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1 Introduction

Spike sorting is the generic term used to describe the procedure for identifying spikes in multi-neuron
recordings and categorizing them according to waveform and amplitude differences. Correctly
relating each spike to a category and accurately estimating its time of occurrence is prerequisite to
processing recordings to determine individual and joint response properties of neurons.

Several phenomena complicate the detection, classification and time-of-occurrence estimation
steps of the sorting procedure. We expect that all spikes will have very similar waveforms since they
are governed by the same biophysical laws of Hodgkin-Huxley. Knowing the waveforms of recorded
action potentials enhances detection—identifying that a spike occurred in the presence of noise—
but their similarity means that classification—relating a spike to a neuron—becomes a difficult
problem. Luckily, slight variations in spike shape and amplitude due to differing geometries of the
neurons producing the spikes and their differing distance from the recording electrode simplifies
spike sorting issues.

When spikes from different neurons overlap in time, both classification and detection become
more difficult. For example, spikes from different units can negate each other, partially obliterating
the spike and thus making detection more difficult, or they can enhance each other, resulting in
a waveform that resembles neither, particularly in amplitude [1]. This paper characterizes the
theoretical limits to which spikes can be correctly categorized, overlapping or not.

2 Spike Signal Constellation Model

We model spike sorting as a problem in signal detection and construct a signal constellation model
for the recorded spikes. A signal constellation shows how the various choices of spike occurrences
are related geometrically and portrays likely confusions among the possibilities. Here, we consider
the simplest case of two neurons producing spikes recorded in a noisy background. We make the
assumption that the neural recording is temporally segmented, with each segment short enough so
that no single neuron produces two spikes within any segment. Any spike sorting algorithm has
four choices for the best description of the observations: (i) spike 1 alone, (ii) spike 2 alone, (iii)
both spikes, and (iv) no spikes. The constellation represents these four possibilities geometrically.
In this problem formulation, detection and classification issues are decided simultaneously. Once
classified, the time(s)-of-occurrence of the spike(s) are measured. We do not consider this aspect
of the problem here.

We use the signal constellation idea to quantify how easy it is to detect and distinguish spikes
from two different neurons with an optimal strategy. The optimal strategy relies on template
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Figure 1: (a) Constellation for non-overlapping spikes separated by a time delay τ (left side) and completely
overlapping spikes (right side). Distance from the origin of s1 and s2 represents the respective amplitudes A1,
A2 of the two spikes, and their geometric sum corresponds to the constellation point representing both spikes
occurring within the observation window. (b) The optimal amplitude of spike 2 with respect to spike 1 that
produces the smallest maximum classification errors varies with inter-spike correlation. Note the precipitous
drop once a critical correlation value is reached.

matching followed by subsequent processing that disambiguates overlapping spike waveforms. Both
temporal overlaps and similar waveform morphology contribute to errors. As shown in the left
half of Figure 1(a), when the two neurons’ spikes do not overlap at all, they are orthogonal.
When the spike waveforms begin to overlap, they are no longer orthogonal and the constellation
changes to a parallelogram having sides of the same lengths as in the original rectangle. Distance
between constellation points qualitatively shows which models will confound each other. The
rectangle−→parallelogram constellation change induced by spike overlap will tend to make spike 1
and spike 2 be confused with each other.

Geometrically, the correlation angle θ that marks the parallelogram’s slant equals sin−1 ρ, where
ρ is the inter-spike cross-correlation for a given overlap τ .

ρ =

∫ T
0 s1(t)s2(t− τ) dt√∫ T

0 s2
1(t) dt ·

∫ T
0 s2

2(t− τ) dt

At complete overlap, spikes having identical waveforms, even when they have different amplitudes,
will be perfectly correlated and all constellation points will lie on the horizontal axis. If the
waveforms differ, being aligned in time still produces the maximal correlation, but it is not one.
The right half of Figure 1(a) illustrates this situation.

We use our spike signal constellation model to analyze detection and classification errors to
determine recording criteria that allow the smallest theoretically possible errors. While we can
never hope for an omniscient template-based classifier in spike sorting, results derived using the
optimal detectors performance characteristics lend insight into which recording situations are most
favorable.

We determined the spike amplitude combinations that minimize the maximum detection error.
For this calculation, spike 2 is defined to have the smaller amplitude (A1 ≥ A2) and we minimize the
occurrence of the most likely error event, namely, saying that a single spike, say spike 2, occurred
when actually one of the other three descriptions is correct. When the spikes do not overlap at
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all, thus making the correlation zero, we calculate that equi-amplitude spikes comprise the optimal
amplitude distribution. This result makes sense since we would like non-overlapping spikes to be as
large as possible to detect them easily. On the other hand, when perfect correlation occurs (θ = π/2
and the spikes are identical and aligned in time), spike 2 lies on the same axis as spike 1. In this case,
A2 = A1/2 is the optimum solution that minimizes error. Between these extremes, increasing spike
waveform overlap causes a non-zero correlation, which makes the maximal correlation angle θ differ
from zero. Up to some critical angle θc, we find that minimum error is still achieved when A2=A1

(see Figure 1b). However, when correlation angle increases beyond θc, the A2 value for minimum
error jumps abruptly to values close to A1/2, and equals A1/2 when θ = π/2. Surprisingly, there
is no smooth transition. The θc at which this drop occurs is dependent on the signal-to-noise ratio
(SNR) of the recording; the higher the SNR, the greater θc. Thus, for the minimax error criterion,
it is optimal to select neural recordings that produce spikes of equal amplitude, unless the spikes
have extremely similar waveforms.

3 Conclusion

When spikes from different neurons overlap in time, the degree of correlation determines the opti-
mal recording situation. Little overlap suggests equi-amplitude recording, while highly correlated
discharges demand one amplitude be half the other (in the case of two neurons). This guideline
also applies when more than two neurons are being extracted from the recording. The correlation is
determined by the spike templates, which some spike sorting algorithms use directly. Even in cases
of high correlation due to temporal overlap and/or waveform similarity, we can rely on amplitude
differences to separate spikes. Conversely, two totally overlapping equi-amplitude spikes can be
optimally sorted if their waveforms differ enough (i.e., how much less than one is their maximal
cross-correlation).

References
[1] M.S. Lewicki, “A review of methods for spike sorting: the detection and classification of neural action potentials,”

Computational Neural Systems, vol. 9, pp. R53–R78, 1998.

[2] Ivan Selin, Detection Theory, Princeton University Press, Santa Monica, CA, 1965.

[3] S.N Gozani and J.P. Miller, “Optimal discrimination and classification of neuronal action-potential wave-forms
from multiunit, multichannel recordings using software-based linear filters,” IEEE Trans. Biomed. Eng., vol. 41,
pp. 358–372, 1994.

[4] D.H. Johnson, “The relationship of PST and interval histograms to the timing characteristics of spike trains,”
Biophysical J., vol. 22, pp. 413–430, 1978.

[5] R.B.Stein, S. Andreassen, and M.N. Oguztorelli, “Mathematical analysis of optimal multichannel filtering for
nerve signals.,” Biol. Cybernetics, vol. 32, pp. 19–24, 1979.

3


