Sample Course Outline, COMP / ELEC / STAT 502
Artificial Neural Networks and Information Theory I.
Approximately 12 x 3 = 36 lecture hours, 3 credits

1. Introduction
 • What is an ANN, defining characteristics
 • Categories of ANN paradigms
 • Learning, adaptation, intelligence, learning rule categories: supervised / unsupervised / reinforcement
 • Application areas, history
 • Major ANN simulation software, major journals and literature sources
 • Hardware ANNs

2. Review of Information Theory and Statistics
 • Gaussian and uniform distribution, covariance, correlation, moments
 • Conditional probability, least squares, maximum likelihood
 • Quantification of information, entropy, joint and conditional entropy, mutual information, Kullback-Leibler divergence
 • Principal Components, subspaces

3. Associative Memory
 • Memory, autoassociation, heteroassociation
 • Memory matrix, recall and crosstalk
 • Bi-directional autoassociative memories, recall from partial and noisy samples
 • Stability of bi-directional memory

4. Simple Supervised Learning
 • Perceptron, linear separability, XOR problem, linear and non-linear neurons
 • Error descent, Delta-rule
 • Proving the convergence of learning; Lyapunov’s direct method

5. The Multilayer Perceptron (MLP)
 • The Backpropagation algorithm (BP)
 • MLPs are universal approximators: theorems
 • Convergence, local minima
 • Speeding up the learning with momentum
 • Number of hidden units, weight pruning
 • Training concerns: generalization vs memorizing, overtraining, number of training samples, stopping criteria; scaling of inputs and outputs, preprocessing of data
 • Function approximation, prediction, classification with MLPs

6. Unsupervised Learning
 • Hebbian learning, stability, weight decay,
 • Oja’s PCA nets, Sanger’s Generalized Hebbian Algorithm, Földiák method, negative feedback
 • Hebbian learning and Information Theory – PCA and subspace connections; regression and minor component analysis
 • Competitive learning
 • Self-Organizing Maps (SOMs); visualization and information extraction from SOMs
 • Learning Vector Quantization (LVQ), Adaptive Resonance Theory (ART)
 • SOM applications, WEBSOM, PICSOM
 • Grossberg star, anti-Hebbian learning
7. Recurrent Nets
 • Hopfield networks
 • Boltzmann Machine
 • Simulated Annealing

8. More on Speeding Up Supervised Learning and Structure Optimization
 • Radial Basis Functions, Error Descent, QuickProp
 • Conjugate Gradients
 • Cascade Correlation

9. Objective Function Methods in ANN Learning
 • Backpropagation and PCA
 • Cross-entropy, maximum mutual information (I-Max), maximum correlation (Canonical Correlation Analysis) as objective functions; use of contextual information

10. Identifying Independent Sources (Blind Source Separation) with ANNs
 • Competitive Hebbian learning; Anti-Hebbian and competitive learning; sparse coding
 • Multiple cause models, Factor Analysis
 • Non-linear PCA as an extension to Oja’s Subspace Algorithm (Hebbian learning)

 Time permitting:
 • Predictability minimization
 • The use of noise
 • Probabilistic models

11. Time permitting: Independent Component Analysis
 • Independent Component Analysis – definition of the problem
 • Information maximization
 • Projection Pursuit – maximally ‘interesting’ projections (non-linear)

Exercises/home works, exam and course project will involve programming in the student’s choice of Matlab, C or R (Fortran is also acceptable).