Course Project, COMP / ELEC / STAT 502

Neural Machine Learning I.

A Project will be done over an approximately four-week period in the second half of the semester. Approximate dates are given below. All pertinent final dates will be posted in the Course Schedule at www.ece.rice.edu/~erzsebet/ANNcourse.html, in a timely manner.

Students will form groups of by self-organization. Group sizes will typically be 3 – 4, and will be determined depending on class size. Each group will submit a project proposal around March 18 – 21 (in 2023). It is anticipated that by that time the major ANN paradigms will have been discussed in class and students will be able to identify a project topic, either from a list provided by me (including data), or devise their own. I encourage addressing a problem that is related to your graduate research if applicable, and to talk with me early, especially about data. I will review and approve each proposal (or suggest necessary modifications) in the order they are submitted, in scheduled project reviews with me.

Projects can start as soon as I approve them. We will have one or two project presentation sessions depending on the number of groups, on the last week of classes. Project reports will be due on the last day of classes, at 11:59pm. An electronic copy of both presentation and project report will have to be submitted to Canvas. Exact scheduling and other details will be discussed in class in a timely manner.

Characteristics of a Successful Project

1. It will be an implementation and/or analysis of the behavior, of some particular neural network algorithm; or it will show the application / comparison of an ANN algorithm or group of algorithms on a realistic data analysis problem.
2. It will be demonstrated as working, via figures, tabulated results, listing of code, description, discussion and evaluation of the quality of the results, meeting project objectives, etc.
3. It will be written up in a concise (approx. 10-page) report that shows professional level of technical thoroughness, writing style, grammar and neatness.
4. It will be presented in a brief, approximately 10-minute, talk.

Project Proposal

The Project Proposal should have the following format:

- **Statement of Problem**: a brief, one-paragraph statement indicating what the problem is that you propose to address, and why (what is the significance of it)
- **Objectives**: a brief statement of what you expect to achieve in relation to the Statement of Problem, e.g., a working algorithm, an analysis of algorithm behavior, a demonstrated classification of data, model fitting, information discovery, performance comparison, etc., and what success measure you use
- **Data Description**: a detailed description and demonstration of complete understanding of the data that you plan to use. Sufficient specific information will be required as under data to evaluate the feasibility of your approach to solving your stated problem using the proposed data
- **Technical Approach**: a brief outline of the specific methods and techniques that you plan to employ to achieve the Objectives

The Project Proposal should be short, no more than 2-3 pages including data description. Plan on focusing on demonstrating neural learning achievements. While relevant steps of data preparation must be mentioned your project should not be overwhelmed by data collection and transformations instead of ANN analysis.
Project Report

The Project Report should have the following components:

- **Statement of Problem** – as in the Project Proposal.
- **Objectives** – as in the Project Proposal, including a success criterion/measure.
- **Data Description** – as in the Project Proposal, possibly expanded to reflect any particular challenges for machine learning (based on theory or experimentation).
- **Technical Approach** – as in the Project Proposal, but expanded as necessary to provide enough details to understand the actual processing steps, and quality/performance evaluation, and judge the merits (soundness, correctness).
- **Results** – Document and discuss the results achieved, in comparison to the initial objectives. Discuss how closely you met (or did not meet) your success criterion.
- **Code and data** – Provide the code you wrote; and the data set. (In case of proprietary data please discuss with me.)
- **Optional Appendices** – Additional pertinent material e.g., extra details of data; proofs of equations; extra figures, demo, web links, etc., if desired.

The length of the Report should be what is necessary to clearly and professionally document your effort. Aim at 10 pages not counting appendices, and under no circumstance exceed 12 pages (single line spacing, 12pt font size, 1” margins). Appendices should not be needed for clear understanding and evaluation of your project. (I will be delighted to look at Appendices but won't use them for grading.)

Project Presentation

Projects will be presented to the class in 10– to 12-minute time slots. PowerPoint or Beamer slides (or anything that produces nicely formatted pdf output for submission) can be used. Feedback from presentation can be used to improve the Report.

Deliverables

Electronic copies of the Project Presentation, Project Report, and Code/Data will be submitted to Canvas, similarly as with HW-s and Exam. Appendices are not required but may be submitted in a separate file or files (as appropriate for codes or demos, for example) but no more than one appendix for extra figures or demo if you so wish.

Project Grade

A project will have a maximum total score of 100. The front page of the project report must contain a statement, signed by each team member, indicating how much of the total percent of work was performed by each student. The total score earned by the project x (# of contributors) will be apportioned across the students according to the stated percentages. The project score will be composed as a weighted average of the scores of the Presentation and the Report (ratio TBA, Report with larger weight). Both will be evaluated for technical merit of the work, and format.

The more challenging and creative the project, the better the chance of receiving a high score. Thus, it may be better to partially fail at a challenging goal (and be able to analyze and explain the reasons) than to succeed at a trivial one.

I encourage you to **start thinking about potential projects and data sources right at the beginning of the course**, and discuss with me any questions. See a [sample checklist](#) for describing a data set for your project (and for machine learning tasks in general).