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Abstract. This paper presents some interesting results obtained by
the algorithm by Bauer, Der and Hermann (BDH) [1] for magnification
control in Self-Organizing Maps. Magnification control in SOMs refers
to the modification of the relationship between the probability density
functions of the input samples and their prototypes (SOM weights). The
above mentioned algorithm enables explicit control of the magnification
properties of a SOM, however, the available theory restricts its validity
to 1-D data or 2-D data when the stimulus density separates. This dis-
courages the use of the BDH algorithm for practical applications. In this
paper we present results of careful simulations that show the scope of
this algorithm when applied to more general, ”forbidden” data. We also
demonstrate the application of negative magnification to magnify rare
classes in the data to enhance their detectability.

1 Introduction

One theoretically interesting and powerful data analysis aspect of SOMs is the
so called map magnification. The following power law relates the density of
weights in the input space Q(w) to the pdf P (w) of the input samples,

Q(w) = cP (w)α (1)

where α is the magnification exponent and c is a constant [1]. Some values of α
are associated with particular quantization or information theoretical proper-
ties [1]. A map with α = 1 maximizes information theoretic entropy. α = 1/3
for 1-D data corresponds to the minimum mean squared error quantization
case. α < 0 enables better categorization by enlarging response areas for
low-frequency inputs. This is potentially useful for making discoveries as it
would enhance the detectability of rare classes. Kohonen’s SOM algorithm
(KSOM) [2] achieves α = 2/3 (under certain conditions) [3]. This value of
α is optimal in neither minimum distortion nor maximum entropy sense. A
SOM variant called Conscience algorithm [4] can induce α = 1, but not any
other value. BDH enables explicit control of magnification by using adaptively
adjusted local learning rates. The available theory suggests that the algorithm
will successfully induce the intended value of α only for:
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• 1-D input data

• 2-D data, v = (v1, v2), if and only if
pv(v) = pv1

(v1)pv2
(v2) (i.e., the pdf factorizes into the marginals)

Careful simulations were carried out to observe the performance of the BDH
algorithm on data with and without the properties listed above. In the next
two sections, results for 1-, 2- and higher dimensional data are discussed.

2 Simulations for 1- and 2-D data

First we confirmed that BDH works well

Figure 1: Results of magnification
control on 1-D data. Original figure
is in color. Download paper from
http://www.ece.rice.edu/∼erzsebet/pa
pers/esann04-1.pdf

for 1-D data, by simulations similar to those
in [1] for two 1-D data sets (Figure 1).
Data Set I is p(x) = 2x, xε[0, 1] and Data
Set II is p(x) = 3x2, xε[0, 1]. Then we
investigated the performance of BDH on
data for which the supporting theory does
not guarantee success. Data with differ-
ent amounts of correlations (ρ) between the
two dimensions were generated. Several
values of α were induced. In each case,
α achieved by the map was calculated by
a histogram based method used in [5] and
compared to the desired α.

I Data independent in the two dimensions: pv(v) = pv1
(v1)pv1

(v2).
This data set was generated according to the following pdf :

pv1
= 2v1, v1 ∈ [0, 1] and pv2

= 2v2, v2 ∈ [0, 1]

pv(v) = 2v1v2, v1, v2 ∈ [0, 1] (2)

BDH on this data set achieved α values close to the desired α (Figure 2).

II Weakly correlated data in two dimensions: ρ � 1. The data
consists of 2-D samples, v = (v1, v2) of two kinds. One is such that v2 = v1 +n
and the other is v2 = −v1 + n, where n = N (0, 0.0625). v1 and v2 are weakly
correlated with the correlation coefficient ρv1v2

= 0.0044. From Figure 3 it can
be seen that α achieved and desired α are almost equal at α = 1 and the two
values differ increasingly (but in a predictable manner) as α decreases. This
is a stronger result than available from theory, as the theory only guaranteed
success if and only if v1 and v2 were independent.

III Data highly correlated in two dimensions: ρ ≈ 1. This
data consists of 2-D samples, v = (v2, v1), such that v2 = v1 + n, where n
= N (0, 0.25). The correlation coefficient is ρv1v2

= 0.9026. In this strongly
correlated case, even though α achieved by the map differs from the desired α,
there is a clear observable trend that the achieved values of α are systematically



Figure 2: Left: 2-D input data samples (small dots) and distribution of SOM weights
(larger dots), resulting from BDH with α = 0.6 after 2, 000, 000 steps. Weights adjacent
in the SOM are connected. 2-D input samples v = (v1, v2) are such that v1 and v2 are
independent. Right: Comparing α achieved to α desired, the discrepancies are largely due
to the fact that the theoretical results are asymptotic and we only have a finite number of
PEs (100).

Figure 3: Left: 2-D input data samples (small dots) and distribution of SOM weights
(larger dots), resulting from BDH with α = 1.0 after 2, 000, 000 steps. Weights adjacent in
the SOM are connected. 2-D input samples v = (v1, v2) are such that, ρv1v2

� 1. Right:

The difference between α achieved and α desired increases in a predictable manner as α

decreases from 1.

Figure 4: Left: 2-D input data samples (small dots) and distribution of SOM weights (larger
dots), resulting from BDH with α = 1.0 after 1, 000, 000 steps. Weights adjacent in the SOM
are connected. 2-D input samples v = (v1, v2) are such that ρv1v2

≈ 1. Right: Comparing α

achieved to α desired, there is a clear observable trend in the differences between desired and
achieved values of α. The differences are more or less constant. Original figure is in color.
Download paper from http://www.ece.rice.edu/∼erzsebet/papers/esann04-1.pdf

decreasing, following the desired values with a more or less constant shift (Fig-
ure 4). This is again a stronger result than the theory provides and encourages



further investigation of BDH for real data, including higher dimensional data.
In the next section, some interesting results of applying BDH to higher

dimensional data are discussed.

3 Simulations for higher dimensional data

Our methodology to examine the per-

Figure 5: Two 6-D Data Sets - Images
and spectral signatures. Left: 5-class
Data Set. Right: 20-class Data Set. Orig-
inal figure is in color. Download paper from
http://www.ece.rice.edu/∼erzsebet/papers/
esann04-1.pdf

formance of the BDH algorithm on any
1-and 2-D data sets was to induce a cer-
tain value of α, evaluate the α achieved
by the map and compare the two. How-
ever, evaluation of α is not an easy task
in general, especially, if the input pdf

is unknown (as is most commonly the
case). The evaluation of α involves the
estimation of the pdf of the data and
of the weights. So far, we were using
a histogram based method for α eval-
uation. This method becomes inappli-
cable for high-D data as the number of
samples required for pdf estimation in-
creases exponentially with dimensional-
ity. So for higher dimensional cases, we
evaluate the performance of the algo-

rithm indirectly: by observing the resulting map.
Finding rare classes in a data set is a challenging task. Input classes with

rare occurrence find little or no representation in the map when KSOM is
used. Application of BDH with α < 0 would result in negative magnification:
classes which are rare in the input will be magnified in the map. This is a
promising technique for detection of rare classes. In this section, we will look
at two instructive cases in which BDH with negative α was applied on two 6-D
synthetic data sets.

I Data set with 5 classes: This data set is a 128×128 pixel image where
each pixel has a 6-D vector associated with it. It has 5 classes, whose signatures
are shown in Figure 5 (left). Class ’U’ is a rare class with only 1 data point of
this kind. The rest of the classes have 4096 or 4095 data points each. In this
data set, correlation coefficients between the different dimensions range from
0.004(ρv2v3

) to 0.9924(ρv3v6
), which renders this one of the ”forbidden” cases

for application of BDH. When KSOM is used, the rare class is represented
by only one Processing Element (PE)(Figure 6, left). BDH with α = −0.8,
magnifies the rare class in the map: it is represented by 10 PEs (Figure 6,
right).

II Data set with 20 classes: This data set is similar to the 5-class image
except it has 20 classes, as shown in Figure 5 (right). Two of the classes, marked
’R’ and ’Q’ are relatively rare, with only 1 and 16 data points, respectively. Cor-
relation coefficients between the different dimensions range from 0.0081(ρv5v4

)



Figure 6: Results of clustering of the 5-class data set. Left: Using KSOM. Top) Weight
vectors in the 10 × 10 SOM. Only 1 PE represents the rare class ’U’. Bottom Left) Clus-
ters identified in the map (the darker the fence between two PEs, the smaller is the differ-
ence between the corresponding weights and vice-versa). Bottom Right) This figure shows
which class each weight vector is closest to, which complements the information on the
left. Right: Using BDH with α = −0.8. Top) Weight vectors in the 10 × 10 SOM. The
rare class ’U’ is now represented by 10 PEs! Bottom Left) Clusters identified in the SOM.
Bottom Right) This figure shows which class each weight vector is closest to, which com-
plements the information on the left. Original figure is in color. Download paper from
http://www.ece.rice.edu/∼erzsebet/papers/esann04-1.pdf

to 0.5641(ρv4v2
), so this too is a ”forbidden” case for BDH according to the

available theory. Clustering this data set using KSOM is depicted in Figure 7
(left). The rare classes are detectible but each is poorly represented, by a sin-
gle PE only. Also, the lack of strong fences (the lighter the color of the fence
between two PEs, the larger the difference between the corresponding weights)
separating them from surrounding PEs makes them less discernible. BDH with
α = −0.8, magnifies the rare classes in the map. Figure 7 (right) shows that
class ’R’ is now represented by 4 PEs as opposed to 1 in the map formed by
KSOM, and class ’Q’ by approximately 6 PEs. So once again, the rare classes
have been magnified and also made more discernable by BDH with α < 0.

The aim of negative magnification is to enhance rare classes to improve
their detectability. Naturally the representation of the non-rare classes in such
a map is somewhat distorted. The map obtained with αachieved < 0 and the
one obtained with αachieved ≈ 1 together provide a complete picture of the
clustering of a data set.

4 Conclusions

Magnification control in the Self-Organizing Map can be achieved by using the
BDH algorithm [1]. We showed by careful simulations that even though the
available theory restricts the use of this algorithm to data with special prop-



Figure 7: Results of clustering of the 20-class data set. Left: Using KSOM. Top) Weight
vectors in the 10× 10 map. Only 1 PE for each of the rare classes ’R’ and ’Q’. Bottom Left)
Clusters identified in the SOM (the lighter the color of the fence between two PEs, the larger is
the difference between the corresponding weights and vice-versa). Bottom Right) This figure
shows which class each weight vector is closest to, which complements the information on the
left. Right: Using BDH with α = −0.8. Top) Weight vectors in the 10 × 10 SOM. 4 and 6
PEs now represent the rare classes ’R’ and ’Q’ respectively. Bottom Left) Clusters identified
in the SOM. Bottom Right) This figure shows which class each weight vector is closest to,
which complements the information on the left. Original figure is in color. Download paper
from http://www.ece.rice.edu/∼erzsebet/papers/esann04-1.pdf

erties, the definitive trend in the results for more general data is encouraging.
We have demonstrated in particular that negative magnification enhances the
detectibility of rare classes in ”forbidden” data. Our preliminary sense is that
the applicability of BDH may be justified for a broader range of data than is
supported by present theories. The behavior of BDH magnification is worth
more investigation, especially for α = 1 and α < 0 in order to utilize this
powerful method for analysis of complex, high-D data.
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