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ABSTRACT

In examining paintings, art historians use a wide varietgtofsico-chemical methods to determine, for example, tireqpa

the ground (canvas primer) and any underdrawing the aged.uHowever, the art world has been little touched by signal
processing algorithms. Our work develops algorithms tavéra x-ray images of paintings, not to analyze the artist’s
brushstrokes but to characterize the weave of the canvasupports the painting. The physics of radiography inéisat
that linear processing of the x-rays is most appropriater €pectral analysis algorithms have an accuracy superior to
human spot-measurements and have the advantage thaghtishwrt-space” Fourier analysis, they can be readilyiaedpl

to entire x-rays. We have found that variations in the martufing process create a unique pattern of horizontal and
vertical thread density variations in the bolts of canvazdpced. In addition, we measure the thread angles, prayidin
a way to determine the presence of cusping and to infer tregitot of the tacks used to stretch the canvas on a frame
during the priming process. We have developed weave matcaftiware that employs a new correlation measure to find
paintings that share canvas weave characteristics. Usingpas of over 290 paintings attributed to Vincent van Goggh,
have found several weave match cliques that we believe @filie the art historical record and provide more insight into
the artist's creative processes.
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1. INTRODUCTION

To investigate the history and authenticity of paintingshiy great masters, signal processing algorithms can proad/
insights! Our focus here is on x-ray images that can reveal much abaattsitelow the visible surface? Figure 1 shows

an x-ray taken of a painting by Vincent van Gogh. The brusles of partially x-ray-opaque paints are clearly evidast,
well as the wood stretcher and the tacks that attach the samhe stretcher. A close examination of the x-ray revées t
thread pattern of the canvas support (Figure 1b). Althobghthireads are transparent to x-rays, artists typicallpamed
their canvases with a lead white-containing undercoab (eddled a primer or ground layer) to smooth the surface. The
small variations in undercoat thickness filling the vallefshe canvas weave lead to variations in x-ray opacity that c
be easily seen. Thread count datmeasurements of the horizontal and vertical thread dessitare commonly used as
evidence for dating, linking pictures from the same canadls and attributior®™ Thread counting algorithms seek the
weave density, measured in threads/cm, in both the hoakant vertical directions and how these counts vary through
the painting. The current standards for any measurememitpee are manual measurements made with a ruler from a
few selected locations in the painting and a human counfitiggonumber of threads in horizontal and vertical direction
atedious process to say the least. The Thread Count Automratoject seeks to develop signal processing algorithats th
can detail the variations in the canvas thread density aagminting and to search for other paintings having a canvas
weave pattern that matches it.

Before bringing signal processing methods to bear on theathcounting problem, considering how a loom works
reveals how to think about thread count measurements. Tiiealdhreads mounted in a loom, known as tarp, are
usually well aligned with a fairly uniform spacing. The hantal threads, known as theeft are passed back and forth
through the warp in an interlaced fashion, with the weft canipd after each pass to strengthen the cloth. In most ¢hses,
weft shows more variability than the warp. When cutting apief canvas for a painting, the artist will orient the carmas
the stretcher in whatever way seems best: the warp direatayncorrespond to either the vertical or horizontal threads
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Figure 1: Panel (a) depicts the x-ray image of van Gogfograit of an Old Man with a BeardF205 in the catalog

of de la Faill€). The painting, the wood stretcher (the lighter border) aadvas-mounting nails can be clearly seen.
Magnifying the x-ray reveals the canvas weave as well. Rai@land (d) show" x 1" swatches taken from the x-ray
of F205. Panel (b) is taken from the area in front of the fa@gb (d) is taken from the area below the ear. Panels (c)
and (e) show detailed spectra computed from a smaller suarex 1 cm) located in the upper left corner of each swatch.
The wedges indicate areas where weave-related spectiad peafound. Image sampled at 600 dpi and provided by the
Van Gogh Museum.

the painting. The width (standard deviation) of the thremaht distribution provides a strong clue as to how the camaas

cut from the roll: one would expect the thread count havirggrthrrower distribution to be the warp direction [3, p. 100].
Thread counts, along with other forensic and historicahdaliow the art historian to pose strong hypotheses about ho
the canvas roll was used for paintings contemporary witth egleer. For example, in his Dutch and late French periods,
Vincent van Gogh ordered canvas in rolls and, for small to enaté sized paintings, he would cut a rectangular section
and mount it on a stretching frame with tacks. The hypothedisat if two canvas sections share a horizontal or vertical
position on the canvas roll, the thread density variatidosgthat axis should agree. Consequently, works assdoidth

the same canvas roll can be presumed to have been painteolatlad same time. Since van Gogh worked alone during
much of his career, weave-matched paintings could be asbtoiee painted by him.

We have taken a frequency-domain approach to performirapaatic thread counting. The justification for this ap-
proach begins by considering the physics of radiographg.grbater the radiographic-absorbing paint thicknesgalom
beam, the greater the opacity, meaning that x-ray imagesitievariations correspond to paint composition and théss.
Letting i(x,y) denote x-ray intensity at a point on the image arttie direction of x-ray propagation, amgx,y,z) the
opacity at the x-ray frequency, basic physics of scattenét@tes intensity and opacity by

i(x,y) = exp{—/o(x,y, z)dz} . 1)

The canvas weave is made visible by the thicker ground (pjitager of lead-white paint in the grooves between canvas
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(a) Idealized weave pattern (b) Spectrum of pattern

Figure 2: Panel (a) depicts an ideal weave expressed byiequa). Here,Dy, = 1.5D,, W, = Dy/2, Hy = Dy,/5,
W, = 2Dy/7, H, = Dy/2. The frequencies at which the canvas weave spectrum ofléa pattern of panel (a) can be
non-zero are shown in panel (b). Note tlﬁton thex-frequency corresponds to the vertical thread countécndn the
y-frequency axis to the horizontal thread count. The unfitizdles correspond to frequencies that are |dent|cally) zer
because of the parameter values in this example.

threads as in Figure 1d, the weave pattern can be seen andrtioalvand horizontal thread densities can be determined.
The spectral algorithm is rooted in the observation thatvdwéous layers of paint, including the ground that fills the
canvas weave, additively contribute to the opacity terrmébin (1). Because the variations of x-ray intensity aretiedty
small and the tendency of x-ray film exposure to compensatthéexponentiallinear processing algorithms are most
appropriate for extracting thread counts.

2. SPECTRAL THEORY OF CANVASWEAVE PATTERNS

A completely automatic spectral algoritArtakes advantage of the two-dimensional regularity of thevas weave. A
weave pattern is produced by the interleaved pattern ozbotal and vertical threads. A mathematical descriptiothef
x-ray of a paint-filled, ideal canvas-weave surface is diffito determine, to say the least. A more phenomenological
model is shown in Figure 2a. Here, the vertical and horidaht@ads are shown as bars, each thread having its own
thickness and weave density, that mimics the appearancevefivthreads. The black rectangles are intended to regiresen
unit-height rectangles and the white background represemb. Thus, the black rectangles represent the top swfice
horizontal and vertical threads. The horizontal and valtitread separations abg andDy, respectively. Each horizontal
and vertical thread'’s thickness and weave are capturedebwitiths and heights of the bars. For example, the horizontal
threads have a thicknesty and a width ofA,. The thicknesses and widths must sat®fy> *h™ andDy, > fntlv 1o
develop a mathematical expression for this pattern, défipbey) to be a bar corresponding to a horizontal thread.

bh(X y): 1 |X|<V\_2411|y|<%
’ 0 otherwise

A similar expression applies to the vertical threads butipmaterized byM, andHy. The entire weave pattern can be
captured as a convolution of the basic thread shapes withdaofiempulses that puts them at the proper locations.

c(x,y)z{b\,xy ®26x 2nDy) + br(X,y) ®26 2n+1DV}®26y 2mDy)
2)
{b\, (%,Y) ®25 (2n+1)Dy) +br(x,y)® 5 & (x—2an)} ®0(y— (2m+1)Dyp)

n

By considering each part of this complicated expressianntiodel and Figure 2a can be reconciled. To express the top
row of Figure 2a, the first line in square brackets uses cautieois to space the vertical-thread bagéx,y) 2Dy apart



and the horizontal-thread babg(x,y) by the same amount but shifted to the right by the verticaatirseparatiorDy).
Continuing the first line, the convolution of this expresswith impulses spaced by twice the horizontal thread s¢ijpara
2Dy, creates the pattern of every other row. The expression ickbta on the second line shifts the first line’s bracketed
expression by the vertical thread separation and the oateotution repeats it, interleaving it with the first lingdattern.

The Fourier transform of this expression can be found usasjcttransform properties: the transform of the sums of
impulses become sums of impulses located at the separatfomohics and the interleaving shifts become phase terms.
Gathering the expression for the spectrum into terms cporegding to the horizontal and vertical bars,

C(fx fy) = Bu(fx, fy) - [Z‘S(fx 2D)5(fy_2—31>
+Ba(fx, fy) [e Jz”f*D”Z‘S(fX 5, )5(”_2_&)
e g Yol 2]

The spectrum contains impulses located on a rectanguldrvgth centers at(z—Bv,z—B”h), in other words at the half-

harmonics of the basic thread counts (frequencies). Comesely, we need only evaluate the spectrum at these fregesenc
)= o ) poe ] ) o
=8 (55033 ) |1+ 0™ e (po e ) [ -2 @
The expressions for the Fourier transforms of the bars are
By <2LDV’ Z—Sh) \/\41Hh5|nc(nn2%DV> sinc<mn2H—th)

n m W, . Hy
B\,<2—DV,2—Dh) V\A,H\,smc<nn2—DV) |nc(mn2Dh>

To interpret the result in (3), note that when the sum of tliéciesn, mis odd, the spectrum is zero. Figure 2b shows
the locations in the spectrum that can be non-zero. Thergpetthe bars given by the previous expressions provide the
spectral values at these frequencies. In general, therldrgérequency indices, the smaller these spectral valiilebav
The largest value is, of course, the origin. This peak prewvido information about the weave pattern since its location
does not depend on the canvas weave. Furthermore, it musirtmered to produce accurate spectral estintates.

(4)

where sin¢x) = S,

Note that the horizontal and/or vertical threads may notmaprecise straight line and that they are not usually fedral
to the axes. These effects complicate traditional threadhtiog algorithms based on direct space-domain measutemen
but have a ready frequency-domain interpretation. Slighgatd curvature will create a slight widening of the spéctra
peak, but not its location. Weave rotations amount to aimtadf the ideal spectrum. The weave pattern can also be
locally distorted due to attaching the canvas to a stretwheriming frame at discrete points with tacks before apmthe
ground. Once the canvas dries from application of the grotmage weave pattern distortions remain, resulting in ughat
known ascusping Such distortions amount to local deviations of the thrdeats their nominal directions, which results
in a rotation of the spectral peaks for those threads. Ireeithse, we cannot expect weave-pattern spectral peaksao li
the frequency axes. These considerations led us to searthiréad-count-related spectral peaks in wedge-shapaahseg
centered on the frequency axes (Figure 1e).

*The current spectral thread counting algorithm highpdssdithe image before calculating spectra for just thissaa
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Figure 3. Thread counts in threads/cm and thread anglesgireee for the van Gogh painting F205 shown in Figure 1.
The left side shows the unnormalized histograms of the nmeddwrizontal and vertical thread counts. The center colum
shows a heat map of how the thread count measurements defriate their respective averages: 13.33 threads/cm hori-
zontally and 16.01 threads/cm vertically. Each squareesponds to a spectrum sampled every 1/2 cm across the surface
in bothx andy. Black pixels indicate where the algorithm made no threait estimates. The thread angles are also
measured from the spectra and are shown in the right colunamufActurer cusping induces the “rainbow” pattern found
in the horizontal (warp) thread angles.

After highpass filtering, the spectral-based thread colgiarthm computes two-dimensional Fourier transformsifro
raised-cosine-windowed, overlapping sections takensaditoe entire image, an approach we term “short-space” &ouri
analysis. As indicated by our theory, peaks located nearghecal and horizontal axes are due to the periodic streatf
the canvas weave. Figure 1e shows a typical spectrum of @seBtecause of the possibility of weave pattern rotations,
the radius of the selected spectral peak corresponds thrtbad count. Peak locations are extracted from each spectru
with a post-processing heuristic applied to resolve casegich more than one spectral peak emerges because of weave
inhomogeneities or “interference” from the artist's woikle also measured the angle of the spectral peak and discovere
that thread angle variations provide a clear visualizatibausping. Typical weave distributions, weave deviatifsorg
average) and thread angle maps are shown in Figure 3. Tlhgtdsts reveal that the vertical threads correspond to the
warp direction on the original canvas roll (the criterioraismaller spread of the thread count distribution). Typadalur
investigations, the warp-direction weave maps show a fireroonsistent variability than do the weft-direction maps
The weave maps indeed show systematic variations in botvaine and weft directions, a kind of “fingerprint” for the
canvas, not the painting, that can be compared with otheitipgs. The angle maps markedly indicate the presence of
cusping of the warp threads along the painting’s top edgenamdhere else, reinforcing the conclusion that this cusping
occurred during commercial priming and that the painting{s edge corresponds to an edge of the canvas roll. To find
other paintings that could have come from the same roll, veel a@ algorithm that finds matching spatial weave variations
and locates the paintings’ relative positions in space.

3. WEAVE MAP MATCHING

Using the convention that the warp direction is verticalnfings made from canvas cut to the left or right of an analyze
painting should share the same variation pattern in weftendmie cut from above or below should share the same warp



variations. Because of the striping in both the vertical hodzontal weave maps, we averaged the vertical and hdgkon
counts along thread direction to create thread cpufilesfor the vertical and horizontal directions. Thus, for theiho
zontal thread counts, weave map values in each row weregeekrfor the vertical thread counts, columns were averaged.
For painting locations where no count was made, no valueibomed to the average. We demanded a minimum number of
counts contribute to the average; otherwise, no value wasged for the profile at that point. With these one-dimenalo
summaries of thread density variations, searching for hiragcx-rays having matching variations can be accomplished
with a cross-correlation technique. Because paintingntaitéon cannot be presumed to agree with canvas orientation
taking the various possibilities into account means catiy combinations of profiles and their reversed versidineg;,

h; represent the vertical and horizontal profiles for ifigaintings respectively and r@w) the reversed version of, the
following eight pairs of correlations must be consideredsto take into account the various rotations a canvas stggoor
undergo once it is cut from a roll and attached to a stretargpdinting:v; < vj, hj < hj, vi < hj, hi < vj, vi < rev(v;),

hi < rev(hj), vi < rev(h;j), hj < rev(vj). We took the maximum of these correlations as the potengal# match between
two paintings, with a weave match declared if the corretatias sufficiently large.

Several issues arise when using the usual cross-correfati@tion normalized to produce a correlation coefficient.
First of all, the profiles amount to small deviations added targe constant. For example, the warp variations of F205
shown in Figure 3 ist1 thread/cm about an average of 13.3 threads/cm. Becauke abh-zero offset, the raw cross-
correlation function will be insensitive to the much smalleread density variation. Secondly, if each profile’s ager
is subtracted to remove the constant term, the normalizdhiat is part of computing the correlation coefficient wititn
take into account the scale of the deviations. Because ektlgsues, a new cross-correlation method was developed.
The correlation coefficient is rooted in the Cauchy-Schvieeguality: |(x,y)| < ||X|| - ||y||- The problem is that equality,
equivalent to maximal correlation, occurs whel y. We demand maximal correlation when the two quantities qualke
not just proportional. Simple manipulations lead to whagimibe called the maximéihear correlation coefficient.

|1 < 11X - [Iyl] < maxt[[x]|2, [ly]1%}

Now, dividing the inner product by the maximum squared noigidg a value of one only whex=Yy. Note that if

a constant is subtracted from each the same result applies:m,y —m)| < max{||x—m||?, ||y — m||?}. Removing the
average thread count in this way leads to a similarity mesthat focuses on the same waveform and amplitude of weave
deviations. We takento be the average of the two profile’s average. Thus, if thepfile’s averages differ, the maximal
linear correlation coefficient will be reduced. The resigtmaximal cross-correlation function is

_ > m[Wi (M) —W] - [wj(m—7¢) —w|
max{ 3k [wi(k) — W2, 3 [wj (I — £) —w]2} ’

wherew; represents; or h; as appropriate. We further demanded that at least 10 cm ofsawverlap in the cross-
correlation calculations.

ri,j(£)

Figure 4 shows the maximal linear cross-correlations betw/o pairs of paintings that illustrate warp and weft-
direction weave matches. F205'’s vertical threads cormspo weft threads and its weave pattern matches that of F260
(again vertical threads). Note that the cross-correlgtigak is broad, which lessens the precision of the alignninth
broad cross-correlation peaks typify weft-direction weeawatches. In depicting and describing weave matches, warp
threads run vertically and weft threads horizontally. T tiis weft match means that the canvas supports for thestinqzs
were cut from the same canvas roll, side-by-side. The weaygsifor the paintings F597 and F748 match in warp, the
more consistent direction. The maximal linear cross-datien value for this case was7®; the peak is broader than
other warp-direction matches we have found. In general,ave Found that cross-correlation functions for warp-diet
matches are far narrower than weft-direction matches amdijoe larger correlation values (exceedir@3dn some cases).
This warp-direction match implies that the supports for paetings were cut from the same canvas bolt one above the
other.

We need to understand the underlying reason for these carssiation function differences, which leads to needing
a criterion for thresholding the cross-correlation fuantthat incorporates the differing characteristics of wangd weft

TThe maximal correlation coefficient between two randomalagsX andY is defined as the maximal value of da(X),n(Y)}
with respect to all possible functionx-), n(-).
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Figure 4: Panel (a) shows the maximal cross-correlationtfon between the vertical (weft) weave patterns of F205 and
F260. The convention is that the weave maps are rotated tacrttiir position on a canvas roll: horizontal is the weft
direction and vertical is warp. Panel (b) shows both pafrsimveave maps, with the weave maps aligned according to the
correlation function peak. Panels (c) and (d) shows the sprastities for van Gogh’s paintings F597 and F748, this time
illustrating a warp weave pattern alignment. A clear catieh peak is evident for the vertical (warp) threads oncég~7
was rotated 180 The threshold for peak correlation for warp matches isdatgid by the horizontal dashed line.

weave patterns. We model the profiles that summarize two evpatterns as statistically independent, identically dis-
tributed random processeg(n), w;(n), which makes the expected value of the empirical crossetadion is zero. What

is of interest is the probability that this cross-correlatexceeds a threshold despite the two profiles being uackl&te
shall assume the quantiR= > nWi(n)w;j(n) is approximately Gaussian, which means we only need to aiits variance

to estimate the probability that the cross-correlatioreexis a threshold.

N—-1
E {ﬁﬂ — ﬁzm) (NRZ(O) +221(N —Z)Rl(f)Rz(€)>

Here,N denotes the number of values in the cross-correlation immeistimate and is equivalent to the length of canvas
over which two weave maps are compared. The most interestisg has equal correlation functions: the two profiles
have the same statistical structure but are statisticatlgpendent of each other. After simplification that incogpes this
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assumption, we have
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1+ 27211 (1—%) pz(e)] (5)

To estimate the variance, we computed the term in bracketthéevery x-ray in the van Gogh database. In this
database, each weave pattern was marked as representimgrther weft direction. The result for the two directions is
shown in Figure 5a. Clearly, the weft thread pattern tendsdhl larger correlation variances than the warp, the neaso
being the lower-frequency nature of weft-thread countatarns in the warp direction. Because of histogram spread,
no typical value portrays the behavior. Figure 5b shows igu@ot of (5), the standard deviation, for two values of
the bracketed term. With this plot, thresholds for declgudnsignificant cross-correlation can be established, asasel
determining the smallest overlap that can yield acceptadslelts. With a Gaussian model, an empirical cross-cdioala
exceeding two standard deviations is very low]RPs 20] = 0.023. This rule-of-thumb can be used to determine a
threshold. For example, at a 0.5 cm evaluation interval feave maps, a 10 cm canvas overlapNas 20 values in the
cross-correlation function estimate. A two-standardiatiwn threshold would thus be abouttor the smaller value of
the bracketed term but@ for the larger, an unreasonable value. To achieve the saliability for what might be a weft
match having the larger value, at least 50 values must beinskd estimate (25 cm of overlap is required). This analysis
indicates why weft matches tend to be more difficult to disdesm individual x-rays (in that many false-positives ogcu

wherep(¢) is the correlation-coefficient function.

4. RESULTS

To date, x-rays made from a total of 292 paintings by van Gdgive been analyzed for thread-count and angle maps and
processed for any viable weave matches. To date, thirtyesiapf paintings exceed our threshold for declaring a weave
match in either warp or weft. We are currently examining ¢heliques in detail, but one clique of forty-four paintings
stands out. The weave matches also include the thread apglasings placed along the edges because of the wave match
all indicate primary cusping, confirming their putative gdanent along a canvas roll edge. All of these were painted on
pieces of “ordinary” quality canvas cut from commerciallynped rolls, which van Gogh is known to have customarily

*His output is well over 800 paintings. Consequently, lessthne-third of van Gogh's painting output has been examined



ordered from the Paris company Tasset et L'Hote in the ledadh period of his production. Painting positions enfdrce

by warp matches span the width of a commercial canvas rol) é2rd extend over a minimum length of 12m (rolls had a
maximum length of 10m). If indeed these paintings were madseagtions cut from the same roll of canvas, the datings
suggest that the same canvas roll was used over a periodeaisaglighteen months and two residence changes. We believe
this an unlikely possibility. Instead, we conclude that method identifies canvas rolls cut from the sanoéd of cloth
supplied to the commercial priming compahf chemical analysis of the ground would contribute add#ignformation

so that this clique could be objectively separated intodidues based on sharing several measurements.

5. CONCLUSIONS

Signal processing has shown to play an important role inrgiéténg authenticity, as well as helping to date works and
provide a better understanding of the sequence of artistglyction. Whereas the signal processing tools described
in® consider colors and brushstrokes evident at the paintarithe algorithms outlined here help to fingerprint the
different types of canvas picture support used. Automatibiques based on two-dimensional spectral analysisaveav
estimation and correlation techniques have provided faerimdormation about the weave than has been possible to date
Together, these different signal processing measurenpeatéde valuable new insights into the artist’s technicadl a
creative processes, complementing traditional typesfofimation gained by chemical analysis of painting matsréaaid
study of historical sources.

As the size of the database increases to include artist®saspanning four centuries, we are learning the variety of
weave patterns used in manufacturing artist canvas. Thaserps have different specftanost of which are dominated
by horizontal and vertical peaks. We have derived the spélolise weave patterns yield and have developed accordingly
spectral algorithms that can cope with all that have been gedate. In this way, we hope to move toward our goal of a
truly automatic thread counting algorithm that providetaded information for weave matching algorithms.
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