Recovery of Compressible Signals in Unions of Subspaces

Marco F. Duarte

Joint work with Chinmay Hegde, Volkan Cevher, Richard Baraniuk
Sparsity / Compressibility

- Many signals are *sparse* or *compressible* in some representation/basis (Fourier, wavelets, ...)

\[N \text{ pixels} \quad K \ll N \text{ large wavelet coefficients} \]

\[N \text{ wideband signal samples} \quad K \ll N \text{ large Gabor coefficients} \]
Concise Signal Structure

- **Sparse** signal: only K out of N coordinates nonzero
 - model: **union of K-dimensional subspaces** aligned with coordinate axes

\[
\begin{align*}
|x_i| & \quad K \quad \text{sorted index} \\
\mathbb{R}^N & \quad x
\end{align*}
\]
Compressive Sensing

- **Sensing** with dimensionality reduction

\[y = \Phi x \]

\[M \times 1 \text{ measurements} \]

\[M \approx K \ll N \]

\[N \times 1 \text{ sparse signal} \]

\[K \text{ information rate} \]
Restricted Isometry Property (RIP)

- Preserve the structure of sparse/compressible signals
- RIP of order $2K$ implies: for all K-sparse x_1 and x_2

\[
\left(1 - \delta_{2K}\right) \leq \frac{\|\Phi x_1 - \Phi x_2\|_2^2}{\|x_1 - x_2\|_2^2} \leq (1 + \delta_{2K})
\]
Restricted Isometry Property (RIP)

- Preserve the structure of sparse/compressible signals
- Random (i.i.d. Gaussian, Bernoulli) matrix has the RIP with high probability if

\[M = O(K \log(N/K)) \]
Beyond Sparse Models

- Sparse/compressible signal model captures **simplistic primary structure**

- Wavelets: natural images
- Gabor atoms: chirps/tones
- Pixels: background subtracted images
Beyond Sparse Models

- Sparse/compressible signal model captures simplistic primary structure
- Modern compression/processing algorithms capture richer secondary coefficient structure
Sparse Signals

- Defn: A K-sparse signal lives on the collection of K-dim subspaces aligned with coord. axes
Model-Sparse Signals

- Defn: A \textbf{\textit{\textbf{K-model sparse}}} signal lives on a particular (reduced) collection of \textit{K}-dim canonical subspaces \cite{Blumensath2008,Lu2009}.

\[
\begin{align*}
&\text{\textbf{R}}^N \\
&\text{\textit{m}_K \text{ \textit{K-dim planes}}} \\
&\text{\textbf{m}_k \ll \binom{N}{K}}
\end{align*}
\]
Model-Based RIP

- Preserve the structure only of sparse/compressible signals that follow the model.

- Random (i.i.d. Gaussian, Bernoulli) matrix has the RIP with high probability if

\[M = O(K + \log m_K) \]

\[m_K \] \(K \)-dim planes

[Blumensath and Davies]
Model-Sparse Signals

• Defn: A K-model sparse signal lives on a particular (reduced) collection of K-dim canonical subspaces

• Recovery: Adapt standard CS recovery algorithms to enforce signal model using *model-based sparse approximation*

[Baraniuk, Cevher, Duarte, Hegde]
Tree-Sparse

- **Model:** K-sparse coefficients + nonzero coefficients lie on a **rooted subtree**

Typical of wavelet transforms of natural signals and images (piecewise smooth)
Ex: Tree-Sparse

- **Model:** K-sparse coefficients + nonzero coefficients lie on a rooted subtree

- Typical of wavelet transforms of natural signals and images (piecewise smooth)

- **Tree-sparse approx:** find best rooted subtree of coefficients
 - CSSA [Baraniuk], dynamic programming [Donoho]

- Number of measurements that a matrix Φ with i.i.d. Gaussian entries needs to have Tree-RIP:

 $$M = O(K) < O(K \log(N/K))$$
Simulation

- Recovery performance (MSE) vs. number of measurements

- Piecewise cubic signals + wavelets

- Models/algorithms:
 - sparse (CoSaMP)
 - tree-sparse

![Graph showing average normalized error magnitude versus M/K for Model-based recovery and CoSaMP methods.](image)
Tree-Sparse Signal Recovery

\[N = 1024 \quad M = 80 \]

- Target signal
- CoSaMP, (RMSE=1.12)
- \(\ell_1 \)-minimization, (RMSE=0.751)
- Tree-based CoSaMP, (RMSE=0.037)
Concise Signal Structure

- **Sparse** signal: only K out of N coordinates nonzero
 - model: *union of* K-dimensional subspaces

- **Compressible** signal: sorted coordinates decay rapidly to zero
 well-approximated by a K-sparse signal (simply by thresholding)
Concise Signal Structure

- **Sparse** signal: only K out of N coordinates nonzero
 - model: union of K-dimensional subspaces

- **Compressible** signal: sorted coordinates decay rapidly to zero
 well-approximated by a K-sparse signal (simply by thresholding)
 nested approximations

\[|x_i| \]
Concise Signal Structure

- **Sparse** signal: only K out of N coordinates nonzero
 - model: union of K-dimensional subspaces

- **Compressible** signal: sorted coordinates decay rapidly to zero
 - model: weak ℓ_p ball: $|x_i| < S i^{-1/p}$
Concise Signal Structure

- **Sparse** signal: only K out of N coordinates nonzero
 - model: *union of K-dimensional subspaces*

- **Compressible** signal: sorted coordinates decay rapidly to zero
 - model: *weak ℓ_p ball: $|x_i| < Si^{-1/p}$*

\[
\sigma_K(x) := \|x - x_K\|_2 \leq (ps)^{-1/2} SK^{-s}
\]

- $s = \frac{1}{p} - \frac{1}{2}$
RIP and Recovery

• Using ℓ_1 methods, CoSaMP, IHT

• **Sparse signals**
 - noise-free measurements: exact recovery
 - noisy measurements: stable recovery

• **Compressible signals**
 - recovery as good as K-sparse approximation

\[
\|x - \hat{x}\|_2 \leq C_1 \|x - x_K\|_2 + C_2 \frac{\|x - x_K\|_1}{K^{1/2}} + C_3 \epsilon
\]

- CS recovery error
- signal K-term approx error
- noise
Model-Compressible Signals

- **Model-compressible** \iff well approximated by model-sparse
 - model-compressible signals lie close to a reduced union of subspaces
 - i.e.: model-approx error decays rapidly as $K \to \infty$

 $$\sigma_{\mathcal{M}_K}(x) = \| x - x_{\mathcal{M}_K} \|_2 \leq CK^{-s}$$

- **Nested approximation property** (NAP): model-approximations nested in that

 $\text{supp}\{x_K\} \subset \text{supp}\{x'_K\}, \ K < K'$
Model-Compressible Signals

- **Model-compressible** \iff well approximated by model-sparse
 - model-compressible signals lie close to a reduced union of subspaces
 - i.e.: model-approx error decays rapidly as $K \to \infty$
 \[\sigma_{\mathcal{M}_K}(x) = \| x - x_{\mathcal{M}_K} \|_2 \leq C K^{-s} \]

- **Nested approximation property** (NAP): model-approximations nested in that
 \[\text{supp}\{x_K\} \subset \text{supp}\{x'_K\}, \ K < K' \]
Model-Compressible Signals

- **Model-compressible** $<>$ well approximated by model-sparse
 - model-compressible signals lie close to a reduced union of subspaces
 - i.e.: model-approx error decays rapidly as $K \to \infty$
 \[
 \sigma_{\mathcal{M}_K}(x) = \|x - x_{\mathcal{M}_K}\|_2 \leq CK^{-s}
 \]

- **Nested approximation property** (NAP): model-approximations nested in that
 \[
 \text{supp}\{x_K\} \subset \text{supp}\{x'_K\}, \quad K < K'
 \]
Stable Model-Based Recovery

- **K-RIP:** controls amt of nonisometry of Φ on all K-dimensional subspaces
- Can control norm of $\|y - \Phi x_K\|_2$, account for contribution as *noise*
- Model-RIP is *not sufficient* for stable model-compressible recovery!

![Diagram](image_url)

- optimal K-term model recovery (error controlled by \mathcal{M}_K-RIP)
- optimal $2K$-term model recovery (error controlled by \mathcal{M}_K-RIP)
- residual subspace: *not* in model (error *not* controlled by \mathcal{M}_K-RIP)
Stable Model-Based Recovery

- Properties of **model-compressible signals:**
 - Structure on sparse approximation also yields *structure on residual subspaces* \mathcal{R}_j, K
 - R_j: Number of subspaces/supports that arise from growing a jK-model-sparse approx. to a $(j+1)K$-model-sparse approx.
 - Norm of sparse approximation residuals *also has power law decay*

![Diagram showing stability in model-based recovery](image)

- Optimal K-term model recovery (error controlled by \mathcal{M}_K-RIP)
- Optimal $2K$-term model recovery (error controlled by \mathcal{M}_K-RIP)
- Residual subspace: *not in model* (error *not* controlled by \mathcal{M}_K-RIP)
Stable Model-Based Recovery

• **RAmP:** Restricted Amplification Property controls amount of nonisometry of Φ for the residuals $x\mathcal{M}_{jK} - x\mathcal{M}_{(j+1)K}$
 - Still fewer subspaces than RIP, *fewer measurements*
 - Can *relax isometry* for subsequent residual subspaces
 - Goal: control norm of *projected approximation error*
 $$\|\Phi(x - x\mathcal{M}_K)\|_2$$

optimal K-term model recovery (error controlled by \mathcal{M}_K-RIP)

optimal $2K$-term model recovery (error controlled by \mathcal{M}_K-RIP)

residual subspace: *not* in model (error *controlled* by RAmP)
Restricted Amplification Property

A matrix Φ has the $(\epsilon_K, r)\text{--RAmP}$ for the residual subspaces $R_{j,K}$ of the signal model M if

$$\| \Phi u \|_2^2 \leq (1 + \epsilon_K)j^{2r} \| u \|_2^2$$

for any $u \in R_{j,K}$ and for each $1 \leq j \leq \lceil N/K \rceil$.

optimal K-term model recovery (error controlled by M_{K-RIP})

optimal $2K$-term model recovery (error controlled by M_{K-RIP})

residual subspace: not in model (error controlled by RAmP)
Restricted Amplification Property

A matrix Φ has the $(\epsilon_K, r) -$RAmp for the residual subspaces $\mathcal{R}_{j,K}$ of the signal model \mathcal{M} if

$$\|\Phi u\|_2^2 \leq (1 + \epsilon_K) j^{2r} \|u\|_2^2$$

for any $u \in \mathcal{R}_{j,K}$ and for each $1 \leq j \leq \lceil N/K \rceil$

Theorem: Let x be an s-model compressible signal under a signal model \mathcal{M} with the NAP. If Φ has the (ϵ_K, r)-RAmp and $r = s - 1$, then we have

$$\|\Phi(x - x_{\mathcal{M}_K})\|_2 \leq \sqrt{1 + \epsilon_K CK^{-s} \ln \left[\frac{N}{K} \right]}.$$

(see paper for details)
Restricted Amplification Property

A matrix Φ has the (ϵ_K, r)–RAmP for the residual subspaces $\mathcal{R}_{j,K}$ of the signal model \mathcal{M} if

$$\|\Phi u\|_2^2 \leq (1 + \epsilon_K)j^{2r} \|u\|_2^2$$

for any $u \in \mathcal{R}_{j,K}$ and for each $1 \leq j \leq \lceil N/K \rceil$

Theorem: Let x be an s-model compressible signal under a signal model \mathcal{M} with the NAP. If Φ has the (ϵ_K, r)-RAmP and $r = s - 1$, then we have

$$\|x - \hat{x}\| \leq \frac{C_1S}{K^{-s}} + C_2 \left(\|n\|_2 + \sqrt{1 + \epsilon_KSK^{-s}} \ln \left\lceil \frac{N}{K} \right\rceil\right),$$

(see paper for details)
Restricted Amplification Property

A matrix Φ has the (ϵ_K, r)–\textit{RAmP} for the residual subspaces $R_{j, K}$ of the signal model \mathcal{M} if

$$\left\| \Phi u \right\|_2^2 \leq (1 + \epsilon_K)j^{2r} \left\| u \right\|_2^2$$

for any $u \in R_{j, K}$ and for each $1 \leq j \leq \lceil N/K \rceil$.

Theorem: Let x be an s-model compressible signal under a signal model \mathcal{M} with the NAP. If Φ has the (ϵ_K, r)-RAmP and $r = s - 1$, then we have

$$\left\| x - \hat{x} \right\|_2 \leq C_1 \left\| x - x_{M_K} \right\|_2 + C_2 \frac{\left\| x - x_{M_K} \right\|_1}{K^{1/2}} + C_3 \epsilon$$

\begin{itemize}
 \item CS recovery error
 \item signal K-term approx error
 \item noise
\end{itemize}
Restricted Amplification Property

A matrix Φ has the $(\epsilon_K, r) -$ RAmP for the residual subspaces $\mathcal{R}_{j,K}$ of the signal model \mathcal{M} if

$$\| \Phi u \|_2^2 \leq (1 + \epsilon_K) j^{2r} \| u \|_2^2$$

for any $u \in \mathcal{R}_{j,K}$ and for each $1 \leq j \leq \lfloor N/K \rfloor$

Theorem: A matrix Φ with i.i.d. subgaussian entries has the (ϵ_K, r)-RAmP with probability $1 - e^{-t}$ if

$$M \geq \max_{1 \leq j \leq \lfloor N/K \rfloor} \frac{2K + 4 \ln \frac{R_j N}{K}}{(jr \sqrt{1 + \epsilon_K - 1})^2} + 2t$$

for each $1 \leq j \leq \lfloor N/K \rfloor$

(see paper for details)
Theorem: An $M \times N$ i.i.d. subgaussian random matrix has the Tree(K)-RIP with constant δ_{TK} if

$$M \geq \begin{cases} \frac{2}{c\delta_{TK}^2} \left(K \ln \frac{48}{\delta_{TK}^2} + \ln \frac{512}{Ke^2} + t \right) & \text{if } K < \log_2 N \\ \frac{2}{c\delta_{TK}^2} \left(K \ln \frac{24e}{\delta_{TK}^2} + \ln \frac{2}{K+1} + t \right) & \text{if } K \geq \log_2 N \end{cases}$$

with probability $1 - e^{-t}$

Theorem: An $M \times N$ i.i.d. subgaussian random matrix has the Tree(K)-RAmP with constant ___ if

$$M \geq \begin{cases} \frac{2}{(\sqrt{1+\epsilon_K-1})^2} \left(10K + 2 \ln \frac{N}{K(K+1)(2K+1)} + t \right) & \text{if } K \leq \log_2 N \\ \frac{2}{(\sqrt{1+\epsilon_K-1})^2} \left(10K + 2 \ln \frac{601N}{K^3} + t \right) & \text{if } K > \log_2 N \end{cases}$$

with probability $1 - e^{-t}$
Simulation

- Number samples for guaranteed recovery
 \[\| x - \hat{x} \|_2 \leq 2.5 \sigma_{T_K}(x) \]

- Piecewise cubic signals + wavelets

- Models/algorithms:
 - sparse (CoSaMP)
 - tree-sparse

\[\mathcal{O}(K \log N) \]
\[\mathcal{O}(K) \]
Conclusions

• Why CS works: stable embedding for signals with concise geometric structure

• **Concise** models require *even fewer* measurements for recovery than simple sparsity models

• *Model-sparse and compressible signals* using correlations between coefficient values and locations
 – Can modify standard algorithms
 – Can obtain robustness, recovery guarantees
 – Further work: stochastic models, graphical models, optimization-based recovery

 dsp.rice.edu/cs