next up previous
Next: About this document ...

eqn1:\includegraphics[scale=0.330000]{system1.ps}

eqn2: $I_1 = 300\rm mA$

eqn3:\includegraphics[scale=0.650000]{bodyequiv.ps}

eqn4: $10^5 \Omega /{\rm cm}^2$

eqn5:$5^\circ$

eqn6:$1^\circ$

eqn7:$f<1000$

eqn8: ${\rm watt}/{\rm cm}^2$

eqn9:$f>3000$

eqn10:$\pm0.3\%$

eqn11:\includegraphics[scale=0.650000]{flashlight1.ps}

eqn12:\includegraphics[scale=0.650000]{flashlight4.ps}

eqn13:$\Omega$

eqn14:$\Omega$

eqn15:$R$

eqn16:$R_0$

eqn17:$\delta$

eqn18: $R_0(1 \pm \delta)$

eqn19:$\Omega$

eqn20: $\bar{R} = \frac{1}{N}\sum_n R_n$

eqn21:\includegraphics[scale=0.650000]{flashlight3.ps}

eqn22:\includegraphics[scale=0.400000]{fig2.ps}

eqn23:\includegraphics[scale=0.400000]{fig3.ps}

eqn24:$50\Omega$

eqn25: $y(t) = A \sin(\omega t)$

eqn26:$A$

eqn27:\includegraphics[scale=0.650000]{fig4.ps}

eqn28:$R_{out}$

eqn29:$R_{L}$

eqn30:$\infty$

eqn31:$R_{out}$

eqn32:$R_L$

eqn33:$R_{out}$

eqn34:$R_L$

eqn35:$R_{out}$

eqn36:$R_L$

eqn37:$R_L$

eqn38:$R_{out}$

eqn39:\includegraphics[scale=0.500000]{interface.ps}

eqn40:$R_{out}$

eqn41:\includegraphics[scale=0.650000]{ckt2.3.2.ps}

eqn42:\includegraphics[scale=0.650000]{voltage_div.ps}

eqn43: $\displaystyle v_{out} = \frac{R_2}{R_1 + R_2} v_{in}$

eqn44: $\displaystyle \frac{v_{out}}{v_{in}} = \frac{R_2}{R_1 + R_2}$

eqn45:$R_1$

eqn46:$R_2$

eqn47:$v_{in}$

eqn48:$R_1$

eqn49:$R_2$

eqn50:$v_{out}$

eqn51:$R$

eqn52:$R_1$

eqn53:$R_2$

eqn54:$R_1$

eqn55:$R_2$

eqn56:$R_1$

eqn57:$R_2$

eqn58:$Z_1$

eqn59:$Z_2$

eqn60:$V_{in}$

eqn61:$V_{out}$

eqn62: $\displaystyle H(f)=\frac{V_{out}}{V_{in}} = \frac{Z_2}{Z_1 + Z_2}$

eqn63:$R_2$

eqn64:\includegraphics[scale=0.650000]{low_pass_phasor.ps}

eqn65: $\displaystyle H(f)=\frac{V_{out}}{V_{in}} = \frac{Z_2}{Z_1 + Z_2} = \frac{1/j2\pi fC}{(1/j2\pi fC)+R} = \frac{1}{j2\pi fRC+1}$

eqn66:$H(f)$

eqn67:$f$

eqn68:$f$

eqn69:$\Omega$

eqn70:$\Omega$

eqn71:$\Omega$

eqn72:$\Omega$

eqn73:$\Omega$

eqn74:$\Omega$

eqn75: $\displaystyle V_{RMS} = \sqrt{\frac{1}{T}\int_0^T v^2(t)dt}$

eqn76: $V_{RMS} = 0.707 V_{Peak}$

eqn77:$\Omega$

eqn78:$R_1$

eqn79:$R_2$

eqn80:\includegraphics[scale=0.650000]{ckt3.1.1.ps}

eqn81:$v_{out}/v_s$

eqn82:$V_{out}$

eqn83:$\Omega$

eqn84:$\Omega$

eqn85:$\Omega$

eqn86:\includegraphics[scale=0.400000]{ckt3.1.2.ps}

eqn87:$R_S$

eqn88:$R_L$

eqn89:$\alpha$

eqn90:$\alpha$

eqn91:$\alpha R$

eqn92:$(1-\alpha) R$

eqn93:$R$

eqn94:\includegraphics[scale=0.650000]{pot1.ps}

eqn95: $\displaystyle v_{out} = \frac{R_2}{R_1 + R_2} v_{in} = \frac{\alpha R}{(1-\alpha)R + \alpha R} v_{in}= \alpha v_{in}$

eqn96:$\Omega$

eqn97:$\Omega$

eqn98:$\Omega$

eqn99:\includegraphics[scale=0.650000]{ckt3.1.3.ps}

eqn100:$v_{out}$

eqn101:$v_{out}$

eqn102:$v_{in}$

eqn103:$V_0$

eqn104:$\alpha$

eqn105: $v_{out}(t) = V_0 \alpha(t)$

eqn106:$R = f(x)$

eqn107:$x$

eqn108:$p(t)$

eqn109:$R=R_0 + kp$

eqn110: $v_{out}(t) = I_0R(t) = I_0 R_0 + I_0 k p(t) = V_0 + I_0 k p(t) = V_0 + K p(t)$

eqn111:$K = I_0 k$

eqn112:\includegraphics[scale=0.650000]{ckt3.1.4a.ps}

eqn113:$K p(t)$

eqn114:$V_0$

eqn115:$R_0$

eqn116:$R_0$

eqn117:\includegraphics[scale=0.650000]{ckt3.1.4b.ps}

eqn118:$\pm 20 \rm V$

eqn119:\includegraphics[scale=0.650000]{pwr_bus1.ps}

eqn120:$\Omega$

eqn121:$v_{out}$

eqn122:$v_{out}$

eqn123:\includegraphics[scale=0.650000]{freq_resp.ps}

eqn124:$v_{in}$

eqn125:$v_{out}$

eqn126:$f_1$

eqn127:$v_{in}$

eqn128:\includegraphics[scale=0.650000]{phase.ps}

eqn129:$\vert V_{in}\vert$

eqn130:$\vert V_{out}\vert$

eqn131: $\displaystyle \vert H(f_1)\vert = \frac{\vert V_{out}\vert}{\vert V_{in}\vert}$

eqn132:$t'$

eqn133: $\sin(2\pi f_1 t)=0$

eqn134:$v_{in}$

eqn135: $\sin(2\pi f_1 t' + \phi)=0$

eqn136:$v_{out}$

eqn137: $\phi = \angle H(f_1)$

eqn138: $2\pi f_1 t' + \phi = 0$

eqn139: $\phi = -2\pi f_1 t' = -2\pi t'/T$

eqn140:$T$

eqn141: $\displaystyle \angle H(f_1) = -360\frac{t'}{T}$

eqn142:$f_1$

eqn143:$\Omega$

eqn144:$\mu$

eqn145:$\Omega$

eqn146:$\mu$

eqn147:$\mu$

eqn148: $33 \times 10^4$

eqn149:\includegraphics[scale=0.650000]{ckt3.2.1.ps}

eqn150:$v_{in}$

eqn151:$v_{out}$

eqn152: $v_{out} = \frac{R_2}{R_1 + R_2} v_{in} = A v_{in}$

eqn153:$A \le 1$

eqn154: $v_{out} = A V_{in}$

eqn155:$A > 1$

eqn156:$A < -1$

eqn157: $i_{out} = A_i i_{in}$

eqn158:\includegraphics[scale=0.650000]{pwr_bus3.ps}

eqn159:$\Omega$

eqn160:$\Omega$

eqn161:\includegraphics[scale=0.640000]{opamps/cktsym.ps}

eqn162:$V_{CC+}$

eqn163:$V_{CC-}$

eqn164:$V_{CC+}$

eqn165:$V_{CC-}$

eqn166:$V_{CC-}$

eqn167:$V_{CC+}$

eqn168:$v_{in}$

eqn169:\includegraphics[scale=0.650000]{opamps/open_loop.ps}

eqn170:$v_{in}$

eqn171:$v_{in}$

eqn172:$v_{out}$

eqn173:$v_{out}$

eqn174:$v_{out}$

eqn175:$\Omega$

eqn176:$v_{out}$

eqn177:$\Omega$

eqn178:$v_{out}$

eqn179:$\Omega$

eqn180:$\Omega$

eqn181:$\Omega$

eqn182:$A$

eqn183:$\Omega$

eqn184:$R_1$

eqn185:$R_F$

eqn186:\includegraphics[scale=0.650000]{inv_opamp.ps}

eqn187: $A_v = \frac{V_{out}}{V_{in}}$

eqn188:$V_{out}$

eqn189:$V_{in}$

eqn190:$R_F$

eqn191:$\Omega$

eqn192:$\Omega$

eqn193:$\Omega$

eqn194:$\mu$

eqn195:$R_F$

eqn196:$R_F I_F$

eqn197:$R_F$

eqn198:$R_1$

eqn199: $v_{out} = -R_F I_F = -R_F I_{in}$

eqn200:$v=Ri$

eqn201:$\Omega$

eqn202:\includegraphics[scale=0.650000]{photo_opamp.ps}

eqn203:$v_{out}$

eqn204:$v_{out}$

eqn205:$v_{out}$

eqn206:$-R_F i_d$

eqn207:$R_1$

eqn208:\includegraphics[scale=0.650000]{mic_opamp.ps}

eqn209:$R_1$

eqn210:$v_{in}$

eqn211:$v_{out}$

eqn212:$R_1$

eqn213:$v_{out}$

eqn214:\includegraphics[scale=0.650000]{opamps/summer.ps}

eqn215: $v_{out} = -(\frac{R_F}{R_1}v_1 + \frac{R_F}{R_2}v_2)$

eqn216:\includegraphics[scale=0.650000]{ckt4.3.3a.ps}

eqn217:\includegraphics[scale=0.550000]{ckt4.3.3b.ps}

eqn218:$R_2$

eqn219:$\mu$

eqn220:$v_{out}$

eqn221:$\Omega$

eqn222:$\Omega$

eqn223:$v_{out}$

eqn224: $\displaystyle {\rm power\: ratio\: in\: dB} = 10 \log(\frac{P_1}{P_0})$

eqn225:$P_0$

eqn226:$P_1$

eqn227:$\log()$

eqn228:$V_1$

eqn229:$V_2$

eqn230:$R_L$

eqn231: $\displaystyle 10 \log(\frac{P_1}{P_0}) = 10 \log(\frac{{V_1}^2/R_L}{{V_2}^2/R_L}) = 20 \log(\frac{V_1}{V_0})$

eqn232: $10^{-12}\rm W/m^2$

eqn233:$1\rm W/m^2$

eqn234: $10^{-12}\rm W/m^2$

eqn235: $10^{-5}\rm N/m^2$

eqn236:$p_0$

eqn237: $\displaystyle {\rm SPL} = 20 \log(\frac{p}{p_0})$

eqn238:$f_2$

eqn239:$f_1$

eqn240:$\vert H(f_2)\vert$

eqn241:$\vert H(f_2)\vert$

eqn242: $20 \log(1/10) = -20$

eqn243: $20 \log(1/2) = -6.02$

eqn244:$1/n^2$

eqn245:$\sin(x)/x$

eqn246:\includegraphics[scale=0.650000]{ckt5.1.ps}

eqn247:$v_{in}$

eqn248:$v_{in}$

eqn249:$v_{out}$

eqn250:$v_{out}$

eqn251:$\Omega$

eqn252:$R_3$

eqn253:\includegraphics[scale=0.550000]{ckt5.2.ps}

eqn254:$v_{sound}$

eqn255:\includegraphics[scale=0.650000]{ckt6.1.ps}

eqn256:\includegraphics[scale=0.650000]{ckt6.2.ps}

eqn257:$\mu$

eqn258:\includegraphics[scale=1.000000]{electro_minus.ps}

eqn259:\includegraphics[scale=0.650000]{headphone_amp.ps}

eqn260:$v_{out}$

eqn261:$v_{in}$

eqn262:$v_{in}$

eqn263:\includegraphics[scale=0.500000]{ckt6.3.ps}

eqn264:\includegraphics[scale=0.500000]{ckt6.5.ps}

eqn265: $\log_2({\rm no.\; of\; levels}) \times ({\rm sampling\; frequency})$

eqn266:$v_{sound}$

eqn267:\includegraphics[scale=0.500000]{ckt6.4.ps}

eqn268:\includegraphics[scale=0.500000]{ckt7.1.ps}

eqn269:$\Omega$

eqn270:$\Omega$

eqn271:\includegraphics[scale=0.500000]{ckt7.2.ps}

eqn272: $\displaystyle a_0 y(n) = \sum^M_{k=1} a_k y(n-k) + \sum^N_{k=0} b_k x(n-k)$

eqn273:$a_k$

eqn274:$b_k$

eqn275:$a_k$

eqn276:$a_0$

eqn277:$b_k$

eqn278: $\frac{\sin(x)}{x}$

eqn279:$a$

eqn280:$a_1$

eqn281: $\cos(2\pi f_0 n)$

eqn282:$f_0$

eqn283: $\cos(2\pi f_0 n)$

eqn284: $\cos(2\pi f_0 n)$

eqn285:$f_0$

eqn286:$a_1$

eqn287: $\cos(2\pi \frac{1}{2} n)$

eqn288:$\cos(n\pi)$

eqn289:$(-1)^n$

eqn290:$\cos(n\pi)$

eqn291:$a$

eqn292:$b$

eqn293:$b$

eqn294:$a$

eqn295:\includegraphics[scale=0.500000]{ckt8.1.ps}

eqn296:$v_{out}$

eqn297: $\displaystyle SNR=10 \log_{10}\left(\frac{\frac{1}{T}\int_0^T s(t)^2 dt}{\frac{1}{T}\int_0^T n(t)^2 dt}\right)$

eqn298:$An$

eqn299:$(-1)^n$

eqn300:$(-1)^n$

eqn301:$f/F_s$

eqn302:$2\pi f/F_s$

eqn303:$2\pi f/F_s$

eqn304:$P_T$

eqn305:$r$

eqn306:$\rm W/m^2$

eqn307: $\displaystyle S_{ISO}(r)=\frac{P_T}{4\pi r^2}$

eqn308:$\Omega$

eqn309: $\displaystyle S(r)=\frac{P_T}{\Omega r^2}$

eqn310: $\displaystyle G_{TA}=\frac{4\pi}{\Omega}$

eqn311: $\displaystyle S(r)=\frac{P_T G_{TA}}{4\pi r^2}$

eqn312:$S\: \rm W/m^2$

eqn313: $A_{eff}\: \rm m^2$

eqn314: $\displaystyle P_{rec}= S\cdot A_{eff} = \frac{P_T G_{TA}}{4\pi r^2} A_{eff}$

eqn315:\includegraphics[scale=0.330000]{system1.ps}

eqn316: $x(t)=A[1+s(t)]\cos 2\pi f_c t$

eqn317:$[1 + s(t)]$

eqn318: $i_D(t)=A[1+s(t)]$

eqn319:$A$

eqn320:$\pm 25 \rm mA$

eqn321:$A = 10 \rm mA$

eqn322:$i_D$

eqn323:\includegraphics[scale=0.550000]{ckt9.2.ps}

eqn324:$v_0$

eqn325: $i_D = -\frac{v_s}{100} -\frac{-15}{1500} = 10[1-v_s]\rm mA$

eqn326:$v_1$

eqn327:$40^\circ$

eqn328:$1 {\rm mm}^2$

eqn329:$d$

eqn330:$\pi d^2/4$

eqn331:\includegraphics[scale=0.550000]{ckt9.3.ps}

eqn332:\includegraphics[scale=0.550000]{ckt9.5.ps}

eqn333:\includegraphics[scale=0.550000]{ckt9.1.ps}

eqn334:\includegraphics[scale=0.550000]{ckt9.2.ps}

eqn335:$\Omega$

eqn336:$v_1$

eqn337:$v_s$

eqn338:$v_1$

eqn339:$v_s$

eqn340:$90^\circ$

eqn341:\includegraphics[scale=0.600000]{ckt9.3.ps}

eqn342:$v_r$

eqn343:\includegraphics[scale=0.600000]{ckt9.5.ps}

eqn344:$v_1$

eqn345:$i_D$

eqn346:$v_1$

eqn347:$R_2$

eqn348:$R_1$

eqn349:$v_{ro}$

eqn350:$v_{ro}$

eqn351: $\displaystyle 20\log_{10}\left(\frac{v_{s+n}}{v_n}\right)$

eqn352:$30^\circ$

End of File



next up previous
Next: About this document ...
J. D. Wise 2006-09-12