Inferring and Mitigating a Link’s Hindering Transmissions in Managed 802.11 Wireless Networks

Eugenio Magistretti, Omer Gurewitz*, and Edward Knightly

Rice University
*Ben Gurion University

http://networks.rice.edu
The Management Problem

Given a dense wireless network (e.g., WLAN, Wireless Mesh Network…)

Throughput [kbps]

Graph showing a complex network of nodes and connections with throughput data on the right side.
The Management Problem

Given a dense wireless network (e.g., WLAN, Wireless Mesh Network...)

- The throughput of the specific flow is lower than the manager expects
- Why? How to fix it?
Objective

- Improve the throughput of a specific flow using a small set of passively collected, time-aggregate local channel measurements reported by the nodes.

- Determine which flow should be throttled / moved to another channel
- Predict the throughput gain
The Management Problem

Does it really matter which link we throttle?

Example: Given a topology and the flow throughput...
The Management Problem

Does it really matter which link we throttle?

Example: Given a topology and the flow throughput...
Limit the transmission rate of different “neighbor” links for 400 kbps
The Management Problem

Does it really matter which link we throttle?

- Example: Given a topology and the flow throughput...
 Limit the transmission rate of different "neighbor" links for 400 kbps

In our experiments, a flow can gain from 7\% to 172\% of the rate-limited quantity
The Management Problem

Throttling different flows produces different throughput gains

Why?
Coordination

CLIQUE

1 — a — 2

3 — a — 4

b

Throughput [kbps]

0 1 2

500 1000 1500 2000 2500 3000
Coordination

Throughput [kbps]

Transmit Busy
Coordination

CLIQUE

1 → 3
2 → 4

FIM

1 → 3
2 → 4

Throughput [kbps]

0 1 2
0 1000 2000 3000

0 500 1000 1500 2000 2500 3000

0 1 2
0 5000 6000

CLIQUE

1 → 3
2 → 4

FIM

1 → 3
2 → 4

Throughput [kbps]

0 1 2
0 1000 2000 3000

0 500 1000 1500 2000 2500 3000

0 1 2
0 5000 6000
Coordination

Flow in the Middle

Transmissions of flows 1 and 2 are not coordinated

Flow a senses the medium busy most of the time

Graph showing the flow of data with nodes and arrows indicating transmission.
Coordination

- Trying to improve flow a, do the different throughputs/topology affect the gain?
 - Example: rate-limit flow 1 for 400 kbps

Flow a gains about **300 kbps**

Flow a gains only **120 kbps**
The throughput gain of flow \textit{a} depends on the \textbf{coordination} between the transmissions of neighbors 1 and 2.
Activity Share:
Measure of Node Coordination

- Activity Share
 - Fraction of time that different sets of nodes spend transmitting simultaneously
Activity Share:
Measure of Node Coordination

- **Activity Share**
 - Fraction of time that different sets of nodes spend transmitting simultaneously

\[
\text{AS}\{{a}\} = \frac{|T_a|}{T_{\text{tot}}} = \frac{5}{20}
\]

\[
\text{AS}\{{1,2}\} = \frac{|T_{12} \cup T_{12}'' \cup T_{12}'''|}{T_{\text{tot}}} = \frac{6}{20}
\]
The Activity Share captures the mutual relationship and coordination among nodes.
The Activity Share

- cannot be locally measured, **hence** nodes need to exchange information
- can be computed *exactly* by exchanging traces, **but** trace exchange is airtime consuming

How to **infer the Activity Share with limited overhead**?
Each node collects and reports time averages for \{transmitting, busy, idle\}

Q. Which Activity Share distributions yield these node statistics?

\[\{\frac{1}{2}, 0, \frac{1}{2}\} \]

\[\{\frac{1}{2}, 0, \frac{1}{2}\} \]

\[\{0,1,0\} \]

\[\{\frac{1}{2}, 0, \frac{1}{2}\} \]

\[\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 \]
Each node collects and reports time averages for \{transmitting, busy, idle\}

Q. Which Activity Share distributions yield these node statistics?

More than one Timeline can potentially yield identical report time averages (i.e., \{transmitting, busy, idle\} times)
Activity Share Inference (cont'd)

Each node collects and reports time averages for \{\text{transmitting, busy, idle}\}

Q. Which Activity Share distributions yield these node statistics?

\[
\begin{align*}
\{\frac{1}{2}, 0, \frac{1}{2}\} & \quad \{\frac{1}{2}, 0, \frac{1}{2}\} \\
\{0, 1, 0\} & \\
\{\frac{1}{2}, 0, \frac{1}{2}\} & \\
\end{align*}
\]

More than one Timeline can potentially yield identical report time averages (i.e., \{\text{transmitting, busy, idle}\} times)

The reports define a solution domain for the Activity Share
Physics: eliminate distributions that are “impossible”
- Ex. My busy time coincides with neighbors’ transmitting time

Protocols: penalize distributions that defy 802.11 rules
- Ex. Neighbors transmitting simultaneously violates carrier sense. Should be rare.

Unbiased: minimize relative entropy
- Find the distribution with the least bias from the prior knowledge
Optimization problem

- **Variables**: the Activity Share distribution, \(\bar{X} = \{X_0, X_1, \ldots, X_y\} \)
- **Data**: time-aggregate measurements reported by the nodes \{transmitting, busy, idle\} for all nodes
- **Objective function**:
 \[
 \min_{\bar{X}} \left[\sum_{j=0}^{y-1} X_j \log \frac{X_j}{\omega_j} \right]
 \]
 \(\omega\) is the prior distribution of the network states
- **Constraints**: AS distribution must satisfy the constraints imposed by all local observations

Pure Formality
Throughput Prediction

Given the Activity Share can we estimate who to throttle?

Predict how alternative rate-limiting actions will benefit the throughput of the target flow

1. Estimate the Activity Share after a rate-limiting action
2. Compute the relationship between throughput and Activity Share

I'M LATE!
I'M LATE!
(Details on page 7)
WARP FPGA BOARD

- Composed of timing and up to 4 radio daughtercards
- Xilinx Virtex Pro-II
 - FPGA \(\rightarrow\) customize the operations of the radio device (without performance penalty)
 - PPC405 \(\rightarrow\) support higher communications layers (MAC) design with C-like programming
- Interfacing via USB, Ethernet, Serial (RS-232), MGT ports (and pins)

Too Many Equations... Does It Work??
Predicted vs. Actual Activity Share (testbed results)
Activity Share Inference

Predicted vs. Actual Activity Share (simulations results)

Accurate Inference results both for testbed and simulations
Throughput Prediction

Rate-limiting different conflicting nodes for the same kbps quantity (testbed results)

55% of the predictions have an error below 20% relative to the rate limit amount

High Accuracy in predicting the candidates to be rate-limited
Low error in predicting the gain
Many factors can affect accuracy:

- Density
- Traffic
- Report Intervals
- Report Losses

Thorough factor evaluation can be found in the paper.
Robustness to Report Losses

- Under congestion, reports can be lost and not reach the manager
- How much accuracy do we lose?
- **High density:**
 - reports of neighboring nodes are related ⇒ more robust to report losses

 - ns2 simulations
 - 10 nodes
 - various densities (3 to 7 neighbors)
 - all possible combinations of 1 to 5 lost reports

Few losses have a mild effect on inference accuracy
Impact of Report Interval

- Simulations
- Report Interval
 - large: favors statistical significance, low overhead
 - small: favors responsiveness to network changes

Avg. relative errors 4.1% (20 s), 7.6% (2 s), 10.2% (500 ms), 29% (100 ms)

The manager can adapt the report interval to the network dynamics with small penalty on accuracy
Summary of Inference and Management

- Understanding coordination is key to identifying:
 - causes of under-served links
 - potential throughput gains of rate-limiting conflicting nodes

- Activity Share captures coordination

- We showed:
 - How to infer the Activity Share
 - How to use the Activity Share for throughput predictions
1. **Inference** - Infer link coordination
 - **Input**: statistics from the nodes
 - **Output**: measure of Coordination

2. **Prediction** - Determine link interactions and identify corrective actions
 - **Input**: measure of Coordination
 - **Output**: Management actions to achieve a target objective