4265
107 | 4754

Table 4.1: The table displays interesting values for Q~!(-) that can be used to determine thresholds in the
Neyman-Pearson variant of the likelihood ratio test. Note how little the inverse function changes for decade
changes in its argument; Q(-) is indeed very nonlinear.

similar in this problem, but clearly we should use the latter. One practical property of the sufficient
statistic is that it usually simplifies computations. For this Gaussian example, the sufficient statistic is
a Gaussian random variable under each model.

My: Y(X) ~ A (0,Lo?)
MY (X) ~ A (Lm,Lo?)

To find the probability of error from the expressions found on Page 112, we must evaluate the area
under a Gaussian probability density function. These integrals are succinctly expressed in terms of
Q(x), which denotes the probability that a unit-variance, zero-mean Gaussian random variable exceeds
x (see chapter 1 {9}). As 1 — Q(x) = Q(—x), the probability of error can be written as

Lm—vy % )
P=nm — |+ — ).
‘ lQ( VLo ) o0 (x/ZG
An interesting special case occurs when ;, = 1/2 = 7. In this case, y = Lm/2 and the probability of

error becomes
\/Zm
P, = Q ( .

20

As Q(+) is a monotonically decreasing function, the probability of error decreases with increasing
values of the ratio /Lm/20. However, as shown in appendix Fig. 1.3 {10}, Q(-) decreases in a
nonlinear fashion. Thus, increasing m by a factor of two may decrease the probability of error by a
larger or a smaller factor; the amount of change depends on the initial value of the ratio.

To find the threshold for the Neyman-Pearson test from the expressions given on Page 114, we
need the area under a Gaussian density.

pF:Q< v ):af @)

Lo?

As Q(+) is a monotonic and continuous function, we can now set &’ equal to the criterion value a with
the result

y=VLoQ™'(a).
where Q~!(-) denotes the inverse function of Q(-). The solution of this equation cannot be performed
analytically as no closed form expression exists for Q(-) (much less its inverse function); the criterion
value must be found from tables or numerical routines. Because Gaussian problems arise frequently,
the accompanying table provides numeric values for this quantity at the decade points. The detection

probability is given by
_ VLm
PD:Q(Q Ha)= ==
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Figure 4.2: The densities of the sufficient statistic Y(X) conditioned on two hypotheses are shown for the
Gaussian example. The threshold y used to distinguish between the two models is indicated. The false-alarm
probability is the area under the density corresponding to .#), to the right of the threshold; the detection
probability is the area under the density corresponding to .# .

4.1.3 Performance Evaluation

We alluded earlier {113} to the relationship between the false-alarm probability P, and the detection prob-
ability P, as one varies the decision region. Because the Neyman-Pearson criterion depends on specifying
the false-alarm probability to yield an acceptable detection probability, we need to examine carefully how
the detection probability is affected by a specification of the false-alarm probability. The usual way these
quantities are discussed is through a parametric plot of Py, versus Py: the receiver operating characteristic or
ROC.

As we discovered in the Gaussian example {115}, the sufficient statistic provides the simplest way of
computing these probabilities; thus, they are usually considered to depend on the threshold parameter y. In
these terms, we have

P, = /y Py (CLA) Y and P = /y Py (1) Y 38)

These densities and their relationship to the threshold y are shown in Fig. 4.2. We see that the detection
probability is greater than or equal to the false-alarm probability. Since these probabilities must decrease
monotonically as the threshold is increased, the ROC curve must be concave-down and must always exceed
the equality line (Fig. 4.3). The degree to which the ROC departs from the equality line P, = P, measures the
relative “distinctiveness” between the two hypothesized models for generating the observations. In the limit,
the two models can be distinguished perfectly if the ROC is discontinuous and consists of the point (1,0).
The two are totally confused if the ROC lies on the equality line (this would mean, of course, that the two
models are identical); distinguishing the two in this case would be “somewhat difficult”.

Example
Consider the Gaussian example we have been discussing where the two models differ only in the
means of the conditional distributions. In this case, the two model-testing probabilities are given by

reol ) = neo('7)

By re-expressing y as Lot +im , we discover that these probabilities depend only on the ratio \/Zm o.
y p gyas -y > p p

_of _t VIm _of_r VEm
PF—Q(\/Zm/G-F?), PD_Q(\/Zm/G 20)
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Figure 4.3: A plot of the receiver operating characteristic for the densities shown in the previous figure. Three
ROC curves are shown corresponding to different values for the parameter \/Lm/o.

As this signal-to-noise ratio increases, the ROC curve approaches its “ideal” form: the northwest
corner of a square as illustrated in Fig. 4.3 by the value of 7.44 for \/Lm/ o, which corresponds to a
signal-to-noise ratio of 7.44? 2 17 dB. If a small false-alarm probability (say 10™) is specified, a large
detection probability (0.9999) can result. Such values of signal-to-noise ratios can thus be considered
“large” and the corresponding model evaluation problem relatively easy. If, however, the signal-to-
noise ratio equals 4 (6 dB), the figure illustrates the worsened performance: a 10~* specification
on the false-alarm probability would result in a detection probability of essentially zero. Thus, in a
fairly small signal-to-noise ratio range, the likelihood ratio test’s performance capabilities can vary
dramatically. However, no other decision rule can yield better performance.

Specification of the false-alarm probability for a new problem requires experience. Choosing a “reason-
able” value for the false-alarm probability in the Neyman-Pearson criterion depends strongly on the problem
difficulty. Too small a number will result in small detection probabilities; too large and the detection proba-
bility will be close to unity, suggesting that fewer false alarms could have been tolerated. Problem difficulty is
assessed by the degree to which the conditional densities Py ///O(X|//lo) and Pxi.a, (X|.#,) overlap, a prob-
lem dependent measurement. If we are testing whether a distribution has one of two possible mean values as
in our Gaussian example, a quantity like a signal-to-noise ratio will probably emerge as determining perfor-
mance. The performance in this case can vary drastically depending on whether the signal-to-noise ratio is
large or small. In other kinds of problems, the best possible performance provided by the likelihood ratio test
can be poor. For example, consider the problem of determining which of two zero-mean probability densities
describes a given set of data consisting of statistically independent observations (Problem 4.2). Presumably,
the variances of these two densities are equal as we are trying to determine which density is most appropriate.
In this case, the performance probabilities can be quite low, especially when the general shapes of the densi-
ties are similar. Thus a single quantity, like the signal-to-noise ratio, does not emerge to characterize problem
difficulty in all hypothesis testing problems. In sequel, we will analyze each model evaluation and detection
problem in a standard way. After the sufficient statistic has been found, we will seek a value for the threshold
that attains a specified false-alarm probability. The detection probability will then be determined as a function
of “problem difficulty”, the measure of which is problem-dependent. We can control the choice of false-alarm



Sec. 4.1 Elementary Hypothesis Testing 119

probability; we cannot control over problem difficulty. Confusingly, the detection probability will vary with
both the specified false-alarm probability and the problem difficulty.

We are implicitly assuming that we have a rational method for choosing the false-alarm probability cri-
terion value. In signal processing applications, we usually make a sequence of decisions and pass them to
systems making more global determinations. For example, in digital communications problems the model
evaluation formalism could be used to “receive” each bit. Each bit is received in sequence and then passed
to the decoder which invokes error-correction algorithms. The important notions here are that the decision-
making process occurs at a given rate and that the decisions are presented to other signal processing systems.
The rate at which errors occur in system input(s) greatly influences system design. Thus, the selection of a
false-alarm probability is usually governed by the error rate that can be tolerated by succeeding systems. If
the decision rate is one per day, then a moderately large (say 0.1) false-alarm probability might be appropri-
ate. If the decision rate is a million per second as in a one megabit communication channel, the false-alarm
probability should be much lower: 10~!? would suffice for the one-tenth per day error rate.

4.1.4 Beyond Two Models

Frequently, more than two viable models for data generation can be defined for a given situation. The clas-
sification problem is to determine which of several models best “fits” a set of measurements. For example,
determining the type of airplane from its radar returns forms a classification problem. The model evaluation
framework has the right structure if we can allow more than two model. We happily note that in deriving the
likelihood ratio test we did not need to assume that only two possible descriptions exist. Go back and examine
the expression for the maximum probability correct decision rule {112}. If K models seem appropriate for a
specific problem, the decision rule maximizing the probability of making a correct choice is

Choose the largest OfJL’l-pX|///>(X|.//li), i=1,.. K.

To determine the largest of K quantities, exactly K — 1 numeric comparisons need be made. When we have
two possible models (K = 2), this decision rule reduces to the computation of the likelihood ratio and its com-
parison to a threshold. In general, K — 1 likelihood ratios need to be computed and compared to a threshold.
Thus the likelihood ratio test can be viewed as a specific method for determining the largest of the decision
statistics ﬂiPX|,/4(X|//4)-

Since we need only the relative ordering of the K decision statistics to make a decision, we can apply
any transformation 7'(-) to them that does not affect ordering. In general, possible transformations must be
positively monotonic to satisfy this condition. For example, the needless common additive components in the
decision statistics can be eliminated, even if they depend on the observations. Mathematically, “common”
means that the quantity does not depend on the model index i. The transformation in this case would be of
the form T'(z;) = z; — a, clearly a monotonic transformation. A positive multiplicative factor can also the
“canceled”; if negative, the ordering would be reversed and that cannot be allowed. The simplest resulting
expression becomes the sufficient statistic Y;(X) for the model. Expressed in terms of the sufficient statistic,
the maximum probability correct or the Bayesian decision rule becomes

Choose the largest of C; + Y;(X), i=1,...,K

bl

where C; summarizes all additive terms that do not depend on the observation vector X. The quantity Y;(X)
is termed the sufficient statistic associated with model i. In many cases, the functional form of the sufficient
statistic varies little from one model to another and expresses the necessary operations that summarize the
observations. The constants C; are usually lumped together to yield the threshold against which we compare
the sufficient statistic. For example, in the binary model situation, the decision rule becomes

, M,
Y (X) +C1/§/Y0(X) +C or Y, (X) _YO(X);/CO_CI'
0 0

Thus, the sufficient statistic for the decision rule is Y, (X) — Y|, (X) and the threshold y is C, — C,.
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Example
In the Gaussian problem just discussed, the logarithm of the likelihood function is

L—-1

L 1 _
lan|///l_(X|//li) = —§1n2zr02 ~ 55 E (X, — m(z))2’
=0

where m(?) is the mean under model i. After appropriate simplification that retains the ordering, we

have 5
(i) L1 | LD
m m
YI(X) = ?‘ZOXI CII—E 02 +Ci'

The term c; is a constant defined by the error criterion; for the maximum probability correct criterion,
this constant is Inr;.

When employing the Neyman-Pearson test, we need to specify the various error probabilities
Pr[say //ll|//l j true]. These specifications amount to determining the constants ¢; when the sufficient statistic
is used. Since K — 1 comparisons will be used to home in on the optimal decision, only K — 1 error probabil-
ities need be specified. Typically, the quantities Pr[say .#;|.# true],i = 1,...,K — 1, are used, particularly
when the model ., represents the situation when no signal is present (see Problem 4.7).

4.2 Detection of Signals in Gaussian Noise

For the moment, we assume we know the joint distribution of the noise values. In most cases, the various
models for the form of the observations—the hypotheses—do not differ because of noise characteristics.
Rather, the signal component determines model variations and the noise is statistically independent of the
signal; such is the specificity of detection problems in contrast to the generality of model evaluation. For
example, we may want to determine whether a signal characteristic of a particular ship is present in a sonar
array’s output (the signal is known) or whether no ship is present (zero-valued signal).

To apply optimal hypothesis testing procedures previously derived, we first obtain a finite number L of
observations—X(1),/ =0,...,L— 1. These observations are usually obtained from continuous-time observa-
tions in one of two ways. Two commonly used methods for passing from continuous-time to discrete-time are
known: integrate-and-dump and sampling. These techniques are illustrated in figure 4 4.

Integrate-and-Dump
In this procedure, no attention is paid to the bandwidth of the noise in selecting the sampling rate.
Instead, the sampling interval A is selected according to the characteristics of the signal set. Because
of the finite duration of the integrator, successive samples are statistically independent when the noise
bandwidth exceeds 1/A. Consequently, the sampling rate can be varied to some extent while retaining
this desirable analytic property.

Sampling
Traditional engineering considerations governed the selection of the sampling filter and the sampling
rate. As in the integrate-and-dump procedure, the sampling rate is chosen according to signal properties.
Presumably, changes in sampling rate would force changes in the filter. As we shall see, this linkage
has dramatic implications on performance.

With either method, the continuous-time detection problem of selecting between models (a binary selec-
tion is used here for simplicity)

Q) +N(t) 0<t<T
"6)+N() 0<t<T
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Figure 4.4: The two most common methods of converting continuous-time observations into discrete-time
ones are shown. In the upper panel, the integrate-and-dump method is shown: the input is integrated over an
interval of duration A and the result sampled. In the lower panel, the sampling method merely samples the
input every A seconds.

where {s,(¢)} denotes the known signal set and N () denotes additive noise modeled as a stationary stochastic
process® is converted into the discrete-time detection problem

My Xl:s(l)—l—Nl 0<i<L
M Xl:sll—l—Nl 0<I<L
where the sampling interval is always taken to divide the observation interval T: L = T/A. We form the
discrete-time observations into a vector: X = col[X(0),...,X(L— 1)]. The binary detection problem is to
distinguish between two possible signals present in the noisy output waveform.
My X=5,+N
M X=5+N
To apply our model evaluation results, we need the probability density of X under each model. As the only

probabilistic component of the observations is the noise, the required density for the detection problem is
given by

Px|///i(X|//li) =pn(X—s))

and the corresponding likelihood ratio by

_ nX—s))

AX) = pPn(X—s))

Much of detection theory revolves about interpreting this likelihood ratio and deriving the detection threshold
(either threshold or y).

4.2.1 White Gaussian Noise

By far the easiest detection problem to solve occurs when the noise vector consists of statistically independent,
identically distributed, Gaussian random variables. In this book, a “white” sequence consists of statistically
independent random variables. The white sequence’s mean is usually taken to be zero* and each component’s

*We are not assuming the amplitude distribution of the noise to be Gaussian.
*The zero-mean assumption is realistic for the detection problem. If the mean were non-zero, simply subtracting it from the observed
sequence results in a zero-mean noise component.
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variance is 2. The equal-variance assumption implies the noise characteristics are unchanging throughout
the entire set of observations. The probability density of the zero-mean noise vector evaluated at X —s; equals
that of Gaussian random vector having independent components (K = oI) with mean S;.

5= (s ) e sy ixs))

The resulting detection problem is similar to the Gaussian example examined so frequently in the hypothesis
testing sections, with the distinction here being a non-zero mean under both models. The logarithm of the
likelihood ratio becomes

'//1

(X—s,) (X—s,) — (X—sl)’(X—sl);/ 20°1Inn
0

and the usual simplifications yield in

Si—— | — So——— ) <olnn.
1 2 0 2 M

The quantities in parentheses express the signal processing operations for each model. If more than two
signals were assumed possible, quantities such as these would need to be computed for each signal and the
largest selected. This decision rule is optimum for the additive, white Gaussian noise problem.

Each term in the computations for the optimum detector has a signal processing interpretation. When
expanded, the term s's; equals 3/~ s7(/), which is the signal energy E;. The remaining term—X's,—is the
only one involving the observations and hence constitutes the sufficient statistic Y;(X) for the additive white
Gaussian noise detection problem.

Y, (X) =X's;

1 1

An abstract, but physically relevant, interpretation of this important quantity comes from the theory of linear
vector spaces. There, the quantity X's; would be termed the dot product between X and s; or the projection of
X onto s;. By employing the Schwarz inequality, the largest value of this quantity occurs when these vectors
are proportional to each other. Thus, a dot product computation measures how much alike two vectors are:
they are completely alike when they are parallel (proportional) and completely dissimilar when orthogonal
(the dot product is zero). More precisely, the dot product removes those components from the observations
which are orthogonal to the signal. The dot product thereby generalizes the familiar notion of filtering a
signal contaminated by broadband noise. In filtering, the signal-to-noise ratio of a bandlimited signal can be
drastically improved by lowpass filtering; the output would consist only of the signal and “in-band” noise.
The dot product serves a similar role, ideally removing those “out-of-band” components (the orthogonal ones)
and retaining the “in-band” ones (those parallel to the signal).

Expanding the dot product, X's; = 34~ X(1)s;(l), another signal processing interpretation emerges. The
dot product now describes a finite impulse response (FIR) filtering operation evaluated at a specific index.
To demonstrate this interpretation, let 4(/) be the unit-sample response of a linear, shift-invariant filter where
h(l) =0 forl < 0and /> L. Letting X (/) be the filter’s input sequence, the convolution sum expresses the
output.

k
X (k) xh(k) = X(Dhik—1),
1=k={L—1)
Letting k = L — 1, the index at which the unit-sample response’s last value overlaps the input’s value at the
origin, we have

X (k) h(k) |y, = EOX(Z)h(L_ 1=1).
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Figure 4.5: The detector for signals contained in additive, white Gaussian noise consists of a matched filter,
whose output is sampled at the duration of the signal and half of the signal energy is subtracted from it. The
optimum detector incorporates a matched filter for each signal compares their outputs to determine the largest.

If we set the unit-sample response equal to the index-reversed, then delayed signal (h(l) = s,(L—1—1)), we
have

X(k)*s,(L—1— |kLl EX

which equals the observation-dependent component of the optimal detector’s sufficient statistic. Fig. 4.5
depicts these computations graphically. The sufficient statistic for the i”* signal is thus expressed in signal
processing notation as X (k) xs;(L— 1 —k) |k=L—l — E;/2. The filtering term is called a matched filter because
the observations are passed through a filter whose unit-sample response “matches” that of the signal being
sought. We sample the matched filter’s output at the precise moment when all of the observations fall within
the filter’s memory and then adjust this value by half the signal energy. The adjusted values for the two
assumed signals are subtracted and compared to a threshold.

To compute the performance probabilities, the expressions should be simplified in the ways discussed in
the hypothesis testing sections. As the energy terms are known a priori, they can be incorporated into the
threshold with the result P

— 1
3 X (s~ % 0% + A%,
= 0

The left term constitutes the sufficient statistic for the binary detection problem. Because the additive noise is
presumed Gaussian, the sufficient statistic is a Gaussian random variable no matter which model is assumed.
Under .#;, the specifics of this probability distribution are

L-1
IZOX(Z)[SI(Z) —5o(0)] ~</V<Esi(l)[sl(l) —so(1)], 0*Sls (1) = o1 )]2)
The false-alarm probability is given by

p—0 (GzlnnJr(E —Ey)/2= S5 (! >[sl>51>—so<l>]) |
o {3l () =50}

The signal-related terms in the numerator of this expression can be manipulated with the false-alarm proba-
bility (and the detection probability) for the optimal white Gaussian noise detector succinctly expressed by

h o I+ 515 Sls, (1) ()
LSl () - s 012}
N Inn = 515 3ls, (1) = s ()2
LS () — 5o} 2
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Note that the only signal-related quantity affecting this performance probability (and all of the others) is
the ratio of energy in the difference signal to the noise variance. The larger this ratio, the better (smaller)
the performance probabilities become. Note that the details of the signal waveforms do not greatly affect
the energy of the difference signal. For example, consider the case where the two signal energies are equal
(E, = E, = E); the energy of the difference signal is given by 2E —2 3 5,(1)s, (/). The largest value of this
energy occurs when the signals are negatives of each other, with the difference-signal energy equaling 4E.
Thus, equal-energy but opposite-signed signals such as sine waves, square-waves, Bessel functions, etc. all
yield exactly the same performance levels. The essential signal properties that do yield good performance
values are elucidated by an alternate interpretation. The term S [s, (/) — 5,(1)]? equals ||s, — ||, the L norm
of the difference signal. Geometrically, the difference-signal energy is the same quantity as the square of the
Euclidean distance between the two signals. In these terms, a larger distance between the two signals will
mean better performance.

Example
A common detection problem in array processing is to determine whether a signal is present (.#)
or not (.#,) in the array output. In this case, s,(/) = 0. The optimal detector relies on filtering the
array output with a matched filter having an impulse response based on the assumed signal. Letting
the signal under .#, be denoted simply by s(/), the optimal detector consists of

///1
X()xs(L=1—1)|,_,_,—E/2< o*Inn
///0

///1
or X()xs(L—1—=1)|,_,_, 2 7.
[=L l///()

The false-alarm and detection probabilities are given by

PF:Q(Eil/Z/G) PD:Q(Q_I(PF)_ g) :

Fig. 4.6 displays the probability of detection as a function of the signal-to-noise ratio £/ o for several
values of false-alarm probability. Given an estimate of the expected signal-to-noise ratio, these curves
can be used to assess the trade-off between the false-alarm and detection probabilities.

The important parameter determining detector performance derived in this example is the signal-to-noise
ratio E/o?: the larger it is, the smaller the false-alarm probability is (generally speaking). Signal-to-noise
ratios can be measured in many different ways. For example, one measure might be the ratio of the rms
signal amplitude to the rms noise amplitude. Note that the important one for the detection problem is much
different. The signal portion is the sum of the squared signal values over the entire set of observed values—
the signal energy; the noise portion is the variance of each noise component—the noise power. Thus, energy
can be increased in two ways that increase the signal-to-noise ratio: the signal can be made larger or the
observations can be extended to encompass a larger number of values.

To illustrate this point, two signals having the same energy are shown in Fig. 4.7. When these signals are
shown in the presence of additive noise, the signal is visible on the left because its amplitude is larger; the
one on the right is much more difficult to discern. The instantaneous signal-to-noise ratio—the ratio of signal
amplitude to average noise amplitude—is the important visual cue. However, the kind of signal-to-noise
ratio that determines detection performance belies the eye. The matched filter outputs have similar maximal
values, indicating that total signal energy rather than amplitude determines the performance of a matched
filter detector.
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Probability of Detection

SIN (dB)

Figure 4.6: The probability of detection is plotted versus signal-to-noise ratio for various values of the false-
alarm probability Pr. False-alarm probabilities range from 10~! down to 107 by decades. The matched
filter receiver was used since the noise is white and Gaussian. Note how the range of signal-to-noise ratios
over which the detection probability changes shrinks as the false-alarm probability decreases. This effect is a
consequence of the non-linear nature of the function Q(-).

Validity of the White Noise Assumption

The optimal detection paradigm for the additive, white Gaussian noise problem has a relatively simple solu-
tion: construct FIR filters whose unit-sample responses are related to the presumed signals and compare the
filtered outputs with a threshold. We may well wonder which assumptions made in this problem are most
questionable in “real-world” applications. Noise is additive in most cases. In many situations, the additive
noise present in observed data is Gaussian. Because of the Central Limit Theorem, if numerous noise sources
impinge on a measuring device, their superposition will be Gaussian to a great extent. As we know from the
discussion in §1.4.2 {12}, glibly appealing to the Central Limit Theorem is not without hazards; the non-
Gaussian detection problem will be discussed in some detail later. Interestingly, the weakest assumption is
the “whiteness” of the noise. Note that the observation sequence is obtained as a result of sampling the sen-
sor outputs. Assuming white noise samples does not mean that the continuous-time noise was white. White
noise in continuous time has infinite variance and cannot be sampled; discrete-time white noise has a finite
variance with a constant power spectrum. The Sampling Theorem suggests that a signal is represented ac-
curately by its samples only if we choose a sampling frequency commensurate with the signal’s bandwidth.
One should note that fidelity of representation does not mean that the sample values are independent. In most
cases, satisfying the Sampling Theorem means that the samples are correlated. As shown in §2.1.3 {20}, the
correlation function of sampled noise equals samples of the original correlation function. For the sampled
noise to be white, &[N (I,T)N(I,T)] = 0 for [, # ,: the samples of the correlation function at locations other
than the origin must all be zero. While some correlation functions have this property, many examples satisfy
the sampling theorem but do not yield uncorrelated samples. In many practical situations, undersampling
the noise will reduce inter-sample correlation. Thus, we obtain uncorrelated samples either by deliberately
undersampling, which wastes signal energy, or by imposing anti-aliasing filters that have a bandwidth larger
than the signal and sampling at the signal’s Nyquist rate. Since the noise power spectrum usually extends to
higher frequencies than the signal, this intentional undersampling can result in larger noise variance. In either
case, by trying to make the problem at hand match the solution, we are actually reducing performance! We
need a direct approach to attacking the correlated noise issue that arises in virtually all sampled-data detection
problems rather than trying to work around it.
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Figure 4.7: Two signals having the same energy are shown at the top of the figure. The one on the left
equals one cycle of a sinusoid having ten samples/period (sin(2x f,/) with f, = 0.1). On the right, ten cycles
of similar signal is shown, with an amplitude a factor of /10 smaller. The middle portion of the figure
shows these signals with the same noise signal added; the duration of this signal is 200 samples. The lower
portion depicts the outputs of matched filters for each signal. The detection threshold was set by specifying a
false-alarm probability of 1072

4.2.2 Colored Gaussian Noise

When the additive Gaussian noise in the sensors’ outputs is colored (i.e., the noise values are correlated in
some fashion), the linearity of beamforming algorithms means that the array processing output X also contains
colored noise. The solution to the colored-noise, binary detection problem remains the likelihood ratio, but
differs in the form of the a priori densities. The noise will again be assumed zero mean, but the noise vector
has a non-trivial covariance matrix K: N ~ .47(0,K).

1 1
N)= ———— ex ——N’K—‘N}
NN det[27K] p{ 2

In this case, the logarithm of the likelihood ratio is

'//1
(X—s,) K (X—s,) — (X—so)’K_l(X—so);/ 21nn
0
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which, after the usual simplifications, is written

s K ls ssK-ls /fl
XK 's, — 1——1 — XK 's)— 2——2| < Inp
2 M
The sufficient statistic for the colored Gaussian noise detection problem is
-1
Y.(X) = X'K's, | 4.9)

The quantities computed for each signal have a similar, but more complicated interpretation than in the
white noise case. X' K_lsl- is a dot product, but with respect to the so-called kernel K=!. The effect of the
kernel is to weight certain components more heavily than others. A positive-definite symmetric matrix (the
covariance matrix is one such example) can be expressed in terms of its eigenvectors and eigenvalues.

51
-1 _ !
K'= kz ViV
=1
The sufficient statistic can thus be written as the complicated summation

X'K's; =

where A, and v, denote the k™ eigenvalue and eigenvector of the covariance matrix K. Each of the constituent
dot products is largest when the signal and the observation vectors have strong components parallel to v,.
However, the product of these dot products is weighted by the reciprocal of the associated eigenvalue. Thus,
components in the observation vector parallel to the signal will tend to be accentuated; those components
parallel to the eigenvectors having the smaller eigenvalues will receive greater accentuation than others. The
usual notions of parallelism and orthogonality become “skewed” because of the presence of the kernel. A
covariance matrix’s eigenvalue has “units” of variance; these accentuated directions thus correspond to small
noise variances. We can therefore view the weighted dot product as a computation that is simultaneously
trying to select components in the observations similar to the signal, but concentrating on those where the
noise variance is small.

The second term in the expressions constituting the optimal detector are of the form s;K~ ! s,. This quantity
is a special case of the dot product just discussed. The two vectors involved in this dot product are identical;
they are parallel by definition. The weighting of the signal components by the reciprocal eigenvalues remains.
Recalling the units of the eigenvectors of K, s} K~ ! s, has the units of a signal-to-noiseratio, which is computed
in a way that enhances the contribution of those signal components parallel to the “low noise” directions.

To compute the performance probabilities, we express the detection rule in terms of the sufficient statistic.

'ﬁl
1
XK (s, —s,) 2 lnn+ ~(siK's; —shK™'s,)
A 2

The distribution of the sufficient statistic on the left side of this equation is Gaussian because it consists as a
linear transformation of the Gaussian random vector X. Assuming the i model to be true,

XZK_I(Sl —8p) ~ </V<S€'K_l(51 —5Sp), (8 _SO)[K_I(SI _So)) :

The false-alarm probability for the optimal Gaussian colored noise detector is given by

Inn+ 5(s; —s) K '(s; —s)
[(s; —so) K~ (s; — So)]l/2

P.=0Q (4.10)
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Figure 4.8: These diagrams depict the signal processing operations involved in the optimum detector when the
additive noise is not white. The upper diagram shows a matched filter whose unit-sample response depends
both on the signal and the noise characteristics. The lower diagram is often termed the whitening filter
structure, where the noise components of the observed data are first whitened, then passed through a matched
filter whose unit-sample response is related to the “whitened” signal.

As in the white noise case, the important signal-related quantity in this expression is the signal-to-noise ratio
of the difference signal. The distance interpretation of this quantity remains, but the distance is now warped
by the kernel’s presence in the dot product.

The sufficient statistic computed for each signal can be given two signal processing interpretations in the
colored noise case. Both of these rest on considering the quantity X’ K_lsl- as a simple dot product, but with
different ideas on grouping terms. The simplest is to group the kernel with the signal so that the sufficient
statistic is the dot product between the observations and a modified version of the signal §; = K_lsl-. This
modified signal thus becomes the equivalent to the unit-sample response of the matched filter. In this form,
the observed data are unaltered and passed through a matched filter whose unit-sample response depends on
both the signal and the noise characteristics. The size of the noise covariance matrix, equal to the number of
observations used by the detector, is usually large: hundreds if not thousands of samples are possible. Thus,
computation of the inverse of the noise covariance matrix becomes an issue. This problem needs to be solved
only once if the noise characteristics are static; the inverse can be precomputed on a general purpose computer
using well-established numerical algorithms. The signal-to-noise ratio term of the sufficient statistic is the dot
product of the signal with the modified signal §;. This view of the receiver structure is shown in Fig. 4.8.

A second and more theoretically powerful view of the computations involved in the colored noise detector
emerges when we factor covariance matrix. The Cholesky factorization of a positive-definite, symmetric
matrix (such as a covariance matrix or its inverse) has the form K = LDL’. With this factorization, the
sufficient statistic can be written as

t
XK's; = (D72L7'X) (D71

The components of the dot product are multiplied by the same matrix (D~'/2L~1), which is lower-triangular.
If this matrix were also Toeplitz, the product of this kind between a Toeplitz matrix and a vector would be
equivalent to the convolution of the components of the vector with the first column of the matrix. If the matrix
is not Toeplitz (which, inconveniently, is the typical case), a convolution also results, but with a unit-sample
response that varies with the index of the output—a time-varying, linear filtering operation. The variation of
the unit-sample response corresponds to the different rows of the matrix D-!/2L! running backwards from
the main-diagonal entry. What is the physical interpretation of the action of this filter? The covariance of
the random vector x = AX is given by K, = AK A’. Applying this result to the current situation, we set
A =D"'2L"" and K, = K = LDL’ with the result that the covariance matrix K, is the identity matrix!
Thus, the matrix D~!/2L~! corresponds to a (possibly time-varying) whitening filter: we have converted the
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colored-noise component of the observed data to white noise! As the filter is always linear, the Gaussian
observation noise remains Gaussian at the output. Thus, the colored noise problem is converted into a simpler
one with the whitening filter: the whitened observations are first match-filtered with the “whitened” signal
slf" =D~ 2L_lsi (whitened with respect to noise characteristics only) then half the energy of the whitened
signal is subtracted (Fig. 4.8).

Example
To demonstrate the interpretation of the Cholesky factorization of the covariance matrix as a time-
varying whitening filter, consider the covariance matrix

1 a & &
2
a 1 a a
K = 2
a a 1 a
@ & a 1

This covariance matrix indicates that the noise was produced by passing white Gaussian noise through
a first-order filter having coefficient a: N(I) = aN(I—1) + (1 _02)1/2 w(l), where w(l) is unit-
variance white noise. Thus, we would expect that if a whitening filter emerged from the matrix ma-
nipulations (derived just below), it would be a first-order FIR filter having an unit-sample response

proportional to
1, [=0
h()=< —a, 1=1
0, otherwise.
Simple arithmetic calculations of the Cholesky decomposition suffice to show that the matrices L and
D are given by
1 0 0O 1 0 0 0
a 1 00 0 1-a> 0 0
L=l a 10| PTlo o 1-& o
@ a® a 1 0 0 0 —
and that their inverses are
1 0 0 0
KT N R
1_ | —a -1 _ —a
L"=10 —a 1 o P 7|0 o L 0
0 0 —a 1 o o 1_0“ 1
1—d®

Because D is diagonal, the matrix D-!/2 equals the term-by-term square root of the inverse of D. The
product of interest here is therefore given by

1 0 0 0
—da 1

0 0

D—l/2L—l — \/10_ aZ \/l__aaz 1 0

Vi—a?2 V1-a2
0 0 —da 1
Vi—a® 1-a?
Let X express the product D~'/2L~'X. This vector’s elements are given by
- - 1
X=X, X = X, —aX,], etc.

V1—a?
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Thus, the expected FIR whitening filter emerges after the first term. The expression could not be of
this form as no observations were assumed to precede X,. This edge effect is the source of the time-
varying aspect of the whitening filter. If the system modeling the noise generation process has only
poles, this whitening filter will always stabilize—not vary with time—once sufficient data are present
within the memory of the FIR inverse filter. In contrast, the presence of zeros in the generation system
would imply an IIR whitening filter. With finite data, the unit-sample response would then change on
each output sample.

4.3 Continuous-time detection

In previous sections, we used a sampling approach to detect which of several signals was present in additive
noise. While less general, an alternate approach can be used in situations where the additive noise is Gaus-
sian. In such cases, the problem can be solved entirely in continuous-time without requiring sampling. This
approach relies on the Karhunen-Loéve expansion, which results in a representation of the received process
X(t). In general, this representation is an infinite dimensional vector; the critical result of continuous-time
detection is that a finite-dimensional representation can always be found so that hypothesis testing results can
be applied.

4.3.1 Matched Filter Receiver for White Gaussian Noise Channels

The received signal X (¢) is assumed to have one of K forms
X(t)=s;(t)+N(t),i=0,.... K—1,0<t<T

where the {s,(¢)} comprise the signal set. N(r) is usually assumed to be statistically independent of the
transmitted signal and a white, Gaussian process having spectral height N,;/2. We represent the received
signal with a Karhunen-Logve expansion.

X(t):i is +N,)¢

where {s;;} and {N;} are the representations of the signal s;(#) and the noise N(r), respectively. To have a
Karhunen Logve expansion, it suffices to choose {¢;(¢) } so that the {N;} are pairwise uncorrelated. As N(t)
is white, we may choose any {¢;(¢)} we want! In partlcular choose {(/) (t)} to be the set of functions which
yield a finite-dimensional representatlon for the signals s,(r). A complete but not necessarily orthonormal,
set of functions that does this is

SO(I)"'"SK—I(I)’WO(I)’WI(I)’"'

where {1,1} (¢)} denotes any complete set of functions. We form the set {(/) (t)} by applying the Gram-Schmidt
procedure to this set. With this basis, 8ij= =0, j > K. In this case, the representatlon of X(t) becomes

N izK

so that we may write the model evaluation problem we are attempting to solve as

My X(t) = (90 +No)@o (1) + 4 (8o g1 T Ng—1) gy (1 ZN (1
My X (1) = (519 FNo) (1) + - (5 gy + N )Py () + D Ny (¢
=K

We make two observations:
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e We can consider the model evaluation problem that operates on the representation of the received signal
rather than the signal itself. Recall that using the representation is equivalent to using the original
process. We have thus created an equivalent model evaluation problem. For the binary signal set case,

My X=5,+N
M X=5 +N

where N contains statistically independent Gaussian components, each of which has variance N, /2.

¢ Note that components are statistically independent of each other and that, for j > K, the representation
contains no signal-related information. Because these components are extraneous and will not con-
tribute to improved performance, we can reduce the dimension of the problem to no more than K by
ignoring these components. By rejecting these noise-only components, we are effectively filtering out
“out-of-band” noise, retaining those components related to the signals. Using eigenfunctions related to
the signals defines signal space, allowing us to ideally reject pure-noise components.

As a consequence of these observations, we have a model evaluation problem of the form

Xo Sio Ny

X1 Si k—1 Nig_i

We know how to solve this problem; we compute

N, s.||2
Y;(X) = 701nﬂi+<si,X>—% i=0,...,K—1

and choose the largest. The components of the signal and received vectors are given by

= fysoond - x,= [X0a0a

Because of Parseval’s Theorem, the inner product between representations equals the time-domain inner prod-
uct between the represented signals.

(5:X) = [so)x (o)

Furthermore, ||s,||> = [y s?(¢) dt = E;, the energy in the i signal. Thus, the sufficient statistic for the optimal
detector has a closed form time-domain expression.

N, T E.
Y,(X) = 701nzri—|—/0 ()X (1) dt — =L

This form of the minimum probability of error receiver is termed a correlation receiver; see Fig. 4.9. Each
transmitted signal and the received signal are correlated to obtain the sufficient statistic. These operations
project the received signal onto signal space.

An alternate structure which computes the same quantities can be derived by noting that if f(r) and g(z)
are nonzero only over [0, T], the inner product (correlation) operation can be written as a convolution followed
by a sampler.

T
[ fsteyde= sy =g —1)
0 t=T
Consequently, we can restructure the “correlation” operation as a filtering-and-sampling operation. The im-
pulse responses of the linear filters are time-reversed, delayed versions of the signals in the signal set. This
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=
— > f dt —>»
0
so(t)
r(t) det —> choose | decision
> 0 largest >
s1(t) o
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=
f dt —>»
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sk—1(t)

Figure 4.9: Correlation receiver structure for the optimum detector. When unequally likely and/or unequal-
energy signals are used, the correction term N,/2Ins; — E; /2 must be added to each integrator’s output.

—>»  So(T-Y) —>V<—>

M) —> (T —)V<—> choose | decision
>
largest

—>  sk-1(T-Y) —)K—)

t=T

Figure 4.10: Matched filter receiver structure for the optimum detector. When unequally likely, unequal
signals are used, the correction term N,,/2In; — E;/2 must be added to each sampler’s output.

structure for the minimum probability of error receiver is known as the matched-filter receiver; see Fig. 4.10.
Each type of receiver has the same performance; however, the matched filter receiver is usually easier to
construct because the correlation receiver requires an analog multiplier.

As we know, receiver performance is judged by the probability of error, which, for equally likely signals

in a binary signal set, is given by
I8 =34l
P, =
=0 (2 N,/2

The computation of the probability of error and the dimensionality of the problem can be assessed by consid-
ering signal space: The representation of the signals with respect to a basis. The number of basis elements
required to represent the signal set defines dimensionality. The geometric configuration of the signals in this
space is known as the signal constellation. Once this constellation is found, computing intersignal distances
is easy.

4.3.2 Binary Signaling Schemes

The following series of examples are important as they constitute the most popular signaling schemes in
binary digital communication. For all of these examples, the elements of each signal set are assumed to be
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equally likely. Under this assumption, the N,/2In;, term in the expression for Y;(X) cancels with the result
that the computations simplify to

Y(X)—(Xs>—M for all i
; =(Xs; ) orall i.

Note especially that under these conditions, the optimum receiver does not require knowledge of the spectral
height N, /2 of the channel noise, an important simplification in practice.

Example
Let the binary signal set be

E
50(1) =0, sl(t):\/f 0<t<T

The receiver is a single correlator, with the output compared to the threshold E/2. The distance
between the signals is easily seen to be ||s, — s, || = V/E. Consequently, the probability of error which
results from employing this signal set equals P, = Q( E/(2N,)). This signaling scheme is termed
amplitude-shift keying (ASK) or on-off keying (OOK).

Example
Let the binary signal set be

When these signals are equally likely to be sent, the sufficient statistic for this problem becomes
Y;(X) = (X,s;). Note that the energy term [|s;||>/2 does not occur: For any signal set containing
equal-energy components, this term is common and need not be computed. Consequently, the receiver
for signal sets having this property need not know the energy of the received signals. In practical
applications, the energy of the signal portion of the received waveform may not be known precisely;
for example, the physical distance between the transmitter and the receiver, which determines how
much the signal is attenuated, may be unknown. A signal set which does require knowledge of the
received signal energy is shown in the first example (ASK).

From the signal constellation, the distance between the signals is ||s, — s, || = V2E, resulting in a

probability of error equal to
E
P, = — .
—of\/x]

This particular example has no specific name; however, note that (s, s,) = 0, meaning that the signals
are orthogonal to each other. Such signal sets are said to be orthogonal signal sets.

Example
Let the signal set be defined as

E [E
SO(I): T Sl(t):— T OSIST

Note that this signal set is another example of one having equal-energy components; therefore, the
receiver need not contain information concerning the energy of the received signals. The distance
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between the signals is ||s, — s, || = 2V/E so that

Pe:Q(M?V—E'.

This signal set is termed an antipodal (opposite-signed) signal set. If the energy of each component
of a signal set is constrained to be less than a given value, the signal set having the largest distance
between its components is the antipodal signal set.

A greater distance between the components of the signal set implies a better performance (i.e., smaller
P,) for the same signal energy. Note that these probabilities of error are monotonic functions of the ratio of
signal energy to channel-noise spectral height. In designing a digital communications system on the basis of
performance only, maximum performance is obtained by increasing signal energy and choosing the “best”
signal set: the antipodal signal set. Furthermore, note that performance does not depend on the detailed
waveforms of the signals. Signal sets having the same signal constellation have the same performance.

The previous examples are in the class of “baseband” signal sets: The spectra of the signals is concentrated
at low frequencies. Modulated signal sets, those having their spectra concentrated at high frequencies, can be
analyzed in a similar fashion. Note that since the following examples have constellations identical with their
baseband counterparts, their performances are also the same. The signal set consisting of

2F
50(1)=0 s;(t)= Tsm2zrf0t,0§t<T

(where f,T is an integer) is an example of a modulated ASK signal set. An orthogonal signal set is exemplified
by frequency-shift keying (FSK):

2F 2F
so(t):\/Tsin%rfot sl(t):y/Tsin2Jrf1t,0§t<T

where f,T and f|T are distinct integers. Finally, phase-shift keying (PSK) corresponds to an antipodal signal

set.
2E 2E
so(t):\/Tsin%rfot sl(t):—y/Tsin2Jrf0t,0§t<T

4.3.3 K-ary Signal Sets

To generalize these results to K-ary signal sets is obvious. The optimum receiver computes

2
Y, (X) :No/zlnni+<si,x>—@ i=0,.. . K—1.

for each i and chooses the largest. Conceptually, these are no more complicated than binary signal sets. The
minimum probability of error receiver remains a matched filter and has a similar structure to those shown
previously. However, the computation of the probability of error may not be simple.
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Problems

4.1 Consider the following two-model evaluation problem [40: Prob. 2.2.1].
My X =N
M X =5+N,

4.2

43

44

where s and N are statistically independent, positively valued, random variables having the densities

ps(s) =ae™® and py(N)=be N
(a) Prove that the likelihood ratio test reduces to
'//1
>
X
s

(b) Find y for the minimum probability of error test as a function of the a priori probabilities.

(c) Now assume that we need a Neyman-Pearson test. Find y as a function Py, the false-alarm prob-
ability.

Two models describe different equi-variance statistical models for the observations [40: Prob. 2.2.11].

r_
My py(X) = e

1 iy
Ay px(X) = N 2X

(a) Find the likelihood ratio.
(b) Compute the decision regions for various values of the threshold in the likelihood ratio test.

(c¢) Assuming these two densities are equally likely, find the probability of making an error in distin-
guishing between them.

Cautious Decision Making

Wanting to be very cautious before making a decision, an ELEC 531 student wants to explicitly allow
no decision to be made if the data don’t warrant a “firm” decision. The Bayes cost criterion is used
to derive the cautious detector. Let the cost of a wrong decision be C; > 0, the cost of making no
decision be C, > 0 and the cost of making a correct decision be zero. Two signal models are possible
and they have a priori probabilities m, and ;.

(a) Derive the detector that minimizes the average Bayes cost, showing that it is a likelihood ratio
detector.
(b) For what choices of C; and C, is the decision rule well-defined?

(c) Let the observations consist of L samples, with model O corresponding to white Gaussian noise
and model 1 corresponding to a known signal in additive white Gaussian noise. Find the decision
rule in terms the sufficient statistic.

A hypothesis testing criterion radically different from those discussed in §4.1.1 and §4.1.2 is minimum
equivocation. In this information theoretic approach, the two-model testing problem is modeled as a
digital channel (Fig. 4.11). The channel’s inputs, generically represented by the x, are the models and
the channel’s outputs, denoted by y, are the decisions.

The quality of such information theoretic channels is quantified by the mutual information I(x;y) de-
fined to be difference between the entropy of the inputs and the equivocation [5: §2.3,2.4].

(X'Y): H(x) — H(x]y)
EP )log P(x;

(x ayj)
H(x|y) = EP z’y (y])
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Figure 4.11: The two-model testing problem can be abstractly
described as a communication channel where the inputs are the
models and the outputs are the decisions. The transition prob- X
abilities are related to the false-alarm (P5) and detection (Pp)
probabilities.

Hy

45

4.6

4.7

Here, P(x;) denotes the a priori probabilities, P(y;) the output probabilities, and P(x;,y;) the
joint probability of input x; resulting in output y,. For example, P(x,,y,) = P(xy)(1 —P) and
P(y,) = P(xy)(1 = Pg)+P(x;)(1 —Pp). For a fixed set of a priori probabilities, show that the deci-
sion rule that maximizes the mutual information is the likelihood ratio test. What is the threshold when
this criterion is employed?

Note: This problem is relatively difficult. The key to its solution is to exploit the concavity of the
entropy function.

Detection and Estimation Working Together

Detectors are frequently used to determine if a signal is even present before applying estimators to tease
out the signal. The same, but unknown signal having duration L may or may not be present in additive
white Gaussian noise during the i observation interval,i =1, . ...

Ay R; =N,

A R =s+N,;
m,, 7, denote the a priori probabilities. Once M intervals have been determined by the front-end
detector to contain a signal, we apply the maximum likelihood estimator to measure the signal.
(a) What is the maximum likelihood signal estimate?

(b) What is the front-end detector’s algorithm?

(¢) Even if we use an optimal front-end detector, it can make errors, saying a signal is present when it
isn’t. What is the mean-squared error of the combined detector-estimator in terms of the detector’s
detection and false-alarm probabilities?

Non-Gaussian statistical models sometimes yield surprising results in comparison to Gaussian ones.
Consider the following hypothesis testing problem where the observations have a Laplacian probability
distribution.

['¢
My: py(x) = 5em X Fm

I _|x—
Ay py(x) = 5em X —m

(a) Find the sufficient statistic for the optimal decision rule.
(b) What decision rule guarantees that the miss probability will be less than 0.1?

Developing a Neyman-Pearson decision rule for more than two models has not been detailed because
a mathematical quandry arises. The issue is that we have several performance probabilities we want
to optimize. In essence, we are optimizing a vector of performance probabilities, which requires us to
specify a norm. Many norms can be chosen; we select one in this problem.

Assume K distinct models are required to account for the observations. We seek to maximize the sum
of the probabilities of correctly announcing .#;,i=1,...,K. This choice amounts to maximizing the
L' norm of the detection probabilities. We constrain the probability of announcing #; when model .,
was indeed true to not exceed a specified value.
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4.8

4.9

4.10

411

(a) Formulate the optimization problem that simultaneously maximizes Y, Pr[say .#;|.#] under the
constraint Pr[say .#;|.#] < o;. Find the solution using Lagrange multipliers.

(b) Can you find the Lagrange multipliers?

(c) Can your solution can be expressed as choosing the largest of the sufficient statistics Y,(X) + C;?
Pattern recognition relies heavily on ideas derived from the principles of statistical model testing.
Measurements are made of a test object and these are compared with those of “standard” objects to
determine which the test object most closely resembles. Assume that the measurement vector X is
jointly Gaussian with mean m, (i = 1,...,K) and covariance matrix o1 (i.e., statistically independent
components). Thus, there are K possible objects, each having an “ideal” measurement vector m; and
probability m; of being present.

(a) How is the minimum probability of error choice of object determined from the observation of X?

(b) Assuming that only two equally likely objects are possible (K = 2), what is the probability of error
of your decision rule?

(¢) The expense of making measurements is always a practical consideration. Assuming each mea-
surement costs the same to perform, how would you determine the effectiveness of a measurement
vector’s component?

Define y to be

L
y:;xk
=0

where the x, are statistically independent random variables, each having a Gaussian density .4"(0, 02).
The number L of variables in the sum is a random variable with a Poisson distribution.

)\.l
Pr[L=1]= l—'e_)‘, 1=0,1,...

Based upon the observation of y, we want to decide whether L < 1 or L > 1. Write an expression for
the minimum P, likelihood ratio test.

One observation of the random variable X is obtained. This random variable is either uniformly dis-
tributed between —1 and 41 or expressed as the sum of statistically independent random variables, each
of which is also uniformly distributed between —1 and +1.

(a) Suppose there are two terms in the aforementioned sum. Assuming that the two models are equally
likely, find the minimum probability of error decision rule.

(b) Compute the resulting probability of error of your decision rule.

(¢) Show that the decision rule found in part (a) applies no matter how many terms are assumed
present in the sum.

The observed random variable X has a Gaussian density on each of five models.

! (X=mp\
Px|///,.(X|//4-) = mexp{—Tj}, i=12,...,5

where m; = —2m,m, = —m,my =0, m, = +m, and m5 = +2m. The models are equally likely and the
criterion of the test is to minimize P,.

(a) Draw the decision regions on the X-axis.

(b) Compute the probability of error.

(¢) Let o = 1. Sketch accurately P, as a function of m.
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4.12

4.13

4.14

The goal is to choose which of the following four models is true upon the reception of the three-
dimensional vector X [40: Prob. 2.6.6].

My X=my,+N

A X=m; +N

My X=m,+N

My X=my3+N

where

a 0 —a 0
my=|0]|, m=|a]|, m= 0 , my=| —a
b b b b

The noise vector N is a Gaussian random vector having statistically independent, identically distributed
components, each of which has zero mean and variance 02, We have L independent observations of the
received vector X.

(a) Assuming equally likely models, find the minimum P, decision rule.
(b) Calculate the resulting error probability.

(c¢) Show that neither the decision rule nor the probability of error do not depend on b. Intuitively,
why is this fact true?

Discrete Estimation

Estimation theory focuses on deriving effective (minimum error) techniques for determining the value
of continuous-valued quantities. When the quantity is discrete-valued (integer-valued, for example),
the usual approaches don’t work well since they usually produce estimates not in the set of known
values. This problem explores applying decision-theoretic approaches to yield a framework for discrete
estimation.

Let’s explore a specific example. Let a sequence of statistically independent, identically distributed
observations be Gaussian having mean m and variance o>. The mean m can only assume the values
—1,0, and 1, and these are equally likely. The mean, whatever its value, is constant throughout the L
observations.

(a) Whatis the minimum probability of error decision rule? What is the resulting probability of error?
(b) What is the MAP estimate of the mean?

(¢) The problem with using the detection approach of part (a) is that the probability of error is not a
standard error metric in estimation theory. Suppose we want to find the minimum mean-squared
error, discrete-valued estimate. Show that by defining an appropriate Bayes cost function, you
can create a detection problem that minimizes the mean-squared error. What is the Bayes cost
function that works?

(d) Find the minimum mean-squared error estimate using the minimum Bayes cost detector.

(e) What is the resulting mean-squared error?
Diversity Communication
In diversity signaling, one of two equally likely signal groups is transmitted, with each member s,, of
the group {s,,s,,...,s,,} sent through one of M parallel channels simultaneously. The receiver has

access to all channels and can use them to make a decision as to which signal group was transmitted.
The received vector (dimension L) emerging from the m" channel has the form

X, =s 4N, i=0,1

The noise is colored, Gaussian, and independent from channel to channel. The statistical properties of
the noise are known and they are the same in each channel.
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(a) What is the optimal diversity receiver?

In an endeavor to make communications secure, bright engineers decide to modify the usual diversity
signaling scenario. Rather than send signals down each channel, only one channel will be used for
each transmission, with the chosen channel selected randomly from transmission to transmission. The
identity of the used channel is kept secret, even from the receiver. In essence, each group now mostly
consists of zero-valued signals save for the one s, the transmitter chose. The receiver has access to all
channels and must determine which of the signal groups was sent. In this scenario, the channel actually
used contains no information about the signal group.

(b) How would the receiver determine which channel was used?

(c) What is the optimal decision rule?

To gain some appreciation of some of the issues in implementing a detector, this problem asks you
to program (preferably in MATLAB) a simple detector and numerically compare its performance with

theoretical predictions. Let the observations consist of a signal contained in additive Gaussian white
noise.

My X(1)=N(1),1=0,...,L—1
My X = Asin(2al/L) +N(1),1=0,...,.L—1

The variance of each noise value equals 0.

(a) What is the theoretical false-alarm probability of the minimum P, detector when the hypotheses
are equally likely?

(b) Write a MATLAB program that estimates the false-alarm probability. How many simulation trials
are needed to accurately estimate the false-alarm probability? Choose values for A and o that
will result in values for P, of 0.1 and 0.01. Estimate the false-alarm probability and compare with
the theoretical value in each case.

Drug Testing
In testing drugs, the variability among patients makes judging effectiveness difficult, but not impossible.
The number of people N a drug cures has a geometric probability distribution.

PriN=n]=(1—-a)a", n=0,1,...

You perform a drug trial over a very large population (large enough so that the approximation of the
geometric probability distribution remains valid). Either the drug is ineffective, in which case the
distribution’s parameter equals a,, or is effective and the parameter equals a,, a, > a,. The a priori
probability that the drug will be effective is 7, .

(a) Construct the minimum probability of error test that decides drug effectiveness.
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“0” sent “0” received

Figure 4.12: A binary symmetric digital communications chan-

nel.

“1” sent . “1” received

417

4.18

4.19

(b) What is the probability of error the test will achieve?

(¢) Now suppose the drug trial is repeated in several countries, each of which has a large population.
Because conducting such tests is expensive, you want a test that will reach a conclusion as quickly
as possible. Find a test that will achieve false-positive and false-negative rates of @ and 1 — 3,
respectively, as quickly as possible.

The optimum reception of binary information can be viewed as a model testing problem. Here, equally-
likely binary data (a “zero” or a “one”) is transmitted through a binary symmetric channel. The indi-
cated parameters denote the probabilities of receiving a binary digit given that a particular digit was
sent. Assume that ¢ =0.1.

(a) Assuming a single transmission for each digit, what is the minimum probability of error receiver
and what is the resulting probability of error?

(b) One method of improving the probability of error is to repeat the digit to be transmitted L times.
This transmission scheme is equivalent to the so-called repetition code. The receiver uses all
of the received L digits to decide what digit was actually sent. Assume that the results of each
transmission are statistically independent of all others. Construct the minimum probability of
error receiver and find an expression for P, in terms of L.

(c) Assume that we desire the probability of error to be 10~°. How long a repetition code is required
to achieve this goal for the channel given above? Assume that the leading term in the probability
of error expression found in part (b) dominates.

In some cases it might be wise to not make a decision when the data do not justify it. Thus, in addition to
declaring that one of two models occurred, we might declare “no decision” when the data are indecisive.
Assume you observe L statistically independent observations X, each of which is Gaussian and has a
variance of two. Under one model the mean is zero, and under the other the mean is one. The models
are equally likely to occur.

(a) Construct a hypothesis testing rule that yields a probability of no-decision no larger than some
specified value a, maximizes the probabilities of making correct decisions when they are made,
and makes these correct-decision probabilities equal.

(b) What is the probability of a correct decision for your rule?

You decide to flip coins with Sleazy Sam. If heads is the result of a coin flip, you win one dollar; if
tails, Sam wins a dollar. However, Sam’s reputation has preceded him. You suspect that the probability
of tails, p, may not be 1/2. You want to determine whether a biased coin is being used or not after
observing the results of three coin tosses.

(a) You suspect that p = 3/4. Assuming that the probability of a biased coin equals that of an unbiased
coin, how would you decide whether a biased coin is being used or not in a “good” fashion?
(b) Using your decision rule, what is the probability that your determination is incorrect?

(¢) One potential flaw with your decision rule is that a specific value of p was assumed. Can a
reasonable decision rule be developed without knowing p? If so, demonstrate the rule; if not,
show why not.
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4.20

421

422

4.23

When a patient is screened for the presence of a disease in an organ, a section of tissue is viewed under
a microscope and a count of abnormal cells made. Even under healthy conditions, a small number
of abnormal cells will be present. Presumably a much larger number will be present if the organ is
diseased. Assume that the number L of abnormal cells in a section is geometrically distributed.

PrL=1=(1-a)a,1=0,1,...

The parameter a of a diseased organ will be larger than that of a healthy one. The probability of a
randomly selected organ being diseased is p.

(a) Assuming that the value of the parameter o is known in each situation, find the best method of
deciding whether an organ is diseased.

(b) Using your method, a patient was said to have a diseased organ. In this case, what is the probability
that the organ is diseased?

(¢) Assume that a is known only for healthy organs. Find the disease screening method that mini-
mizes the maximum possible value of the probability that the screening method will be in error.

Interference

Wireless communication seldomly occurs without the presence of interference that originates from
other communications signals. Suppose a binary communication system uses the antipodal signal set
s;(I) = (=1)A,1=0,...,L— 1, with i = 0, 1. An interfering communication system also uses an
antipodal signal set having the depicted basic signal. Its amplitude A; is unknown. The received signal
consists of the sum of our signal, the interfering signal, and white Gaussian noise.

A IA

v

—

L2
DA L

(a) What receiver would be used if the bit intervals of the two communication systems were aligned?

(b) How would this receiver change if the bit intervals did not align, with the time shift not known?
Assume that the receiver knows the time origin of our communications.

Assume we have N sensors each determining whether a signal is present in white Gaussian noise or
not. The identical signal and noise models apply at each sensor, with the signal having energy E.

(a) What is each sensor’s receiver?
(b) Assuming the signal is as likely as not, what is the optimal fusion rule?

(¢) Does this distributed detection system yield the same error probabilities as the optimal detector
that assimilates all the observations directly?

Data are often processed “in the field,” with the results from several systems sent a central place for
final analysis. Consider a detection system wherein each of N field radar systems detects the presence
or absence of an airplane. The detection results are collected together so that a final judgment about the
airplane’s presence can be made. Assume each field system has false-alarm and detection probabilities
Py and P, respectively.

(a) Find the optimal detection strategy for making a final determination that maximizes the probability
of making a correct decision. Assume that the a priori probabilities m,, m; of the airplane’s
absence or presence, respectively, are known.

(b) How does the airplane detection system change when the a priori probabilities are not known?

Require that the central judgment have a false-alarm probability no bigger than (PF)N .



142

Detection Theory Chap. 4

424

4.25

4.26

4.27

Mathematically, a preconception is a model for the “world” that you believe applies over a broad class
of circumstances. Clearly, you should be vigilant and continually judge your assumption’s correctness.

Let {X;} denote a sequence of random variables that you believe to be independent and identically

distributed with a Gaussian distribution having zero mean and variance o2. Elements of this sequence
arrive one after the other, and you decide to use the sample average M, as a test statistic.

[\

1
My=7 2%
=1

(a) Based on the sample average, develop a procedure that tests for each / whether the preconceived
model is correct. This test should be designed so that it continually monitors the validity of the
assumptions, and indicates at each / whether the preconception is valid or not. Establish this test
so that it yield a constant probability of judging the model incorrect when, in fact, it is actually
valid.

(b) To judge the efficacy of this test, assume the elements of the actual sequence have the assumed
distribution, but that they are correlated with correlation coefficient p. Determine the probability
(as a function of /) that your test correctly invalidates the preconception.

(c) Isthe test based on the sample average optimal? If so, prove it so; if not, find the optimal one.

Assume that observations of a sinusoidal signal s(/) = Asin(2xfI),{ =0,...,L— 1, are contaminated
by first-order colored noise as described in the example {129}.

(a) Find the unit-sample response of the whitening filter.

(b) Assuming that the alternative model is the sole presence of the colored Gaussian noise, what is
the probability of detection?

(c) How does this probability vary with signal frequency f when the first-order coefficient is positive?
Does your result make sense? Why?

In space-time coding systems, a common bit stream is transmitted over several channels simultane-
ously but using different signals. X*) denotes the signal received from the k' channel, k = 1,...,K,
and the received signal equals s 4 N Here, i equals O or 1, corresponding to the bit being trans-
mitted. Each signal has length L. N®) denotes a Gaussian random vector with statistically independent
components having mean zero and variance cr,? (the variance depends on the channel).

(a) Assuming equally likely bit transmissions, find the minimum probability of error decision rule.
(b) What is the probability that your decision rule makes an error?

(¢) Suppose each channel has its own decision rule, which is designed to yield the same miss proba-
bility as the others. Now what is the minimum probability of error decision rule of the system that
combines the individual decisions into one?

The performance for the optimal detector in white Gaussian noise problems depends only on the dis-
tance between the signals. Let’s confirm this result experimentally. Define the signal under one hy-
pothesis to be a unit-amplitude sinusoid having one cycle within the 50-sample observation interval.
Observations of this signal are contaminated by additive white Gaussian noise having variance equal to
1.5. The hypotheses are equally likely.

(a) Let the second hypothesis be a cosine of the same frequency. Calculate and estimate the detector’s
false-alarm probability.

(b) Now let the signals correspond to square-waves constructed from the sinusoids used in the pre-
vious part. Normalize them so that they have the same energy as the sinusoids. Calculate and
estimate the detector’s false-alarm probability.

(¢) Now let the noise be Laplacian with variance 1.5. Although no analytic expression for the detector
performance can be found, do the simulated performances for the sinusoid and the square-wave
signals change significantly?
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(d) Finally, let the second signal be the negative of the sinusoid. Repeat the calculations and the
simulation for Gaussian noise.

Physical constraints imposed on signals can change what signal set choices result in the best detection
performance. Let one of two equally likelzy discrete-time signals be observed in the presence of white
Gaussian noise (variance/sample equals 0~)

My: X(1) = sV +N(1)

[=0,....L—1
Ay X (1) = V(1) +N(1)

We are free to choose any signals we like, but there are constraints. Average signal power equals
3, 5%(1)/L, and peak power equals max, s*(l).

(a) Assuming the average signal power must be less than P, , what are the optimal signal choices?
Is your answer unique?
(b) When the peak power P, is constrained, what are the optimal signal choices?

peal
(¢) If Pye= which constraint yields the best detection performance?

peak’

One of the more interesting problems in detection theory is determining when the probability distri-
bution of the observations differs from that in other portions of the observation interval. The most
common form of the problem is that over the interval [0,C), the observations have one form, and that in
the remainder of the observation interval [C,L— 1] have a different probability distribution. The change
detection problem is to determine whether in fact a change has occurred and, if so, estimate when that
change occurs.

To explore the change detection problem, let’s explore the simple situation where the mean of white
Gaussian noise changes at the C" sample.

My: X(1) ~ A (0,0%),1=0,...,L—1

A4(0,0%), 1=0,....C—1
M X (1) ~ S v
1 X0 {Jﬁmaﬂ,lzc,wL—l

The observations in each case are statistically independent of the others.

(a) Find a detector for this change problem when m is a known positive number.

(b) Find an expression for the threshold in the detector using the Neyman-Pearson criterion.

(c) How does the detector change when the value of m is not known?

sinusoids in noise. present. the frequencies of which are integer fractions of the number of observations:

sinusoids is present while ignoring the second? signal’s squared amplitude to the noise variance at the
frequency of the signal? the observations. the input.

A sampled signal is suspected of consisting of a periodic component and additive Gaussian noise. The
signal, if present, has a known period L. The number of samples equals N, a multiple of L. The noise
is white and has known variance 0>. A consultant (you!) has been asked to determine the signal’s
presence.

(a) Assuming the signal is a sinusoid with unknown phase and amplitude, what should be done to
determine the presence of the sinusoid so that a false-alarm probability criterion of 0.1 is met?

(b) Other than its periodic nature, now assume that the signal’s waveform is unknown. What compu-
tations must the optimum detector perform?

The QAM (Quadrature Amplitude Modulation) signal set consists of signals of the form
s;(1) = Af cos(2n fol) + Al sin(2n f1) |

where A and A are amplitudes that define each element of the signal set. These are chosen according
to design constraints. Assume the signals are observed in additive Gaussian noise.
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(a) What is the optimal amplitude choice for the binary and quaternary (four-signal) signal sets when
the noise is white and the signal energy is constrained (3, sl2 (I) < E)? Comment on the uniqueness
of your answers.

(b) Describe the optimal binary QAM signal set when the noise is colored.
() Now suppose the peak amplitude (max, |s;(/)| < Amax) is constrained. What are the optimal signal
sets (both binary and quaternary) for the white noise case? Again, comment on uniqueness.

Checking for Repetitions
Consider the following detection problem.

X, = s+N,
X2 == S+N2

X, = s +N,
X, = s+N,

My
M

Here, the two observations either contain the same signal or they contain different ones. The noise
vectors N; and N, are statistically independent of each other and identically distributed, with each

being Gaussian with zero mean and covariance matrix K = o1.

(a) Find the decision rule that minimizes the false-alarm probability when the miss probability is
required to be less than 1 — f3.

(b) Now suppose none of the signals is known. All is that is known is that under .#,, the signals
are the same and that under .#, they are different. What is the optimal decision rule under these
conditions?

A sampled signal is suspected of consisting of a periodic component and additive Gaussian noise. The
signal, if present, has a known period N. The number of samples equals L, a multiple of N. The noise
is white and has known variance 0>. A consultant (you!) has been asked to determine the signal’s
presence.

(a) Assuming the signal is a sinusoid with unknown phase and amplitude, what should be done to
determine the presence of the sinusoid so that a false-alarm probability criterion of 0.1 is met?

(b) Other than its periodic nature, now assume that the signal’s waveform is unknown. What compu-
tations must the optimum detector perform?

Delegating Responsibility

Modern management styles tend to want decisions to be made locally (by people at the scene) rather
than by “the boss.” While this approach might be considered more democratic, we should understand
how to make decisions under such organizational constraints and what the performance might be.

Let three “local” systems separately make observations. Each local system’s observations are identi-
cally distributed and statistically independent of the others, and based on the observations, each system
decides which of two models applies best. The judgments are relayed to the central manager who must
make the final decision. Assume the local observations consist either of white Gaussian noise or of a
signal having energy E to which the same white Gaussian noise has been added. The signal energy is
the same at each local system. Each local decision system must meet a performance standard on the
probability it declares the presence of a signal when none is present.

(a) What decision rule should each local system use?

(b) Assuming the observation models are equally likely, how should the central management make
its decision so as to minimize the probability of error?

(c) Is this decentralized decision system optimal (i.e., the probability of error for the final decision is
minimized)? If so, demonstrate optimality; if not, find the optimal system.



Appendix
Probability Distributions

Name Probability Mean Variance Relationships
1
M<n<N
Discrete Uniform | ~N~M+! - - MiN w
0 otherwise
. | Pr(n=0)=1-p
Bernoulli or Bi- p p(1—=p)
nary Pr(n=1)=p
Binomial Mp'(1=p)¥" ,n=0,...,N | Np Np(1—p) Sum of N IID
Bernoulli
Geometric (I-=p)p",n>0 p/l1—p p/(1—p)?
Negative  Bino- (;’,:DpN(l—p)”_N,nZN N/p N(1—=p)/p?
mial
Poisson A”;;A ,n>0 A A
a b

. (ri) (N—n) _ . Nab(a+b—N)

Hypergeometric W,n_o,...,N, Na/(a+Db) @b ati=D)
N
0<n<a+b;0<N<a+b
P —p" —p —p[p+log(1—p)]

Logarithmic nlog(1—p) (1—p)log(1—p) (1-p)logg

Table 2: Discrete probability distributions.
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Name Density Mean Variance Relationships
1 (x=m\2
Gaussian - e 2 (T) m o?
(Normal) 2o
Bivariate 1 (x—mx)z (x mx) (y—my) (y—my)2
Gaussian (1-p2)1120,0, p{ 2(1_p2) { Oy 2p Oy + O,
7l =0f,
_ 2
&[x] = my, Z[M]—_C’» ’ p:  correlation
& = my = coefficient
MMy + P OxP Oy
P Ox ?
| eme— L%y my)
Conditional | p(x]y) = ————=exp{ — Y
Gaussian 2n(l_p)20x2 20)3(1 _pz)
gl + | o2 (1-p?)
p v(y m‘)
var 1 1 —1
R p— T ]
m K
1 B xA_(T 2 A=
Generalized | s=————¢ r m o 02T 1/2
Gaussian 201+ 1/r)A(r) [ 3/’/ }
2
. 1 Y1 —x/2 = Ezy=1Xi >
(C;‘;)Squafed et ¢ 0S| Y 2v X.1ID.4(0,1)
v
Noncentral | 1(x/2)V=2) /41 /2(\/_x) e~ 1/2(A+x)
Chi-Squared
v = Ely=1X12’X
O (A)) v+ A 2(v+24) 1D .4 (m,, 1)
A= m;
. X ler 2 r(wt Ar(Av)r(Lv+1)-r2( %L
e AL et |
—vFD2
Student’s t \F/(i—%lv)ﬁ; (1 + )‘—2) 0 555.2< Vv
NEeZ /2—1 m 2mn Xr%l
Beta | g (1 7 RS Pnn = i
)" 0<x<1,0<a,b
(m=2)]2
F Distribu- | ] (2)n/? 2 0<x1<mn
tion Him2Tnf2) ( ) [1+(m/”)x](m+n)/2
n 2” (m+” 2) — Xm/m
— =222 | et Fon = 240
Non-central | ¥ % e Ipg (mxmj‘_n) Ts,n>2 2(%)2('"”“()”_2(;’21&2_)2)("_2), Fpy () =
FF, (%) Tthi n>4 10 [m
xi/n
. (deqw)™F _ulK Tv]
Wishart B [K])Ke 2 NK cov[W;; W, 1= WM(N,K) =
W, (N,K ? Tyl 7)ldet])2 N- (K, K, +KK,
M( ) FM(§):$L‘M(M_1)/4>< ( ik jl il ./k) ZIX Xiz’
M—1 X
I‘ﬁ_ﬂ XnNJV(OaK)
A (3-2) dim[X] = M

Table 3: Distributions related to the Gaussian.
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Name Density Mean Variance Relationships
a7
Uniform ﬁ, a<x<b # %
2x/a 0<x<a
Triangular / -~ 14a #
2(1=x)/(1—a) a<x<1
Exponential | Ae™*¥,0 <x /A 1/A2
1 (logx— m)2 , ,
1 2 [0} m+ < 2m [ ,20° _ O
Lognormal Nirorid ,0<x | e e (e e )
Maxwell \/gaS/zxze—axzﬁ’ 0<x % (3- %) a”!
[x—m]|
Laplacian L 0?/2 m o?
20
Gamma F’Ez)x”_le_hx, 0<x,0<a,b b ;—’2
. a2 1
Rayleigh 2axe™ ™ ,0<x = 7 (1 — %)
. 1 - 1/a) /b —2/b 2
Weibull bx~le= ™ 0 < x,0< a,b ( b [T(142/b)—TX14+1/b
eibu a e X a (14 1/b) a [(‘1‘/) (+/)]
; ! 1 1
Arc-Sine et O0<x<1 3 5
Sine Ampli- Ly <1 0 1
tude i & ’
eacos(x—m)
Circular Sl —n<x<mw m
Normal mhy(a)
Cauchy (X_";/ﬁ m %
(from
symmetry
arguments)
—(x—m)[a 2 2
.. e am
Logistic —a[l n e_(x_m)/a]z ,0<a m 3
—(x—m)/[a
Gumbel %m/l exp {—e_(x_’")/ ¢ }, m+ay "26”2
0<a
Pareto a—ba0<a;0<b§x b o> ab’ a>?2

xl—a >

a—1>

(a—2)(a—1)2"

Table 4: Non-Gaussian distributions.
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