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Abstract. We describe an approach to analyzing single- and multiunit (ensemble) discharge patterns based on
information-theoretic distance measures and on empirical theories derived from work in universal signal process-
ing. In this approach, we quantify the difference between response patterns, whether time-varying or not, using
information-theoretic distance measures. We apply these techniques to single- and multiple-unit processing of sound
amplitude and sound location. These examples illustrate that neurons can simultaneously represent at least two kinds
of information with different levels of fidelity. The fidelity can persist through a transient and a subsequent steady-
state response, indicating that it is possible for an evolving neural code to represent information with constant
fidelity.
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1. Introduction

Neural coding has been classified into two broadly de-
fined types: rate codes (the average rate of spike dis-

charge) and timing codes (the timing pattern of dis-
charges). Debates rage over the effectiveness of one
code over another and over whether this categoriza-
tion even applies. Complicating the debate are recent
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results that suggest single-unit responses inadequately
explain information coding. For example, theoretical
considerations indicate that single-neuron discharge
patterns in the mammalian auditory pathway are too
random to effectively represent sound (Johnson, 1996).
Coordinated responses of neurons within sensory and
motor nuclei have been found, with discharge tim-
ing relations among neural outputs having significance
(Abeles, 1991; Alonso et al., 1996; De Charms and
Merzenich, 1996; Riehle et al., 1997; Singer and Gray,
1995; Vaadla et al., 1995; Wehr and Laurent, 1996).
Consequently, much current work has focused on pop-
ulation activity, using the fundamental assumption that
coordinated sequences of action potential occurrence
times produced by groups of neurons collectively rep-
resent the stimulus-response relationship. Thus, today
the “neural code” is taken to mean how groups of neu-
rons, responding individually and collectively, repre-
sent sensory information with their discharge patterns
(Bialek et al., 1991). Knowing the code would unlock
the secrets of how neurons, working in concert, process
and represent information.

In developing data-analysis techniques that seek to
elucidate the neural code, some kind of averaging is
required because of the stochastic nature of the neu-
ral response. The simplest techniques requirestation-
ary responses: The probability law governing the re-
sponse must not change with time. Among these are
several interspike interval statistics (Johnson, 1996),
and auto- and cross-correlation techniques (Abeles and
Goldstein, 1977). To quantify time-varying responses,
responses are averaged over several stimulus presen-
tations that are spaced sufficiently far apart in time
to prevent adaptation and sequential stimulus effects.
Such responses are said to becyclostationary(Gardner,
1994). The probability law varies with time but does
so periodically, the period equaling the interstimulus
interval. The well-known PST histogram measures,
under a Poisson point process assumption, how the
discharge rate changes after each stimulus presentation
(Johnson, 1996). All of these measures spring from a
point-process view of neural discharge patterns. Us-
ing point-process-based measures and elaborations of
them, we could in principle estimate the point-process
model that accurately describes a neuron’s response to
each stimulus. In our experience, having such a point-
process model does not reveal what stimulus features
are being coded, when, and how effective the code is in
representing the stimulus. For example, we developed
a point-process model for the tone-burst responses of

single units located in the lateral superior olive (LSO)
(Zacksenhouse et al., 1992, 1993) and an underly-
ing computational biophysical model (Zacksenhouse
et al., 1998). While these models provide a notion of
the response’s structure, they donothelp us determine
the typical LSO unit’s information processing role and
what processing function the variety of LSO response
types may engender. What has been left out is quanti-
fying both the response’s significance and its effective-
ness in representing sensory information.

New techniques are emerging that take a broader
view. One developed by Victor and Purpura (1997)
measures the distance between two responses by de-
termining the number of steps it takes to systemat-
ically transform one discharge pattern into another.
Mutual information calculations (Gabbiani and Koch,
1996; Rieke et al., 1995) measure how effectively a
spike train encodes the stimulus under Poisson as-
sumptions. Neural network models have been trained
on recorded neural responses to determine how well
these responses can be used to determine stimulus pa-
rameters (Middlebrooks et al., 1994). These methods
yield response metrics that are difficult to relate to how
well systems can extract information from single- or
multiple-neuron responses. When inputs to a neural
population have been measured and characterized, how
do we judge how well the population extracts sensory
information? In fact, how would we know if a popula-
tion did extract information or simply served as a relay,
passing the information along (possibly in a different
neural code) to its projections? We must be able to
quantify theneural code: What aspect of a neural en-
semble’s collective output represents information, and
what is the fidelity of this representation? This arti-
cle describes a new information-theoretic technique for
measuring when and to what degree responses differ in
a way that can be related to how optimal systems per-
form in decoding neural responses.

Consider the simple system shown in Fig. 1. Con-
ceptually, this system accepts inputsX that represent
a stimulus or a neural population conveying informa-
tion (parameterized byα ) and produces outputsR that
collectively code some or all of stimulus attributes.
The boldfaced symbols represent vectors and are in-
tended to convey the notion that our system—a neural
ensemble—has multiple inputs and multiple outputs.
Presumably, input stimulus features preserved in the
output are those extracted by the system; those deem-
phasized in the output are discarded by the system and
define its feature extraction properties. To probe the
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Figure 1. A neural system has as inputs the vector quantityX that
depend on a collection of stimulus parameters denoted by the vector
α. The outputR thus also depends on the stimulus parameters. Both
input and output implicitly depend on time. Note that the precise na-
ture of the input is deliberately unclear. It can represent the stimulus
itself or a population’s collective input.

system and its representation of sensory information,
we experimentally measure the system’s output and its
inputs as we vary stimulus conditions.

Relating input and output for each condition amounts
to measuring the intensity of an underlying point pro-
cess model, which does not help quantify the effective-

Figure 2. The PST histograms shown in the upper two panels show the dramatically time-varying nature of a simulated auditory neuron’s
response to brief tone pulses that had different amplitudes. Shown separately in the bottom panel is the distance between these cyclostationary
responses. Distance between responses accumulates with poststimulus time, meaning that the distance at poststimulus timet is the distance
between response measured up to timet . Detailed analysis results are shown in Fig. 5 for the same simulations.

ness of neural coding. Instead, what we look for is how
the inputs and the outputschangeas the stimulus under-
goes a controlled change. No change means no coding
of the perturbed aspect of the stimulus; the bigger the
change, the more the system accentuates that sensory
aspect. To quantify change, we need a measure that
quantifies its degree. In short, what we seek is adis-
tance measure. Given two sets of stimulus conditions
θ1,θ2, we need to measure how different the corre-
sponding responsesR(θ1), R(θ2) are—how far apart
they are—with some distance metricd(R(θ1),R(θ2)).
Assuming that population codes are subtle, this metric
needs to apply to ensemble responses, to dynamic as
well as steady-state responses, to changes in transneu-
ral correlations, and to changes in temporal correlation
structure.

Anticipating our results, Fig. 2 demonstrates
quantifying how two responses differ. The distance
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computation doesnot have anya priori notion of the
neural code and is based on the data,not the PST his-
togram. What we want the distance measure to uncover
is (1) what portion of the response most represents
the stimulus change, (2) whether the later constant-
rate response reveal more or less than the early time-
varying response, and (3) how well the stimulus change
is represented by the response change. By plotting how
distance accumulates with time since stimulus pre-
sentation, we can answer these questions. If the dis-
tance measure plateaus, the responses don’t differ over
that time interval; if it increases, the responses differ
in their statistical structure, and the sharper the in-
crease, the more the responses differ during that time
segment than in other segments. First of all, we see
that the response begins at about a 3 mslatency, but
the distance measure suggests that they don’t differ
significantly until after 5 ms. Between 5 and 10 ms,
the distance accumulates about 2 bits, and from 10 to
25 ms, the distance increases by another 2 bits.1 Thus,
the response during the 5 to 10 ms intervals reveals
much about the amplitude change, while the constant-
rate portion reveals just as much but over a time interval
three times longer. From this example, we see that the
distance calculation applies to both time-varying and
constant-rate responses. The distance measurement
applies to single and multineuron responses equally
as well. What the distance measure does not reveal is
the precise nature of amplitude coding by this neuron;
it assesses only the code’s quality and when the coding
occurs. However, just because some component of the
neural response more accurately represents some stim-
ulus component than others does not mean that des-
tination populations make more effective use of that
response component than others. As we shall see, re-
sults from information theory can be used to determine
the limits to which systems can extract information no
matter what response component(s) they may use.

2. Information-Theoretic Distance Measures

While the merits of one distance measure versus an-
other can be debated (Basseville, 1989), we describe
here a collection of information-theoretic distances that
have a clear, intuitive mathematical foundation. The
underlying theory is not rooted in the classic results of
Shannon but in modern classification theory, the key
results from which are detailed in the appendix. In
this theory, we try to assign a response to one of a
set of preassigned response categories. For example,

discerning whether the stimulus is on or off is a two-
category classification problem. The ease of classi-
fication depends on how different the categories are;
it is through this aspect of the classification problem
that distance measures arise. We use this classification
theoretic approach because recent results from univer-
sal signal processing2 provide distance measures and
classification techniques that assume little about the
data yet yield (in a certain sense) optimal classification
results. In addition to information-theoretic distance
measures having a strong mathematical foundation, di-
rect empirical results have been derived. For example,
we can determine how complex a data analysis we can
perform given a certain amount of data.

Error probabilities in optimal classifiers decrease ex-
ponentially with the distance between the categories.
Using Pr[error] to denote a generic classification error
probability, Pr[error]∼ 2−d(C1,C2), whered(C1,C2)

denotes an information- theoretic distance between two
categories. The distance measure of particular interest
here is theKullback-Leiblerdistance defined to be

D(p1 ‖ p2) =
∫

p1(R) log
p1(R)
p2(R)

dR, (1)

wherep1, p2 are probability distributions that charac-
terize the two categories andR symbolically represents
a neural response, whether from one or several neu-
rons. Following the convention of information theory,
we use the base-two logarithm, which means that dis-
tance has units of bits. In the Gaussian case (categories
defined to have different means but the same variance),
the Kullback-Leibler distance equalsd′2/(2 ln 2) bits,
with d′ = |m1 −m2|/σ . The quantityd′ is frequently
used in psychophysics to assess how easily stimuli can
be distinguished. When applied to non-Gaussian prob-
lems, the Kullback-Leibler distance represents a gener-
alization ofd′ to all binary classification problems: the
larger this distance, the easier the classification prob-
lem. It measures how different two probability distri-
butions are, and it has several important properties:

1. D(p1 ‖ p2) ≥ 0 andD(p‖ p) = 0. The Kullback-
Leibler distance is always nonnegative, with zero
distance occurring only when the probability distri-
butions are the same.

2. D(p1 ‖ p2) = ∞ whenever, for someR domain,
p2(R) = 0 andp1(R) 6= 0. If p1(R) = 0, the value
of p1(R) log p1(R)

p2(R)
is defined to be zero.

3. When the underlying stochastic quantities are
random vectors having statistically independent
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components with respect to bothp1 and p2, the
Kullback-Leibler distance equals the sum of the
component distances. Stated mathematically, if
p1(R) =

∏
i p1(Ri ) and p2(R) =

∏
i p2(Ri ),

D(p1(R) ‖ p2(R))=
∑

i

D(p1(Ri ) ‖ p2(Ri )). (2)

Furthermore, ifp1, p2 describe Markovian data,3

the Kullback-Leibler distance has a similar
summation property. Taking the first-order
Markovian case as an example, whereinp1(R) =
p1(R1)

∏
i p1(Ri+1 | Ri ) and p2(·) has a similar

structure,

D(p1(R) ‖ p2(R))

= D(p1(R1) ‖ p2(R1))

+
∑

i

D(p1(Ri+1 | Ri ) ‖ p2(Ri+1 | Ri )), (3)

where

D(p1(Ri+1 | Ri ) ‖ p2(Ri+1 | Ri ))

=
∫

p1(Ri , Ri+1) log
p1(Ri+1 | Ri )

p2(Ri+1 | Ri )
d Ri d Ri+1.

(4)

4. D(p1 ‖ p2) 6= D(p2 ‖ p1). The Kullback-Leibler
distance is usually not a symmetric quantity. In
some special cases, it can be symmetric (like the just
described Gaussian example), but symmetry cannot,
and should not, be expected.

5. D(p(x1, x2) ‖ p(x1)p(x2)) = I (x1; x2). The
Kullback-Leibler distance between a joint proba-
bility density and the product of the marginal distri-
butions equals what is known in information theory
as themutual informationbetween the random vari-
ablesx1, x2. From the properties of the Kullback-
Leibler distance, we see that the mutual information
equals zero only when the random variables are sta-
tistically independent.

The word “distance” should appear in quotes be-
causeD(· ‖ ·) violates some of the fundamental prop-
erties a distance metric must have: A distancemust
be symmetric in its arguments. As explained in the ap-
pendix, classification error probabilities need not have
the same exponential decay rate, and this results in
the Kullback-Leibler distance’s asymmetry. This asym-
metry property does not hinder theoretical develop-
ments but does affect measuring the distance between

recorded neural responses. Consequently, we later pro-
pose a symmetric distance measure directly related to
the Kullback-Leibler distance. The Gaussian example
also indicates that the Kullback-Leibler distance has
the form of asquared-distance: these distances are
proportional to

∑
i (m

(i )
1 − m(i )

2 )
2, which corresponds

to thesquareof the Euclidean distance. Thus, we have
a second reason to put “distance” in quotes.

In addition to quantifying the exponential decay
rate of the error probabilities in optimal classifiers,
information-theoretic distances determine the ease of
estimating parameters represented by the data. Con-
sider the situation where two categories differ slightly
according to the values of a scalar parameterθ : sym-
bolically, p1(R) = pθ (R) andp2(R) = pθ+δθ (R). In-
tuitively, if we can easily distinguish between two such
categories (small error probabilities), we should also
be able to estimate the parameter accurately (smaller
estimation error). For sufficiently small values of the
differenceδθ , the Kullback-Leibler distance is propor-
tional to the reciprocal of the smallest mean-squared
estimation error that can be achieved. The mathemati-
cal results are4

D(pθ+δθ ‖ pθ ) ≈ 1

2 ln 2
F(θ)(δθ)2. (5)

Here,F(θ) denotes theFisher information:

F(θ) = E
[(
∂ ln pθ (R)

∂θ

)2]

=
∫ (

∂ ln pθ (R)

∂θ

)2

pθ (R) dR,

with E [·] denoting expected value. The significance of
these formulas rests in theCramér-Rao bound, which
states that the mean-squared error foranyunbiased es-
timatorθ̂ of θ cannot be smaller than 1/F(θ) (Johnson
and Dudgeon, 1993, sec. 6.2.4):

E [(θ̂ − θ)2] ≥ 1

F(θ)
. (6)

When two or more parameters change, Fisher infor-
mation becomes a matrix, and the distance formulas-
become what are known as quadratic forms:

D(pθ+δθ ‖ pθ ) ≈ 1

2 ln 2
δθ′ F (θ)δθ, (7)

with F(θ)= E [(∇θ ln pθ (R))(∇θ ln pθ (R))′]. Here,
(·)′ means transpose and∇θ ln pθ (R) means the
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gradient of the log probability density function:
∇θ ln pθ (R) = col[ ∂

∂θ1
ln pθ (R), . . . ,

∂
∂θN

ln pθ (R)].
The Cramér-Rao bound still holds, but in a more com-
plicated form:

E [(θ̂ − θ)(θ̂ − θ)′] ≥ F−1(θ).

This result means that the mean-squared estimation
error for any one parameter must be greater than the
corresponding diagonal entry in theinverse of the
Fisher information matrix:E [(θ̂i − θi )

2] ≥ (F−1)ii (θ).
Thus for any given stimulus parameter perturbation
δθ, the larger the Kullback-Leibler distance becomes
(the further apart the distributions become), the larger
the Fisher information (Eq. (5)), and the least possi-
ble mean-squared error in estimating the parameter
becomes proportionally smaller. In short,larger dis-
tances mean smaller estimation errors. This relation-
ship not only reinforces the notion that our distance
measures do indeed measure how distinct two classi-
fication categories are but also allows us to determine
how well parametric information can be gleaned from
data. Information-theoretic distance measures assess
the limits of information processing.

3. Digital Representation of Neural Responses

To develop a measure of the population’s response, we
first convert the population’s discharge pattern into a
convenient representation for computational analysis
(Fig. 3B). Here, a neural population’s response dur-
ing the bth bin is summarized by a single number
Rb that equals a binary coding for which neurons, if
any, discharged during the bin. This procedure gener-
alizes the approach taken for the single-neuron case,
wherein the occurrence of a spike in a bin was rep-
resented by a zero or a one. Note that this digi-
tization process for a neural ensemble is reversible
(up to the temporal precision of the binwidth). The
sequenceR = {R1, . . . , Rb, . . . , RB} completely char-
acterizes the population response, and the entire dis-
charge pattern can be recreated from it.In develop-
ing techniques to analyze neural coding, we need con-
sider only the statistical structure of this sequence.
When we present a stimulus periodicallyM times,
we form the dataset{R1, . . . ,RM} from the compo-
nent responses. Here, the response to themth stim-
ulus isRm = {Rm,1, . . . , Rm,B}. Because we repeat
the same stimulus and take the usual precautions to
mitigate adaptation, the resulting response is cyclo-

stationary (Gardner, 1994) (eachRm obeys the same
probability law), and, in addition, they are statistically
independent of each other.

In information theory terminology, a discrete-valued
random variable, such as the response in a bin, takes
on values that areletters r drawn from analphabet
A. When we have aN-neuron population and a suf-
ficiently small binwidth,Rb takes on values from the
alphabet{r0, . . . , r K−1} = {0, . . . ,2N − 1}. For the
three-neuron population exemplified in Fig. 3, the col-
lection {0, 1, 2, 3, 4, 5, 6, 7} forms the alphabet. The
letterr = 3= 0112 means that a discharge occurred in
both neurons 2 and 3 and not in neuron 1 during a par-
ticular bin. We could form apopulation PST histogram
of the population’s response at a particular bin to es-
timate the probability that Pr[Rb = rk]. Information
theorists term such histogram estimates of probabilities
types(Cover and Thomas, 1991, chap. 12):

P̂[Rb= rk]= (# timesrk occurs in{R1,b, . . . , RM,b})
M

.

By accumulating this multineuron PST histogram in
this way, we obtain the distribution of neural discharge
occurrence across the entire population within each bin.
This histogram generalizes the PST histogram used to
analyze single-neuron responses (Johnson, 1996). In
the single-neuron case, the alphabet consists of{0, 1},
and only the probability of one letter need be calcu-
lated. The PST histogram consists of a type at each
bin that estimates the probability of a discharge (the
letter 1) occurring. The only other remaining value
of the type—P̂Rb(Rb = 0)—is found by subtracting
P̂Rb(Rb = 1) from one.

Just as in the usual PST histogram, this multiunit
PST histogram does not faithfully represent temporal
dependence that may be present in the ensemble
response (Johnson and Swami, 1983). The multi-
unit PST histogram essentially assumes responses oc-
cur independently from bin to bin—what amounts to
a Poisson assumption—because no record is kept of
what preceded a particular population discharge pat-
tern in each bin when the type is calculated. This as-
sumption is more serious here than in the single-unit
case: while departures from Poisson behavior may not
be significant in the single-unit case, a discharge in
one neuron may well affect another’s discharge occur-
ring several bins later. We want our analysis tech-
niques to be sensitive to this possibility and go beyond
the PST histogram in providing insight into the neural
code. In the most general case, we should estimate
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Figure 3. A: Portrays how we estimate the Kullback-Leibler distance between single neuron responses to different stimuli. The response to
each stimulus repetition is time aligned as in PST histogram computation, and a table is formed from the spike occurrence times (denoted by
an×) quantized to the binwidth1. For each bin, a 1 indicates that a spike occurred in a bin and a 0 indicates that a spike did not occur. We
accumulate the type for each bin, forming a histogram of spike occurrences and nonoccurrences separately for each bin from theM stimulus
presentations (four are shown in the figure). A similar set of types is computed from the responses to a second stimulus. When we assume the
Markov orderD to be zero, we compute the Kullback-Leibler distance between corresponding bins and sum the results.B: Generalizes the
computations of panel A to the multineuron case. In the depicted ensemble of three neurons, the spike pattern at any bin could be one of eight
(23 = 8) possible patterns. Each possible pattern is represented by an integer between 0 and 7 in the table to the lower right. Types are formed
from these quantities, and distances are again computed separately between corresponding bins and summed whenD = 0. C: Illustrates how
first-order distance analysis is computed. For each neuron’s (or ensemble’s) responses, the response pattern for two bins at a time is represented
by an integer between 0 and 3 in the bottom table. Note that the first bin is special as no bin precedes it. This edge effect corresponds to the first
term in Eq. (3). We compute the zero-order distance for it and the first-order distances for the others and then sum the result to form the total
distance.

the joint probability of population response across all
bins: Pr[R1 = rk1, R2 = rk2, . . . , RB = rkB ]. Because
we have 2N possible letters in each bin andB bins, we
need to estimate 2NB probabilities. Most of these will
be zero—certain discharge patterns will not occur—but
knowing this does not alleviate the overwhelming de-
mand achieving an accurate probability estimate places
on data collection.

To approximatethe temporal dependence structure
of the population response, we assume that it has a

Markovian structure: the probability of a particular
population response in a bin depends only on what re-
sponses occurred in the previousD bins. This assump-
tion means that we approximate the joint probability of
the neural response by

P(R) = P(R1, . . . , RD) ×∏
b= D+1

P(Rb | Rb−1, . . . , Rb− D).
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The demands placed on data collection are greatly re-
duced when we employ this approximation. Recent re-
sults in information theory (Wienberger et al., 1995)
prescribe how much data are needed byany bin-
based technique to analyze data to a given degree of
dependence:

D ≤ log(L + 1)

log(2N + 1)
, (8)

where L is the amount of averaging used in analyz-
ing the data andN the number of neurons. For non-
stationary responsesL equals the number of stimulus
repetitionsM while for stationary (constant rate) re-
sponses it equals the number of bins in the measured
response. This result makes the point that the amount
of data needed grows exponentially in the dependence
order and in the number of neurons in the ensem-
ble: L > 2D·N . Computational experiments indicate
that this bound is not particularly tight, and we do not
analyze data to as high an order as the bound permits.

D
(
Pθ1(R)

∥∥Pθ2(R)
)

∼= D(Pθ1(R1, . . . , RD)
∥∥Pθ2(R1, . . . , RD)

)
+

B∑
b=D+1

D
(
Pθ1(Rb | Rb−1, . . . , Rb−D)

∥∥Pθ2(Rb | Rb−1, . . . , Rb−D)
)
. (9)

As shown in Fig. 3C, temporal dependence is eas-
ily incorporated into type-based distance calculations.
For each bin, a joint type estimates the joint proba-
bility that a given ensemble response pattern occurs
in it and the precedingD bins. Extending our exam-
ple, rather than just counting the number of timesRb

assumes various values, we need to know the joint dis-
tribution of (Rb−1, Rb) to assess first-order Markovian
dependence. Because the PST histogram is equiva-
lent to zero-order analysis, employing joint types in
measuring response differences can reveal response
changesnot revealed by the PST histogram, whether
a single- or multiunit histogram. Temporal depen-
dence in discharge probabilities can arise in a variety
of ways: among them are dependence on discharge
history (Johnson et al., 1986; Zacksenhouse et al.,
1992, 1993), nonexponential interval distributions,5

and syn-fire response patterns in ensembles (Abeles,
1991; Riehle et al., 1997). The Markov dependence
D corresponds to a temporal analysis windowD1 s
long. The bound onD determines the longest interval
over which interneuron and intraneuron response de-
pendencies can be included in the analysis. For a given

amount of data, the only way to extend the analysis
interval is to use a larger binwidth, which means that
temporal precision is reduced.

4. Calculating Distance Between Responses

Let R(θ1) and R(θ2) represent the responses of a
neural population to two stimulus conditions param-
eterized byθ1,θ2. What we want to measure is the
distance between thejoint probability distributions cor-
responding to these responses. Using the Kullback-
Leibler distance as an example, we would want to find
D(Pθ1(R) ‖ Pθ2(R)). To manage this statistical com-
plexity, we must assume that the response in a given
bin depends (in the statistical and practical sense)only
on the responses that occur in the immediately pre-
cedingD bins. Once thisanalysis dependence orderis
chosen, the distance calculation generalizes Eq. (3):

The∼= relation means that this relation is true only
according to assumption, and the data’s actual depen-
dence structure may differ. IfD equals or exceeds the
memory present in the responses, this equation holds:
picking D too large does not hurt. The problem arises
when D is chosen too small; in this case the two
sides of Eq. (9) are not equal. Mathematical analysis
suggests that Kullback-Leibler distances calculated us-
ing a smaller-than-required dependence order could be
smaller or larger than the actual value. Thus, to mea-
sure accurately the distance between two responses,
distances must be computed using increasingly larger
values ofD until the calculated values stabilize (don’t
change with increasingD) or the upper limit of (8) is
reached. We decide when the distance reaches a con-
stant value by employing statistical tests; in the fol-
lowing sections we describe the statistical properties
of distances and how to estimate their confidence in-
tervals. On the other hand, if we have insufficient data
to reach a stabilizing value ofD, we cannot say whether
the computed value is a lower or an upper bound. Be-
cause temporal dependence in discharge patterns usu-
ally spans some time interval, we need to choose a
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larger binwidth (at the sacrifice of temporal resolution)
to span this interval with the same number of bins to
obtain accurate distance measurements. We address
the binwidth selection problem in Section 5.3.

As succeeding examples will show, the Kullback-
Leibler distance’s asymmetry property—D(p‖q) 6=
D(q ‖ p)—is indeed real, with the distance between
two responses depending on the order the responses ap-
pear in the formula. In some applications, a reference
stimulus condition occurs naturally, and we want to
measure how responses differ from a reference; the
Kullback-Leibler distance can be used in such situa-
tions (the second argument denotes the reference dis-
tribution). Otherwise, the asymmetry becomes a nui-
sance, and we need a symmetric distance measure, like
the Chernoff distance defined in the appendix. Calcu-
lating the Chernoff distance can be so daunting that we
need to consider alternative symmetric distances. One
possibility is known as theJ-divergence, which equals
the average of the two Kullback-Leibler distances that
can be defined for two probability distributions:

J (p1, p2) = D(p1 ‖ p2)+D(p2 ‖ p1)

2
. (10)

This distance is not as powerful as the Kullback-Leibler
or the Chernoff distances in that it onlyboundsthe
average error probability of an optimal classifier:

lim
M→∞

log Pe

M
≥ −J (p1, p2).

Calculations show that this bound can be quite generous
(not very tight). Though it may be easy to find (it’s the
sum of easily calculated Kullback-Leibler distances),
but we can only approximately relate it to classification
error rates: theJ-divergence is overly optimistic.

A more accurate approximation is the so-called
resistor averageof the two Kullback-Leibler distances:

R(p1, p2) = D(p1 ‖ p2)D(p2 ‖ p1)

D(p1 ‖ p2)+D(p2 ‖ p1)
. (11)

The origin of the name “resistor average” arises be-
cause a simple rewriting of this definition yields a for-
mula that resembles the parallel resistor formula:

1

R(p1, p2)
= 1

D(p1 ‖ p2)
+ 1

D(p2 ‖ p1)
.

This quantity is not arbitrary. Rather it is derived
in a way analogous to the Chernoff distance, and

half of it approximates the Chernoff distance well:
C(p1, p2)≈R(p1, p2)/2. In our Gaussian and Pois-
son examples of Fig. 9, the Chernoff distances are
0.03125 and 0.01796, respectively. The corresponding
J-divergences are 0.125 and 0.07192, and half the re-
sistor average values are 0.03125 (exact equality) and
0.01794. Thus, when we want to contrast two response
patterns, rather than computing the correct distance
measure, the Chernoff distance, we compute the much
simpler quantity, the resistor average, instead.

One note on these “distances.” None of the Kullback-
Leibler, Chernoff, and resistor-average “distances”
can be distances in the mathematical sense. To qual-
ify, a proposed distanced(a, b) must be symmetric
(d(a, b) = d(b,a)), be stricly positive unless the
two arguments to the distance are equal (d(a, b)>0
for a 6= b, d(a,a) = 0), and obey the triangle in-
equality (d(a, b)≤ d(a, c) + d(c, b)). The Kullback-
Leibler distance is not symmetric, and the Chernoff
and resistor-average distances don’t satisfy the trian-
gle inequality. This mathematical issue does not affect
their utility in judging how different two responses are
in a meaningful way. All of these measures can be re-
lated to the performance of optimal signal processing
systems (see the discussion following Eq. (5) and the
appendix).

5. Statistical Properties

5.1. Estimation of Distance Measures

The most direct approach to estimating distance mea-
sures is to use types in their definitions:

D̂
(
Pθ1(R)

∥∥Pθ2(R)
) = D(P̂θ1(R)

∥∥P̂θ2(R)
)

R̂
(
Pθ1(R), Pθ2(R)

) = R(P̂θ1(R), P̂θ2(R)
)
.

Here, the Kullback-Leibler distances are computed
assuming some Markov order as described by equa-
tion (Efron and Tibshirani, 1993).

However, this direct approach does have problems.
When the type for the reference distribution has a zero-
valued probability estimate for some letter at which
the other type is nonzero, we obtain an infinite an-
swer, which may not be accurate (the true reference
distribution has a nonzero probability for the offending
letter). To alleviate this problem, the so-calledK-T
estimate (Krichevsky and Trofimov, 1981) is em-
ployed. Each type is modified by adding one-half to
the histogram estimatebeforeit is normalized to yield
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a type. Thus, for thekth letter, the K-T estimate at bin
b is

P̂KT
Rb
(rk)=

(# timesrk occurs in{R1,b, . . ., RM,b})+ 1
2

M + K
2

.

Now, no letter will be assigned a zero estimate of its
probability of occurrence,and the estimate remains
asymptotically unbiased with increasing number of ob-
servations. When applied to joint types, we add 1/2 to
each bin and normalize according to the total number of
letters in the joint type. For first-order Markovian de-
pendence analysis, we need the joint type defined over
two successive bins, and we apply the K-T procedure
according to

P̂KT
Rb−1,Rb

(
rk1, rk2

) = (# times
(
rk1, rk2

)
occurs in{(R1,b−1, R1,b), . . . , (RM,b−1, RM,b)})+ 1

2

M + K 2

2

.

This estimation procedure is not arbitrary: it is based
on theoretical considerations of whata priori distribu-
tion for the probabilities estimated by a type sways the
estimate the least.

5.2. Bootstrap Removal of Bias

All distance measures presented here have the property
that they can only attain nonnegative values. Any quan-
tity having this property cannot be estimated without
bias. For example, if the true distributions are iden-
tical, distance measures are zero, but types calculated
from two datasets drawn from the same distribution
are unlikely to themselves be equal, and the result-
ing distance estimate will be positively biased. While
the estimates are asymptotically unbiased, experience
shows that the bias is significant even for large datasets
and can lead to analysis difficulties. Analytic expres-
sions for the bias of a related quantity—entropy—are
known (Carlton, 1969), and they indicate that bias ex-
pressions will depend on the underlying distribution in
complicated ways.

Fortunately, recent work in statistics provides a way
of estimating the bias and removing it fromany esti-
mator without requiring additional data. The essence
of this procedure, known as thebootstrap, is to employ
computation as a substitute for a larger dataset. The
bootstrap procedure is one of severalresamplingtech-

niques that attempt to provide auxiliary information—
variance, bias, and confidence intervals—about a sta-
tistical estimate. Another method in this family is the
so-called jackknife method, and it has been used for
removal of bias in entropy calculations (Fagan, 1978).
The book by Efron and Tibshirani (1993) provides ex-
cellent descriptions of the bootstrap procedure and its
theoretical properties.

In a general setting, letR = {R1, . . . , RM} denote a
dataset from which we estimate the quantityθ(R). Our
quantities of interest here are the Kullback-Leibler and
resistor-average distance measures. We create a se-
quence of bootstrap datasetsR∗j = {R∗1, j , . . . , R∗M, j },
j = 1, . . . ,MB. Each bootstrap dataset has the same
number of elements as the original and is created by

selecting elements from the original randomly and with
replacement. Thus, elements in the original dataset
may or may not appear in a given bootstrap dataset,
and each can appear more than once. For example,
suppose we had a dataset having four data elements
{R1, R2, R3, R4}; a possible bootstrap dataset might
be R∗ = {R2, R3, R1, R1}. The parameter estimated
from the mth bootstrap dataset is denoted byθ∗m =
θ(R∗m). From theMB bootstrap datasets, we estimate
the quantity of interest, obtaining the collection of es-
timates{θ∗1 , . . . , θ∗MB

}. The suggested number of boot-
strap datasets and estimates is a few hundred (Efron
and Tibshirani, 1993).

The bootstrap estimates cannot be used improve the
precision of the original estimate, but they can provide
estimates ofθ(R)’s auxiliary statistics, such as vari-
ance, bias, and confidence intervals. Thebootstrap
estimate of biasis found by averaging the bootstrap es-
timates and subtracting from this average the original
estimate: bias= 1

MB

∑
m θ
∗
m − θ(R). The bootstrap-

debiased estimate is, therefore, 2θ(R) − 1
MB

∑
m θ
∗
m.

Calculation of bootstrap-debiased distances can re-
sult in negative distances when the actual distance is
small.

Confidence intervals of levelβ can be estimated from
the bootstrap estimates by sorting them and determin-
ing which values correspond to theβ/2 and 1− β/2
quantiles. Let{θ∗(1), . . . , θ∗(MB)

} denote the sorted (from
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smallest to largest) estimates. A raw confidence inter-
val estimate corresponds to [θ∗(bMB−βMB/2c), θ

∗
(dβMB/2e)].

Thus, for the 90% confidence interval,β = 0.9, and the
raw confidence interval corresponds to the 5th and 95th
percentiles. Because we want confidence intervals on
the bootstrapdebiased estimate rather than the original,
we reverse the interval and center it around the debiased
estimate: [2θ(R)−θ∗(dβMB/2e), 2θ(R)−θ∗(bMB−βMB/2c)].

5.3. Dependence on Binwidth

Ideally, the calculation of distance measures between
two responses would not depend on the binwidth1
used in the digitization process. However, discharge
probability at any specific time varies as binwidth
varies. Since distances measure how different two prob-
ability distributions are, we expect that distance calcu-
lations could depend on binwidth. To analyze this sit-
uation, let’s assume a single neuron population, with
the probability of an event equaling some rate times
the binwidth: Pr[Rb = 1] = λ1 and Pr[Rb = 0] =
1− λ1. The Kullback-Leibler distance between two
such random variables (having ratesλ1 andλ2) is given
by

D(λ2 ‖ λ1) = λ21 log
λ21

λ11
+ (1−λ21) log

1− λ21

1− λ11
.

The first term is clearly proportional to binwidth;
if we assume that the discharge probability is small
(λ1 ¿ 1), then the total expression is proportional to
the binwidth:

D(λ2 ‖ λ1) ≈
(
λ2 log

λ2

λ1
+ λ1− λ2

)
1.

All the other distances are also proportional to bin-
width whenλ1 ¿ 1. Once the binwidth is chosen
small enough, we have found the temporal resolution
necessary to maximally distinguish the two responses.
Distance calculations can also be deliberately made
with larger binwidths to assess the role temporal reso-
lution has on distinguishing two responses.

When we accumulate the distance across bins that
span a given time interval having durationT , as sug-
gested in property 3 and Eq. (9), the number of bins
equalsT/1. If the discharge rates are such that dis-
charge probabilities are small, the accumulationover a
given time intervalcancels the binwidth dependence,
which leaves the accumulated distance independent of
the binwidth. Let’s be more concrete about this point.

Assuming for the moment that the data are statistically
independent from bin to bin (Markov orderD = 0),
the computation of the Kullback-Leibler distance be-
tween two responses equals the sum of the distances
between the responses occurring within a bin. This
distance will be proportional to binwidth if the bins
are small enough. However, when we add them up to
form the total interresponse distance, the value we get
will not depend on the binwidth. For this reason, we
prefer plotting accumulated distance (as expressed in
Eqs. (2) and (9) in the independent and Markov cases,
respectively) across the response.

5.4. Example

Figure 4 illustrates a simple application of this proce-
dure for simulated (Poisson) single-neuron discharges.
The two ways of computing the Kullback-Leibler dis-
tance from the simulated responses differ substan-
tially. We find that this difference is statistically sig-
nificant and occurs frequently in simulations and in
actual recordings. Because we have no clear refer-
ence stimulus in this example, we use the Chernoff
distance or its resistor-average approximation to com-
pare two responses. The resistor average depicted
in the top right panel consists of a series of straight
lines, which correspond to time segments of constant
rate differences between the responses. The greater
slopes correspond to greater rate differences. Note that
when the rates are equal, the distances do not change,
indicating no response difference. The middle plot
shows that the bias in the initial estimate of the resis-
tor average is quite large. We have found the bootstrap
bias compensation procedure described in Section 5.2
to be necessary for obtaining accurate distance esti-
mates. To employ bootstrap in the cyclostationary case,
we consider our dataset to consist of the responses
to individual stimulus presentations for a given pa-
rameter setting:{R1(θ), . . . ,RM(θ)}, and our boot-
strap datasets containM responses selected randomly
from this original. We independently perform the boot-
strap on each response resulting from each stimulus
condition, compute types from each bootstrap sam-
ple, and calculate the distance between these sam-
ples. As illustrated in Fig. 4, the bootstrap substan-
tially removes the inherent positive bias. We also see
that half the resistor-average distance quite closely ap-
proximates the actual Chernoff distance between the
responses. Examining the bottom right panel of Fig. 4
shows that the actual Chernoff distance would lie well
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Figure 4. Single-neuron responses were simulated based on a Poisson discharge model. The first response had a constant rate, and the second
response was a staircase; these constitute an example chosen to illustrate type-based analysis. These two responses equaled each other during the
initial and final 10 bins. The discharge probabilities controlled the occurrence ofM = 200 simulated responses. The resulting PST histograms
are shown, with the actual discharge probability shown by dashed lines and the dotted vertical lines indicating when rate changes occurred.
The right column displays the various information-theoretic distance measures calculated from these responses. The top panel shows the
accumulated Kullback-Leibler distances estimated with the K-T modification using each response as the reference (dashed lines), along with
the resistor-average of these two shown (solid line). All of these were debiased using the bootstrap. In the middle panel, the resistor-average
(scaled by two) before (dot-dashed) and after (solid) applying the bootstrap is compared with the theoretical Chernoff distance (dashed). The
bottom panel again shows the debiased resistor-average (again scaled by two) along with the 90% confidence limits (dotted) estimated via the
bootstrap. In all cases, 200 bootstrap samples were used.

within the 90% confidence interval. Hence, we use
the computationally simpler resistor-average distance
measure. Note how the confidence interval widens as
we progress across the response. This effect occurs
naturally because we are adding more and more sta-
tistical quantities as we accumulate the total distance.
These intervals would be substantially smaller if we
considered accumulated distances over portions of the
response.

To interpret this distance calculation, we refer to
modern classification theory reviewed in the appendix.
Because Chernoff distance is related through Eq. (A3)
to the classification error rate, it reveals how easily
the two responses can be distinguished: the bigger the
distance, the smaller the probability of an error in dis-
tinguishing the two. Note that this error probability is
known only up to a constant: we cannot compute it

precisely. Asymptotic error probability changes with
time roughly according to 2−d(t), whered(t) is the ac-
cumulated distance, whether the Kullback-Leibler or
Chernoff distance, andt is poststimulus time. Thus,
each unit (one bit) increase in distance corresponds to
a factor of two smaller error probability. The accumu-
lation of distance with time is not an arbitrary choice.
This procedure corresponds to the Kullback-Leibler
distance’s property 3, which states that the distance
between the joint probability distributions characteriz-
ing a response over a given number of bins equals the
sum of the component distances.

As the two responses are identical over the first
10 bins, no distance is accumulated. As the rates differ
more in each 20-bin section, we see that the distance
accumulated in each section increases. In this exam-
ple, the accumulated (approximate) Chernoff distance
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increases from the beginning to the end of each section
are 0.1, 0.3, 0.55, and 0.95 bits. These quantities were
calculated by subtracting the accumulated distance at
section beginning from its value at the end. Finally, the
responses have identical rates during the last 10 bins,
and we see distance does not increase further. When
we analyze responses, we concentrate on those portions
of the response that contribute most to accumulated
distance since they provide the most effective coding
(in terms of classification errors). In our simple ex-
ample, the response during bins 70 to 90 contributes
most because the rate difference is greater there. As
we consider more complicated examples of coding, it
becomes increasingly important that we can use type-
based analysis to determine important sections of the
responsewithoutassuming the nature of the code.

To relate these distance calculations to estimation
error, let’s assume that the staircase response corre-

Figure 5. The upper panels show the PST histograms of a simulated lateral superior olive neuron’s response to two choices of stimulus
level (binwidth equals 0.5 ms). The simulations modeled the neuron’s biophysics (Zacksenhouse et al., 1998). The bottom panels show the
resistor-average distance between these two responses; the computations were performed under several conditions. The first of these shows the
resistor-average distance (divided by two) between these responses computed forD = 0, 2, 4 bins (corresponding to 0, 1, and 2 ms of temporal
dependence, respectively). The dotted lines straddling theD = 4 curve portray the 90% confidence interval. The curve superimposed on the
PST histograms is theD = 4 curve. Finally, the bottom plot displays the resistor-average distance (divided by two) between the responses for
two choices of binwidth, but with the dependence parameterD chosen so that the assumed temporal dependence for each spans the same time
interval. The 90% confidence interval for the1 = 0.5 ms is displayed with dotted lines.

sponds to increasing some stimulus parameter by equal
amounts. The smallest increment yielded a difference
of 0.1 bits over a 20-bin interval. Using the perturba-
tional results of Eq. (5), we find that the Fisher infor-
mation equals 0.1× 8 ln 2/(δθ)2 = 0.555/(δθ)2. This
calculation means that this parameter is encoded by a
rate code in such a way that the mean-squared estima-
tion error incurred in determining the parameter from
this response must be at least(δθ)2/0.555= 1.8(δθ)2,
where we need to know how the amount of perturba-
tion to produce a numeric value. IfN statistically inde-
pendent neurons represented the stimulus the same
way, the mean-squared error would decrease inversely
with N.

Figure 5 portrays how choice of analysis order
can affect distance calculations. Recall that explor-
ing nonzero analysis orders amounts to seeking re-
sponse differencesnotconveyed by the PST histogram.
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During the first few milliseconds, no significant re-
sponse differences are evident. After about 5 ms, sig-
nificant differences occur, with the various choices of
analysis orders yielding about the same result. These
distances then depart at about 7 ms, with theD= 4
curve being significantly larger. This result indicates
significant temporal dependence in the responses as
it differs greatly from theD= 0 curve, which al-
ways corresponds to assuming the data are statistically
independent from bin to bin. The value of depen-
dence parameterD is one of the few assumptions our
information-theoretic approach must make. Ideally, all
values that can be computed based on the amount of
available data (Eq. (8)) should be explored. AsD in-
creases, the distance calculations will eventually not
change, and the best value for the dependence param-
eter is the smallest of these. In the example portrayed
in Fig. 5, the resistor-average distance kept increas-
ing, leaving us no choice but to use the largest possible
value. What the actual distance might be, even whether
it is larger or smaller than theD = 4 result, cannot be
determined without more data. Using theD = 4 re-
sult, the distance between the responses increases most
sharply during the second portion of the transient re-
sponse.

If one sacrifices temporal resolution by using larger
bins, the distance computation can span longer time in-
tervals. The bottom panel of Fig. 5 shows two distance
calculations that span the same amount of temporal de-
pendence, one using twice the binwidth of the other and
half the dependence order. The restrictions placed on
the dependence parameter by (8) apply to the Markov
order, not to the amount of time spanned by a dis-
charge pattern’s dependence structure. Thus, we could
analyze the data with the same maximal dependence or-
der allowed by the bound, but over longer dependence
time intervals by manipulating the binwidth. It should
be reemphasized that the restrictions of (8) apply to
any data analysis technique and the idea of choosing
different binwidths applies to other methods as well.

This way of displaying distance—accumulated as
poststimulus time increases—also illustrates our gen-
eral finding that the distance measures smooth the re-
sponse variations found in PST histograms. Although
the displayed responses came from simulations, ac-
tual recordings also demonstrate rapid rate oscillations
found during the first 10 ms. One of our analysis tech-
nique’s most powerful features is that it can assess re-
sponse differences without regard to whether response
rates and/or interspike dependencies are time varying

or not. Note that during the latter portion of the re-
sponse the distance measures increase roughly linearly.
This effect usually indicates a difference in sustained
rates, which can be discerned from the PST histograms.
Furthermore, about half the total distance accumulated
over 25 ms (4.65 bits) is garnered in the first 10 ms. We
conclude that the initial transient of the response allows
equal discriminability in the first 10 ms (actually 7 ms
as there is about a 3 mslatency) as does the response
obtained during the last 13 ms. Thus, the initial portion
of the response conveys as much as the stimulus does
during the latter portion in less time.

Binwidth effects are also demonstrated in Fig. 5.
From the example shown there, we conclude that the
larger binwidth of 0.5 ms would suffice as joint types
computed over the same time span but with differ-
ent binwidths yield nearly the same results. The time
epochs over which the distance calculations disagree
most occurs during the high-probability-of-discharge
segments of both responses, a result consistent with
the analysis of Section 5.3.

6. Applications

We have shown how information-theoretic distances
can assess how two responses differ in a meaning-
ful way: using them, we can infer the performance
limits of information processing systems. We can also
probe interdependencies in population responses. We
describe this and other application of our approach for
understanding the neural code.

6.1. Assessing Neural Codes

The simplest application of distance analysis is assess-
ing which part of the response changes significantly
as with stimulus changes. Perhaps the most powerful
aspect of type-based analysis is that it makes noa pri-
ori assumption about the nature of neural encoding. It
and other techniques that make noa priori assump-
tions about the neural code are limited to Markov de-
pendence orders that (8) allows. Calculating response
distance quantifies how well the code expresses stim-
ulus changes regardless of its form, whether a timing
code, a rate code, or some combination of these. “Sig-
nificant change” has two meanings here. The first is
whether the distance measure is significantly differ-
ent from zero during some portion of the response.
Inferring this statistical significance is the role for
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confidence intervals, which we compute using the boot-
strap. The second type of significance is which portion
of the response contributes most to accumulated dis-
tance. We judge this by computing how much distance
changes over a given time interval. One consequence
of making this kind of calculation is that we candi-
rectly evaluate one response component’s importance
relative to another’s. For well-defined portions of the
response, like the initial transient and later sustained re-
sponse that typifies auditory neuron responses to tone
bursts, we can directly compare how different portions
are. Furthermore, the cumulative distance reveals how
long it takes to yield a certain level of discrimination.
We can then begin to answer questions such as how long
it takes to determine from the population’s response a
just noticeable stimulus change.

An example of this analysis for the single neuron
case is displayed in Fig. 5. Figure 6 illustrates applying
this approach to a simple population of three neurons.

Figure 6. We simulated a three-neuron ensemble responding to two stimulus conditions. The left portion of the display shows PST histograms
of each neuron. As far as can be discerned from these histograms, the first stimulus yielded a constant-rate response in each simulated neuron.
The second stimulus produced different responses in each neuron. The first had an oscillatory response lasting 20 bins, the second a transient
rate increase for 10 bins, and the third a rate change. The dashed vertical lines in the PST histograms indicate the boundaries of these various
response portions. During the first stimulus, and until the last 10 bins of the second stimulus, the neurons produced discharges statistically
independent of the others. In the last 10 bins, the first and third neurons’ discharges became correlated (coefficient= 0.6). Throughout all
responses, the responses were produced by a first-order Markov model having a correlation coefficient of−0.1. The right panel shows the result
of computing the resistor-average distance between the two responses. The solid line shows half the resistor-average distance, with its 90%
confidence interval shown with a dotted line. Dashed vertical lines correspond to stimulus 2 response components.

Both a stimulus-induced rate response and a transneu-
ral correlation can be detected, and the relative con-
tribution of each response component to sensory dis-
crimination quantified. Clearly, the initial portion of
the response produced the greatest distance change.
During the next 10 bins, when the latter portion of neu-
ron #1’s oscillatory response and the rate responses
of the other two are present, about 0.5 bits of dis-
tance were gained. This increase means that the prob-
ability of not being able to discriminate between the
two stimulus conditions decreased by a factor of about
20.5 = 1.4. A much larger change (1.4 bits) occurred
during the first 10 bins. Consequently, the first por-
tion of the response contributes much more to stimulus
discrimination than the second. The third portion of
the response contains only constant discharge rates.
The distance accumulated during this time (bins 20
to 29) roughly equals the distance accumulated dur-
ing the previous 10 bins, when neuron #1’s response
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contained an oscillatory component. This equality of
accumulated distance means that the oscillatory re-
sponse and the constant-rate response are equally ef-
fective in representing the stimulus difference. Inter-
estingly, the introduction of spatial correlation (found
in the last 10 bins) increased only slightly the accumu-
lated distance beyond what the rate response by itself
would have.

6.2. Uncovering Neural Codes

The calculation of distances between responses quan-
tifies neural coding without revealing what the code
is. Distance calculations can offer some insights as
well into what aspects of the response contribute to
the code. For example, we can determine the pres-
ence of correlation in an ensemble’s response, be it
stimulus- or connectivity-induced. In the former case,
spike trains can be correlated merely because neu-
rons are responding to the same stimulus. In the lat-
ter, the neurons receive common inputs or are in-
terconnected. We compute the type of the measured
ensemble response and derive from it the type that

Figure 7. The resistor average (divided by two) between the type computed from response and the type computed derived from it that forces a
spatially independent ensemble response structure is shown for the two stimulus conditions used in Fig. 6. The dashed line shows the result for
the first response (histograms shown in the left column of Fig. 6), the solid line for the second (center column). As was simulated, the responses
to stimulus 1 demonstrated no transneural correlation. The second stimulus did induce a correlation in the latter portion of the response, and
the distance clearly indicates the presence of such correlation. The 90% confidence interval for the second response is indicated by the dotted
lines. Note that the confidence interval’s lower edge was less than zero for the first 30 bins.

would have been produced by the ensemble if it
had statistically independent members (spatial depen-
dence) and/or had no temporal dependence. Referring
to Fig. 3 for an example, the probability of each neu-
ron discharging in each bin can be calculated from the
joint probability of various response patterns occurring
in a bin. For example, Pr[discharge in neuron #1]=
Pr[Rn = 4]+Pr[Rn = 5]+Pr[Rn = 6]+Pr[Rn = 7]
because the leading bit of the binary representa-
tions of these symbols, which corresponds to neu-
ron #1, equals 1: 4= 1002, 5= 1012, etc. From
these component probabilities, we estimate the
probability of all possible ensemble response pat-
terns by multiplying according to the ensemble re-
sponse the probabilities of each neuron discharging
or not (Pr[Rn = 3]= Pr[no discharge in neuron #1]·
Pr[discharge in neuron #2]·Pr[discharge in neuron #3]
because 3= 0112). By calculating the distance be-
tween these two types, we can infer when correlated
responses are present; Fig. 7 illustrates an example.

The presence of interneuron correlation in the fourth
response segment shown in Fig. 6 is not discernable
when compared to the distance accumulated in the third
segment, when only rate differences are present. One
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might infer from the analysis shown in Fig. 7 that the
amount accumulated in the fourth segment should ex-
ceed that of the third by about 0.5 bit. The fact that
this difference does not occur when analyzing the data
demonstrates a subtlety in using distance measures.
The distance between responses does represent how
easily an optimal classifier can distinguish them, but
the various factors that contribute to this distance are
notnecessarily additive. Just because correlation anal-
ysis reveals 0.5 bit of difference does not mean that in-
terneuron correlation increases the distance contributed
by average-rate differences by the same amount.

In this analysis, we can use the Kullback-Leibler
distance directly. It equals the mutual information be-
tween the component discharge patterns of the popula-
tion (property 5). Zero mutual information corresponds
to statistically independent responses and it increases
as the discharge patterns become more interdependent.
When applying this analysis to populations of three or
more neurons, we are extending the definition of mu-
tual information (property 5) toN random variables in
a novel way:

I (x1; . . . ; xN) = D(p(x) ‖ p(x1)p(x2) · · · p(xN)).

Here,p(x) denotes the joint distribution of theN ran-
dom variables. We note that from an information trans-
fer viewpoint, statistically independent responses do
not always correspond to the best situation (Gruner and
Johnson, 1998).

6.3. Uncovering Feature Extraction

As part of developing these new techniques, we re-
examined how the signal processing function of any
system should be assessed. Consider a nonlinear,
adaptive system—a neural ensemble—that accepts in-
puts and produces outputs (as shown in Fig. 1), about
which we have only general insight into the system’s
function (for example, it processes acoustic informa-
tion). Assume that the inputs depend on a collection of
stimulus parameters represented by the vectorθ. Curi-
ously, knowing the system’s input-output relation may
not be helpful in understanding its signal processing
function: nonlinear systems are just too complicated.
Our approach examines response sensitivity to stimu-
lus changes and derives from it the ability of an opti-
mal signal processing system to estimate the stimulus
parameters. The key idea underlying this approach
is the perturbational result of Eq. (5), which relates

distance measure changes to the Fisher information
matrix.

In our approach, we measure responses recorded
in response to a reference stimulus parameterized
by θ0 and a family of responses parameterized by
θ0 + δθ, with δθ a perturbation. We compute types
from ensemble responses to both stimuli and quantify
the “distance” between them. We use the Kullback-
Leibler distance in this application since we have a
natural choice for a reference response. Figure 8
shows the surfaces generated by perturbing two stim-
ulus parameters—sound amplitude and azimuthal lo-
cation of the sound—about a reference stimulus. Our
responses, obtained from accurate biophysical simula-
tions of binaurally sensitive lateral superior olive (LSO)
neurons (Zacksenhouse et al., 1998), indicate that dur-
ing different portions of the response, the two stimulus
features are coded with differing fidelity. We measure
fidelity as the ability (standard deviation of error) of
an optimal system to estimate the stimulus parameters
from the response. Early on, the transient response en-
codes both stimulus features well. Twenty milliseconds
later, the fidelity of angle encoding remains about the
same, although the form of the response has changed
from a transient to a gradual rate change. During this
period, the amplitude encoding has greatly worsened,
with the standard deviation increasing by over a factor
of five. During the constant-rate portion of the response
starting 20 ms later, the amplitude estimate has wors-
ened more with the angle estimate’s quality remaining
about the same.

What these results indicate is that this LSO neu-
ron is processing its inputs (which greatly resemble
the primary neural outputs of the two ears) in such a
way that stimulus amplitude and angle are encoded in
its response. In short, the neuron’s discharge pattern
multiplexes stimulus information. The fidelity of this
representation changes rapidly with time after stimulus
onset, with the azimuth being the primary stimulus at-
tribute encoded in the response. Thus, the information
coding provided by this neuron’s discharges is multi-
dimensional and time varying. The initial portion of
the response could be used along with other neural re-
sponses in the auditory pathway to estimate stimulus
amplitude, but later portions are less useful. Because
azimuth is consistently represented by these neural dis-
charges, we conclude the primary, but not only, role for
the lateral superior olive, is sound localization. How-
ever, downstream neural structures could use the ampli-
tude information conveyed by these responses. Parallel
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Figure 8. We simulated (Zacksenhouse et al., 1998) the response of a single lateral superior olive neuron (Tsuchitani, 1988a; 1988b) to
high-frequency tone bursts presented at various amplitudes and azimuthal locations. The top row (panels A–C) shows the PST histogram of the
simulated response at the reference condition (20 dB, 30◦). The light areas in each indicate the 40 ms portion of the response subjected to type-
based analysis. The next row (panels D–F) shows three-dimensional surfaces of the corresponding values of Kullback-Leibler distance between
the reference response and the responses resulting from varying stimulus amplitude and angle. From these surfaces, we fit a two-dimensional
third-order polynomial and used its parabolic terms to estimate the elements of the Fisher information matrix according to Eq. (5). The inverse
of this matrix provides lower bounds on estimates of angle and amplitude derived from the analyzed portion of the response. Panels G–I show
sensitivity ellipses that trace one standard deviation that an optimal system would yield if it estimated amplitude and angle simultaneously. The
horizontal and vertical extents of these ellipses correspond to the standard deviations of angle and amplitude estimates, respectively, and these
determined the rectangles shown in each panel. Panel G’s rectangle is repeated in the other panels for comparison. The bottom panel shows how
these standard deviations changed during the response. The circles indicate the standard deviation of the amplitude estimate (left vertical scale)
and the asterisks the standard deviation of the angle estimate (right scale).

neural systems present in the auditory pathway clearly
represent amplitude more effectively; presumably they
have greater impact on amplitude processing.

7. Conclusions and Discussion

The goal of information-theoretic distance analy-
sis is to compute the distance between responses.
We explored several ideas on how these distance

calculations can be used to measure and assess the
neural code. In all of these, the basic procedure is as
follows:

1. Given sets of individual or simultaneous recordings,
the analysis of the population’s response begins with
the digitization process described in Section 3. The
important consequence of this procedure is that sin-
gle and multiunit recordings have a common data
representation.
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2. Compute the joint type of user-specified orderD,
employing the K-T modification if the Kullback-
Leibler distance is needed:

P̂Rb,...,Rb−D (r0, . . . , r D)

= (# timesRb = r0, . . . , Rb−D = r D)+ 1
2

M + 2D·N−1
.

3. Compute the Kullback-Leibler distance or resistor-
average approximation to the Chernoff distance
using the Markov decomposition expressed in
Eq. (9). The conditional distribution needed in this
computation is found from the joint type by a for-
mula that mimics the definition of conditional prob-
abilities:

P̂Rb|Rb−1,...,b−D(r0 | r1, . . . r D)

= P̂Rb,...,Rb−D (r0, r1, . . . , r D)∑
r P̂Rb,Rb−1,...,Rb−D (r, r1 . . . , r D)

.

4. Use the bootstrap debiasing and confidence interval
procedure on the distance thus calculated. When an-
alyzing cyclostationary responses, we consider the
responses to individual stimulus presentations as the
fundamental “data quantum.” Our bootstrap sam-
ples are drawn from this collection ofM datasets.

5. Our examples plot the cumulative debiased distance
as each term is accumulated (using an expression
similar to that of Eq. (9)).

We have presented information-theoretic distance
measures that can be used to quantify neural coding
and described techniques that exploit them. These dis-
tances depend on the probabilistic descriptions of the
neural discharges, about which we want to assume as
little as possible. The theory of types suggests that em-
pirical estimates of these distributions can be used to
accurately compute these distance measures, with the
sole modeling assumption being the Markov depen-
dence parameter. Given sufficient data, this parameter
can also be determined solely by the data’s statistical
structure. If this statistical structure spans a long time
interval, our technique and any other will not fully re-
veal the neural code unless temporal resolution is com-
promised or more data are acquired. The examples we
have presented here, particularly the feature extraction
one, demonstrate that neural information coding can be
quite complex, being both time varying and expressed
by both discharge timing and rate. Thus, any technique
for assessing information-coding fidelity must make as

few assumptions as possible; the type-based analysis
described here fulfills that criterion.

A second powerful aspect of our approach is its
ability to cope with ensemble responses. As shown in
Fig. 3, the analysis technique can conceptually be ap-
plied to any sized population. The information bound
(Eq. (8)) suggests that the amount of data required for a
given level of analysis growsexponentiallyin the num-
ber of neurons and in the Markov parameterD. In prac-
tical terms, our technique can be used only for small
populations. However, since the bound applies to any
bin-based technique, without additional assumptions
about the neural code, all such techniques are simi-
larly data-limited. Whether a similar limitation applies
to other techniques, such as those based on interspike
intervals, is not known.

For judging coding quality, we prefer the Chernoff
distance. Because of its computational complexity, we
use the resistor-average distance to approximate it. The
Kullback-Leibler distance, despite its theoretical im-
portance, is difficult to use empirically because it is
asymmetric with respect to the two component re-
sponses. We used it in the stimulus perturbation analy-
sis because a natural reference response emerges, and
it is the simplest computationally to estimate.

The procedures we have described here can assess
neural coding, but they do not directly reveal what the
code is. We showed one approach to assessing transneu-
ral correlation in Fig. 7. In general, coding mechanisms
can be inferred from the component types; precisely
how we have not yet determined. Be that as it may,
the information-theoretic procedures developed here
offer flexible but computationally intense analysis tech-
niques that can meaningfully quantify the nature of
neural coding within populations.

Appendix: Classification Theory

Classification theory concerns how observations can be
optimally classified into predefined categories. Stat-
ing the problem formally in the paper’s context of
neural signal analysis, a set of measured responses
{R1, . . . ,RM} is to be classified as belonging to one
of J categories. Here, the parameterM represents the
number of stimulus presentations, and eachRm rep-
resents the population response to each presentation.
Each category is defined according to a known proba-
bilistic description (which may have unknown param-
eters or other controlled uncertainties). The most fre-
quently studied variant of the classification problem is
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the binary classification problem: which of two cat-
egoriesC1, C2 best match the observations. Given
the probabilistic descriptions of the categories, the op-
timal rule for classifying observations, the likelihood
ratio test, is well known (Hogg and Craig, 1995). What
is very difficult to calculate is how well this optimal
rule works. Developing approximations for calculat-
ing performance leads to important notions that directly
apply to the neural response analysis problem. Classi-
fier performance is usually expressed in terms of error
probabilities. Terminology for the error probabilities
originated in radar engineering, whereC1 meant that
no target was present andC2 that one was. Thefalse-
alarm probability Pfa = Pr[sayC2 |C1] is the proba-
bility that the classification rule announcesC2 when the
data actually were produced according toC1 (the clas-
sifier incorrectly declared a target was present), and the
miss probabilityis Pmiss= Pr[sayC1 | C2] (the classi-
fier incorrectly announced that no target was present
when one was). Theaverage error probability Pe
is the average of these individual error probabilities:
Pe = π1Pfa+ π2Pmiss, whereπ1, π2 are thea priori
probabilities that data conform to the categories. Note
that in the two-category problemπ1 = 1− π2.

The likelihood ratio test results when we seek the
classifier that minimizes either the average probabil-
ity of error or the false-alarm probability (Johnson and
Dudgeon, 1993).6 Picking which error probability to
minimize would seem not to matter (the same classi-
fier results) if it were not for the fact that the optimized
error probabilities usually differ, easily by orders of
magnitude in many cases. Furthermore, in many situa-
tions the optimal classifier’s false-alarm probability can
differ significantly from its miss probability. Because
error probabilities provide the portal through which we
develop information-theoretic analysis techniques, ap-
preciating which error probability best suits a given
experimental paradigm leads to better interpretation of
measured distances. In neuroscience applications, we
want to present two different stimulus conditions and to
quantify how easily these stimuli can be distinguished
based on the responses of some neural population.
Average error probability summarizes how well an op-
timal classifier can distinguish data that could arise
from either of two stimulus conditions. False-alarm
(or miss) probability better summarizes performance
when one of our stimuli can be considered a refer-
ence, and we want to know how well an optimal clas-
sifier can distinguish some neural response from a
nominal.

No general formulae for any error probabilities are
known for any optimal classifiers except in special
cases, such as the classic Gaussian problem. We can
answer the question “How does performance change as
the amount of data becomes large?” When the observa-
tions are statistically independent and identically dis-
tributed under both categories,pCj ({R1, . . . ,RM}) =∏

m pCj (Rm), results generically known as Stein’s
Lemma (Cover and Thomas, sec. 12.8, 12.9) state
that error probabilities decay exponentially in the
amount of data available, with the so-calledexpo-
nential rate being an information-theoretic distance
measure:

lim
M→∞

log Pfa

M
=−D (pC2(R) ‖ pC1(R)

)
for fixed Pmiss (12a)

lim
M→∞

log Pmiss

M
=−D (pC1(R) ‖ pC2(R)

)
for fixed Pfa (12b)

lim
M→∞

log Pe

M
=−C(pC1(R), pC2(R)

)
. (12c)

D(· ‖ ·) is known as theKullback-Leibler distancebe-
tween two probability distributions. It applies to both
probability densitiesp, q or probability mass functions
P, Q:

D(p‖q) =
∫

p(R) log
p(R)

q(R)
dR. (13)

C(·, ·) is theChernoff distance, defined as

C(p,q)= − min
0≤u≤1

log
∫

[ p(R)]1−u[q(R)]u dR. (14)

Note these definitions apply to both univariate and mul-
tivariate distributions. When the observations are not
statistically independent, all these results apply to the
multivariate distribution of the observations (Johnson
and Orsak, 1993). For example,

lim
M→∞

log Pfa

M

= − lim
M→∞

D (pC2({R1, . . . ,RM }) ‖ pC1({R1, . . . ,RM })
)

M
for fixed Pmiss.

Stein’s Lemma (A1) is not stated directly in term
of error probabilities because of subtle, but important,
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technical details. Focusing on the false-alarm proba-
bility, Stein’s Lemma for the case of independent ob-
servations can be stated more directly as

Pfa→ f (M)2−MD(pc1(R)‖pc2(R)) for fixed Pmiss,

with limM→∞[log f (M)]/M = 0. The term f (·)
changes more slowly in comparison to the exponen-
tial, and it depends on the problem at hand. What this
formula means is that if we plot any of the error prob-
abilities logarithmically againstM linearly, we will
always obtain a straight line for large values ofM
(see Fig. 9). Stein’s Lemma says that the false-alarm
probability’s slope on semi-logarithmic axes—its ex-
ponential rate—equals the negative of the Kullback-
Leibler distance between the probability distributions
defining our classification problem. Because of the
presence of the problem-dependent quantityf (·), we
cannot determine in general the vertical origin for the
error probability or how largeM must be for straight-
line behavior to take over. Consequently, we cannot

Figure 9. Using the Gaussian and Poisson classification problems as examples, we plot the false-alarm probability (left panels) and average
probability of error (right panels) for each as a function of the amount of statistically independent data used by the optimal classifier. The
miss-probability criterion was that it be less than or equal to 0.1. Thea priori probabilities are 1/2 in the right-column examples. As shown
here, the average error probability produced by the minimumPe classifier typically decays more slowly than the false-alarm probability for the
classifier that fixes the miss probability. The dashed lines depict the behavior of the error probabilities as predicted by asymptotic theory (A1).
In each case, these theoretical lines have been shifted vertically for ease of comparison.

use asymptotic formulas to compute error probabilities,
but we do know that error probabilities ultimately de-
cay exponentially foranyclassification problem solved
with the optimal classifier, and we know the rate of
this decay. We can also say that if further observa-
tions increase any of these distances by one unit (a
bit), the corresponding error probability decreases by
a factor of two. Furthermore, having exponentially de-
creasing error probabilities defines a set of “good” clas-
sifiers. Optimal classifiers produce error probabilities
that decay exponentially with the quantity multiply-
ing M equal to the Kullback-Leibler distance or the
Chernoff distance. Suboptimal but “good” ones will
have a smaller slope, with poor ones not yielding ex-
ponentially decaying error probabilities. The exponen-
tial rate cannot be steeper than the Chernoff distance
for the classifier that optimizes average error proba-
bility and Kullback-Leibler distance for the Neyman-
Pearson classifier. Thus, these distances defineany
classification problem’s difficulty. The greater the dis-
tance, the more quickly error probabilities decrease (the
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exponential rate is larger) and the “easier” the classifi-
cation problem.Whether we use an optimal classifier
or not, the Chernoff and Kullback-Leibler distances
quantify the ultimate performance any classifier can
achieve, and therefore measure intrinsic classification
problem difficulty. We therefore want to estimate these
distances from measured responses to quantify what
response differences make distinguishing them easier.

Note that the Kullback-Leibler distance (Eq. (13))
is asymmetric with respect to the two distributions
defining the classification problem. The false-alarm
probability achieved under a fixed miss-probability
constraint and the miss probability achieved under a
fixed false-alarm-probability constraint not only have
different values, they may have different exponential
rates. The Chernoff distance (Eq. (14)) is symmetric
with respect to the two probability distributions and
should be used to assess the classification problem.
What prevents using it in applications is the required
minimization process. Technically, this minimization
is simple: the function to be minimized is bowl-shaped,
leaving it with a unique minimum. Computationally,
finding the quantity to be minimized can be quite com-
plicated. In typical problems, many more calculations
are needed to find the Chernoff distance than required
to compute the Kullback-Leibler distance.

Notes

1. Our distance measure has units of bits only because we use base-2
logarithms in its computation and does not imply an information
rate. We describe in succeeding sections how to interpret distance
values.

2. The theory surrounding how to process information universally
without much regard to the underlying distribution of the data.

3. A sequence of random variables isDth-order Markovif the con-
ditional probability of any element of the sequence given val-
ues for the previous ones dependsonly on theD most previous:
p(Ri | Ri−1, Ri−2, . . .) = p(Ri | Ri−1, Ri−2, . . . , Ri−D).

4. The term ln 2 arises because the definition of Kullback-Leibler
distance (1) uses log2 and the definition of Fisher information
uses natural logarithms.

5. This situation is particularly subtle. Even when the response can
be well modeled as a renewal process (interspike intervals are
statistically independent from each other), the probability of a
discharge in a bin depends on how long ago the previous discharge
occurred.

6. Note that in optimizing false-alarm probability (making it as small
as possible), we must constrain the miss-probability to not exceed
a prespecified value. If not, we can make the false-alarm prob-
ability zero by having our classifier announce “classC2 models
the data.” That way we are never wrong when the categoryC2 is
true, but we’ll always be wrong if categoryC1 is true (the miss
probability will be one). The likelihood ratio test emerges when
we minimizePfa subject toPmiss≤ α.
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