next up previous
Next: About this document ...

eqn1:\includegraphics[scale=0.650000]{../241/bodyequiv.ps}

eqn2: $10^5 \Omega /{\rm cm}^2$

eqn3:$5^\circ$

eqn4:$1^\circ$

eqn5:$f<1000$

eqn6: ${\rm watt}/{\rm cm}^2$

eqn7:$f>3000$

eqn8:$\pm0.3\%$

eqn9:\includegraphics[scale=0.650000]{../241/flashlight1.ps}

eqn10:\includegraphics[scale=0.500000]{../241/flashlight4.ps}

eqn11:$\Omega$

eqn12:$\Omega$

eqn13:$R$

eqn14:$R_0$

eqn15:$\delta$

eqn16: $R_0(1 \pm \delta)$

eqn17:$\Omega$

eqn18: $\bar{R} = \frac{1}{N}\sum_n R_n$

eqn19:\includegraphics[scale=0.650000]{../241/flashlight3.ps}

eqn20:\includegraphics[scale=0.650000]{../241/flashlight2.ps}

eqn21:$V_{bulb}$

eqn22:$V_{bat}$

eqn23:$V_{res}$

eqn24:$V_{bulb}$

eqn25:$V_{bulb}$

eqn26: $V_{res} = V_{bat} - V_{bulb}$

eqn27:$I = V_{res}/R$

eqn28:$R$

eqn29:$I$

eqn30:$V_{bulb}$

eqn31: $R=R_0 e^{B(\frac{1}{T}-\frac{1}{T_0})}$

eqn32:$R$

eqn33:$T$

eqn34:$R_0$

eqn35:$T_0$

eqn36: $f(t)=f(t+nT) \; \forall n,$

eqn37:$T$

eqn38:\includegraphics[scale=0.400000]{../241/fig2.ps}

eqn39:\includegraphics[scale=0.400000]{../241/fig3.ps}

eqn40:$50\Omega$

eqn41: $y(t) = A \sin(\omega t)$

eqn42:$A$

eqn43:\includegraphics[scale=0.500000]{../241/interface.ps}

eqn44:\includegraphics[scale=0.650000]{../241/fig4.ps}

eqn45:$R_{out}$

eqn46:$R_L$

eqn47:$R_{out}=0$

eqn48:$R_{out}$

eqn49:$R_{out}$

eqn50:$R_L$

eqn51:$R_{out}$

eqn52:$R_L$

eqn53:\includegraphics[scale=0.650000]{../241/ckt2.3.2.ps}

eqn54:\includegraphics[scale=0.500000]{daq_interf.ps}

eqn55:\includegraphics[scale=0.400000]{conn_symh.ps}

eqn56:\includegraphics[scale=0.500000]{ckt4.1.1.ps}

eqn57:\includegraphics[scale=0.500000]{ckt4.1.2.ps}

eqn58:\includegraphics[scale=0.500000]{flashlight2.ps}

eqn59:$V_{res}$

eqn60:$I$

eqn61: $R_{bulb}=V_{bulb}/I$

eqn62:$V_{bat}$

eqn63:$V_{res}$

eqn64: $V_{res} = V_{bat} - V_{bulb}$

eqn65:$R_T$

eqn66:\includegraphics[scale=0.500000]{ckt3.3.4.ps}

eqn67:$V_S$

eqn68:$V_T$

eqn69:$R_T$

eqn70:$V_T$

eqn71:$V_T$

eqn72:$R_T$

eqn73:$V_S$

eqn74:$V_T$

eqn75: $I_T=I_S=(V_S-V_T)/R_S$

eqn76:$R_T=V_T/I_T$

eqn77: $\displaystyle R_T=\frac{V_T}{V_S-V_T}R_S$

eqn78:$I_T$

eqn79:$V_T$

eqn80:$V_S$

eqn81:$R_S$

eqn82:$V_S$

eqn83:$R_S$

eqn84:$V_T$

eqn85:$I_T$

eqn86:$V_T$

eqn87:$I_T$

eqn88:$R_T=V_T/I_T$

eqn89:$V_T$

eqn90:$R_T$

eqn91: $\displaystyle T=300\frac{10000}{RT}$

eqn92:$RT$

eqn93:$R_T$

eqn94:$T$

eqn95:$RT$

eqn96:$R_T$

eqn97: $\sin(\omega t)$

eqn98:$t$

eqn99:$t$

eqn100:$V_S$

eqn101:$V_S$

eqn102:$V_S$

eqn103:\includegraphics[scale=0.500000]{ckt3.3.5.ps}

eqn104:$V_T$

eqn105:$V_T$

eqn106:$V_T$

eqn107:$V_S$

eqn108:$V_S$

eqn109:$V_S$

eqn110:$V_S$

eqn111:\includegraphics[scale=0.500000]{ckt4.2.2.ps}

eqn112: $\frac{1}{2^{16}}$

eqn113: $A=\frac{v_{out}}{v_{in}}$

eqn114:$A$

eqn115:$A_v$

eqn116: $i_{out} = A_i i_{in}$

eqn117:$A_i$

eqn118:\includegraphics[scale=0.650000]{pwr_bus8.ps}

eqn119:$\Omega$

eqn120:$\Omega$

eqn121:\includegraphics[scale=0.640000]{opamps/cktsym.ps}

eqn122:$V_{CC+}$

eqn123:$V_{CC-}$

eqn124:$V_{CC+}$

eqn125:$V_{CC-}$

eqn126:$V_{CC-}$

eqn127:$V_{CC+}$

eqn128:$v_{in}$

eqn129:\includegraphics[scale=0.650000]{opamps/open_loop.ps}

eqn130:$v_{in}$

eqn131:$v_{in}$

eqn132:$v_{out}$

eqn133:$v_{out}$

eqn134:$v_{out}$

eqn135:$\Omega$

eqn136:$v_{out}$

eqn137:$\Omega$

eqn138:$v_{out}$

eqn139:$\Omega$

eqn140:$\Omega$

eqn141:$\Omega$

eqn142:$A$

eqn143:$\Omega$

eqn144:$R_1$

eqn145:$R_F$

eqn146:\includegraphics[scale=0.650000]{../241/inv_opamp.ps}

eqn147: $A_v = \frac{V_{out}}{V_{in}}$

eqn148:$V_{out}$

eqn149:$V_{in}$

eqn150:$R_F$

eqn151:$\Omega$

eqn152:\includegraphics[scale=0.650000]{opamps/summer.ps}

eqn153: $v_{out} = -(\frac{R_F}{R_1}v_1 + \frac{R_F}{R_2}v_2)$

eqn154:$R_F$

eqn155:$R_1$

eqn156:$R_2$

eqn157:$v_{out}$

eqn158:$v_1$

eqn159:$v_2$

eqn160:$v_1$

eqn161:$v_2$

eqn162:$R_1=R_F$

eqn163:$R_2$

eqn164:$v_1$

eqn165:$v_2$

eqn166:$v_{out}$

eqn167:$v_{out}$

eqn168:$v_{mic}$

eqn169:$R_2$

eqn170:\includegraphics[scale=0.500000]{ckt7.1.1.ps}

eqn171: $v_{out}=(1+\frac{R_2}{R_1})v_{in}$

eqn172:$R_1$

eqn173:$R_2$

eqn174:$v_{in}$

eqn175:$v_{in}$

eqn176:$v_{out}$

eqn177:$v_{in}$

eqn178:\includegraphics[scale=0.500000]{opamps/diff2.ps}

eqn179: $\displaystyle v_{out}=-\frac{R_2}{R_1}v_1+\frac{R_4}{R_3+R_4}\frac{R_1+R_2}{R_1}v_2$

eqn180:$R_3=R_1$

eqn181:$R_4=R_2$

eqn182: $\displaystyle v_{out}=\frac{R_2}{R_1}(v_2-v_1)$

eqn183:$v_1$

eqn184:$v_2$

eqn185:$v_{out}$

eqn186:$v_1$

eqn187:$v_2$

eqn188:$R_2$

eqn189:$R_4$

eqn190:\includegraphics[scale=0.500000]{ckt3.3.4.ps}

eqn191:\includegraphics[scale=0.500000]{ckt4.2.2.ps}

eqn192:\includegraphics[scale=0.500000]{ckt8.0.1.ps}

eqn193:$R_2$

eqn194:$R_S$

eqn195:$R_1$

eqn196:$R_T$

eqn197:$V_S$

eqn198:$V_S$

eqn199:$v_a$

eqn200:$V_T$

eqn201: $\displaystyle v_a = \frac{R_1}{R_1+R_2} V_{ref}$

eqn202:$v_a$

eqn203:$R_1$

eqn204: $\displaystyle \frac{d v_0}{d R_1} = \frac{R_2}{(R_1+R_2)^2}V_{ref}$

eqn205:$\Delta R$

eqn206:$R_1$

eqn207:$v_a$

eqn208: $\displaystyle \Delta v_a = \frac{R_2\Delta R}{(R_1+R_2)^2}V_{ref}$

eqn209:$R$

eqn210:$R_2=R$

eqn211: $\displaystyle \Delta v_a = \frac{1}{4}\frac{\Delta R}{R}V_{ref}$

eqn212: $\displaystyle \frac{\Delta R}{R}=4\frac{\Delta V}{V_{ref}}$

eqn213:$v_a$

eqn214:$v_a$

eqn215:$v_a$

eqn216:\includegraphics[scale=0.500000]{ckt8.0.2.ps}

eqn217: $v_0 = v_a - v_b$

eqn218:$v_0$

eqn219:\includegraphics[scale=0.500000]{ckt8.0.5.ps}

eqn220:$v_a-v_b$

eqn221:\includegraphics[scale=0.500000]{opamps/diff2.ps}

eqn222:\includegraphics[scale=0.500000]{ckt8.0.3.ps}

eqn223: $\displaystyle v_{out}=-\frac{R_2}{R_1}v_1+\frac{R_4}{R_3+R_4}\frac{R_1+R_2}{R_1}v_2$

eqn224:$R_3=R_1$

eqn225:$R_4=R_2$

eqn226: $\displaystyle v_{out}=\frac{R_2}{R_1}(v_2-v_1)$

eqn227: $v_{out}=G_2v_2 - G_1v_1$

eqn228:$G_2$

eqn229:$G_d$

eqn230:$G_1$

eqn231:$G_2$

eqn232: $G_{cm}=G_2-G_1$

eqn233: $v_{out}=(G_d+\frac{1}{2}G_{cm})v_2 - (G_d-\frac{1}{2}G_{cm})v_1$

eqn234: $v_{out}=G_d (v_2-v_1) +\frac{1}{2}G_{cm}(v_2+v_1)$

eqn235:$G_d$

eqn236:$G_{cm}$

eqn237: $CMRR=20\log_{10}\frac{G_d}{\left\vert G_{cm}\right\vert}$

eqn238:\includegraphics[scale=0.500000]{ckt8.0.4.ps}

eqn239: $v_{out}=R_mi_{in}$

eqn240:$R_m$

eqn241:$R_m$

eqn242:$v_{in}$

eqn243:$i_{out}$

eqn244: $i_{out}=G_mv_{in}$

eqn245:$R_F$

eqn246:$R_F I_F$

eqn247:$R_F$

eqn248:$R_1$

eqn249: $v_{out} = -R_F I_F = -R_F I_{in}$

eqn250:$v=Ri$

eqn251:\includegraphics[scale=0.500000]{photo_opamp.ps}

eqn252:$v_{out}$

eqn253:$v_{out}$

eqn254:$-R_F i_d$

eqn255:\includegraphics[scale=0.500000]{ckt6.1.5.ps}

eqn256:\includegraphics[scale=0.500000]{ckt6.1.6.ps}

eqn257:\includegraphics[scale=0.500000]{ckt5.3.5.ps}

eqn258:$v_{drive}$

eqn259:$v_{drive}$

eqn260:$v_1$

eqn261:$v_{LED}$

eqn262:$v_1$

eqn263:$v_{drive}$

eqn264:$v_{drive}$

eqn265:$i_{LED}$

eqn266:$v_{drive}$

eqn267:$R_F$

eqn268:$R_F$

eqn269:\includegraphics[scale=0.500000]{ckt5.3.6.ps}

eqn270:$v_{photo2}$

eqn271: $v_{photo2}/i_d$

eqn272:\includegraphics[scale=0.500000]{ckt8.1.1.ps}

eqn273:$R_G$

eqn274: $\displaystyle G=5+\frac{80\rm k\Omega}{R_G}$

eqn275:$G$

eqn276:$v_{in-}$

eqn277:$v_{in+}$

eqn278:$v_{out}$

eqn279:\includegraphics[scale=0.500000]{ckt8.1.2.ps}

eqn280:$P_1$

eqn281:$P_2$

eqn282:\includegraphics[scale=0.500000]{ckt8.1.3.ps}

eqn283:$V_P$

eqn284:$V_P$

eqn285:\includegraphics[scale=0.640000]{ckt8.2.5.ps}

eqn286:\includegraphics[scale=0.640000]{ckt8.2.1.ps}

eqn287:\includegraphics[scale=0.500000]{ckt8.2.3.ps}

eqn288:$V_{CC}$

eqn289:$R_1$

eqn290:$R_2$

eqn291:$v_{in}$

eqn292:$v_{out}$

eqn293:$v_{out}$

eqn294:\includegraphics[scale=0.500000]{ckt8.2.4.ps}

eqn295:$v_m$

eqn296:$K_p$

eqn297:$K_i$

eqn298:\includegraphics[scale=0.500000]{ckt8.3.2.ps}

eqn299:$\frac{1}{s}$

eqn300:$\frac{K_i}{s}$

eqn301: $K_i\int_0^tf(\tau)d\tau$

eqn302:$K_p$

eqn303:$K_i$

eqn304:$K_p$

eqn305:$K_p$

eqn306:$K_i$

eqn307:\includegraphics[scale=0.650000]{voltage_div.ps}

eqn308: $\displaystyle v_{out} = \frac{R_2}{R_1 + R_2} v_{in}$

eqn309: $\displaystyle \frac{v_{out}}{v_{in}} = \frac{R_2}{R_1 + R_2}$

eqn310:$R_1$

eqn311:$R_2$

eqn312:$v_{in}$

eqn313:$R_1$

eqn314:$R_2$

eqn315:$v_{out}$

eqn316:$R$

eqn317:$R_1$

eqn318:$R_2$

eqn319:$R_1$

eqn320:$R_2$

eqn321:$Z_1$

eqn322:$Z_2$

eqn323:$V_{in}$

eqn324:$V_{out}$

eqn325: $\displaystyle H(f)=\frac{V_{out}}{V_{in}} = \frac{Z_2}{Z_1 + Z_2}$

eqn326:$R_2$

eqn327:\includegraphics[scale=0.650000]{low_pass_phasor.ps}

eqn328: $\displaystyle H(f)=\frac{V_{out}}{V_{in}} = \frac{Z_2}{Z_1 + Z_2} = \frac{1/j2\pi fC}{(1/j2\pi fC)+R} = \frac{1}{1+j2\pi fRC}$

eqn329:$H(f)$

eqn330:$f$

eqn331:$f$

eqn332:$H(f)$

eqn333:$H(f)$

eqn334: $\displaystyle \vert H(f)\vert=\frac{\vert V_{out}(f)\vert}{\vert V_{in}(f)\vert}$

eqn335: $\displaystyle \angle H(f)=\angle V_{out}(f) - \angle V_{in}(f)$

eqn336:$\tau=RC$

eqn337: $f_0=\frac{1}{2\pi RC}$

eqn338: $\displaystyle H(f)=\frac{1}{1+j2\pi f \tau}=\frac{1}{1+j\frac{f}{f_0}}$

eqn339: $\displaystyle \vert H(f)\vert=\frac{1}{\vert 1+j\frac{f}{f_0}\vert}=\frac{1}{\sqrt{1+\frac{f^2}{f_0^2}}}$

eqn340:\includegraphics[scale=0.350000]{fr1.ps}

eqn341:$f = f_0$

eqn342: $\vert H(f)\vert=\frac{1}{\sqrt{2}}=0.707$

eqn343: $\angle H(f)=\frac{\pi}{4}$

eqn344: $\displaystyle {\rm power\: ratio\: in\: dB} = 10 \log(\frac{P_1}{P_0})$

eqn345:$P_0$

eqn346:$P_1$

eqn347:$\log()$

eqn348:$V_1$

eqn349:$V_2$

eqn350:$R_L$

eqn351: $\displaystyle 10 \log(\frac{P_1}{P_0}) = 10 \log(\frac{{V_1}^2/R_L}{{V_2}^2/R_L}) = 20 \log(\frac{V_1}{V_0})$

eqn352: $10^{-12}\rm W/m^2$

eqn353:$1\rm W/m^2$

eqn354: $10^{-12}\rm W/m^2$

eqn355: $10^{-5}\rm N/m^2$

eqn356:$p_0$

eqn357: $\displaystyle {\rm SPL} = 20 \log(\frac{p}{p_0})$

eqn358:$f_2$

eqn359:$f_1$

eqn360:$\vert H(f_2)\vert$

eqn361:$\vert H(f_2)\vert$

eqn362: $20 \log(1/10) = -20$

eqn363: $20 \log(1/2) = -6.02$

eqn364:$\log(f)$

eqn365:\includegraphics[scale=0.350000]{fr3.ps}

eqn366:\includegraphics[scale=0.650000]{freq_resp.ps}

eqn367:$v_{in}$

eqn368:$v_{out}$

eqn369:$f_1$

eqn370:$v_{in}$

eqn371:\includegraphics[scale=0.650000]{phase.ps}

eqn372:$\vert V_{in}\vert$

eqn373:$\vert V_{out}\vert$

eqn374: $\displaystyle \vert H(f_1)\vert = \frac{\vert V_{out}\vert}{\vert V_{in}\vert}$

eqn375:$t'$

eqn376: $\sin(2\pi f_1 t)=0$

eqn377:$v_{in}$

eqn378: $\sin(2\pi f_1 t' + \phi)=0$

eqn379:$v_{out}$

eqn380: $\phi = \angle H(f_1)$

eqn381: $2\pi f_1 t' + \phi = 0$

eqn382: $\phi = -2\pi f_1 t' = -2\pi t'/T$

eqn383:$T$

eqn384: $\displaystyle \angle H(f_1) = -360\frac{t'}{T}$

eqn385:$f_1$

eqn386:$\Omega$

eqn387:$\mu$

eqn388:$\Omega$

eqn389:$\mu$

eqn390:$\mu$

eqn391: $33 \times 10^4$

eqn392:$v_{in}$

eqn393:$v_{out}$

eqn394:\includegraphics[scale=0.500000]{ckt3.2.1.ps}

eqn395:$v_{out}$

eqn396:\includegraphics[scale=0.500000]{ckt3.2.3.ps}

eqn397:\includegraphics[scale=0.500000]{ckt4.3.1.ps}

eqn398:$v_{in}$

eqn399:$v_{out}$

eqn400:$v_{in}$

eqn401:$v_{out}$

eqn402:\includegraphics[scale=0.500000]{ckt4.3.2.ps}

eqn403:\includegraphics[scale=0.500000]{ckt7.3.1.ps}

eqn404: $G=\frac{R_F}{R_1}$

eqn405: $H=\frac{Z_F}{Z_1}$

eqn406:$Z_1$

eqn407:$Z_F$

eqn408:\includegraphics[scale=0.500000]{ckt7.3.7.ps}

eqn409: $\displaystyle Z_F=\frac{R_f/j2\pi f C_F}{R_F+1/j2\pi f C_F}=\frac{R_F}{j2\pi f R_FC_F+1}$

eqn410:$Z_1=R_1$

eqn411: $H(f)=\frac{Z_F}{R_1}=\frac{R_F}{R_1}\frac{1}{1+j\frac{f}{f_c}}$

eqn412: $f_c=\frac{1}{2\pi R_FC_F}$

eqn413:$\vert H\vert$

eqn414:$f$

eqn415:$R_F/R_1$

eqn416:$f_c$

eqn417:\includegraphics[scale=0.500000]{ckt7.3.8.ps}

eqn418: $R_1=R_F=\rm 2.2 k\Omega$

eqn419: $C_F=\rm0.33 \mu F$

eqn420:\includegraphics[scale=0.500000]{ckt7.3.2.ps}

eqn421:$R_F/R_1$

eqn422: $f_c=\frac{1}{2\pi R_1C_1}$

eqn423: $R_1=R_F=\rm 2.2 k\Omega$

eqn424: $C_1=\rm0.33 \mu F$

eqn425:\includegraphics[scale=0.500000]{ckt7.3.3.ps}

eqn426:\includegraphics[scale=0.500000]{ckt7.3.4.ps}

eqn427:\includegraphics[scale=0.500000]{ckt7.3.5.ps}

eqn428: $C_1=\rm0.33 \mu F$

eqn429:$L_1 =\rm 18mH$

eqn430:$R_F=470\Omega$

eqn431:$R_1$

eqn432:$f_0$

eqn433: $\displaystyle x(t)=\sum_n c_n e^{jn2\pi f_0t}$

eqn434:$c_n$

eqn435:$nf_0$

eqn436: $\displaystyle x(t)=\int^\infty_{-\infty} X(f) e^{j2\pi ft} df$

eqn437:$X(f)=0$

eqn438:$f=nf_0$

eqn439:$X(f)$

eqn440:$c_n$

eqn441:$x(t)$

eqn442:$x(t)$

eqn443:$X(f)$

eqn444:$-\infty$

eqn445:\includegraphics[scale=0.500000]{ckt6.3.2.ps}

eqn446:$v_{mix}$

eqn447:\includegraphics[scale=0.500000]{ckt9.2.0.ps}

eqn448:$v_{in}$

eqn449:$v_{in}$

eqn450:$v_{in}$

eqn451:$v_{in}$

eqn452:\includegraphics[scale=0.500000]{ckt9.2.1.ps}

eqn453:$v_{in}$

eqn454:$v_{mix}$

eqn455:$v_{in}$

eqn456:$v_{mix}$

eqn457:$v_{in}$

eqn458:$v_{photo2}$

eqn459:$v_{mix}$

eqn460:$v_{drive}$

eqn461:$v_{photo2}$

eqn462:$v_{photo2}$

eqn463:\includegraphics[scale=0.500000]{ckt6.3.3.ps}

eqn464:$v_{fg}$

eqn465:$v_{photo2}$

eqn466:$R_1$

eqn467:$R$

eqn468:$P=V^2/R$

eqn469:$p(t)=v^2(t)/R$

eqn470: $\displaystyle P=\frac{1}{T}\int_0^Tp(t)\;dt$

eqn471:$T$

eqn472:$v(t)$

eqn473:$T$

eqn474:$p(t)$

eqn475: $\displaystyle P=\frac{1}{T}\int_0^T\frac{v^2(t)}{R}\;dt$

eqn476: $\displaystyle P=\frac{1}{R}(\frac{1}{T}\int_0^Tv^2(t)\;dt)=\frac{V^2_{RMS}}{R}$

eqn477: $\displaystyle V_{RMS}=\sqrt{\frac{1}{T}\int_0^Tv^2(t)\;dt}$

eqn478:$v(t)$

eqn479:\includegraphics[scale=0.500000]{ckt7.1.6.ps}

eqn480:$v_{photo2}$

eqn481:$\pm 10\rm V$

eqn482:$\pm 10\rm V$

eqn483:\includegraphics[scale=0.500000]{ckt7.1.7.ps}

eqn484:$v_{fg}$

eqn485: $\displaystyle \frac{2}{(2n+1)\Delta}$

eqn486:$\Delta$

eqn487:$n$

eqn488:$V_{N2}$

eqn489:$V_{N1}$

eqn490:$V_{N2}$

eqn491:$V_{N2}$

eqn492:$V_S$

eqn493: $V_{N1}\ll V_{N2}$

eqn494: $V_S \approx V_{N2}$

eqn495:$V_{SN}$

eqn496:$V_S$

eqn497:$V_{N2}$

eqn498:$V_{N2}$

eqn499:$V_S$

eqn500:$E_0$

eqn501:$E_1$

eqn502:$(E_0+E_1)/2$

eqn503:$v_{photo2}$

eqn504:$v_{photo1}$

eqn505:\includegraphics[scale=0.500000]{ckt7.2.3.ps}

eqn506:$v_{photo1}$

eqn507:$v_{photo1}$

eqn508:$v_{photo2}$

eqn509:\includegraphics[scale=0.500000]{ckt7.2.4.ps}

eqn510:$50.$

End of File



next up previous
Next: About this document ...
J.D. Wise 2009-01-03