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Abstract

Utilization of remote sensing multi- and hyperspectral imagery has shown a rapid increase in many areas of
economic and scientific significance over the past ten years. Hyperspectral sensors, in particular, are capable of
capturing the detailed spectral signatures that uniquely characterize a great number of diverse surface materi-
als. Interpretation of these very high-dimensional signatures, however, has proved an insurmountable challenge
for many traditional classification, clustering and visualization methods. We present Artificial Neural Network
approaches, Self-Organizing Maps in particular, for spectral image interpretations, utilizing the full spectral
resolution. Recent extensions to the original Kohonen SOM that emerged in the last few years and lend theo-
retical support for principled analyses of high-dimensional data spaces, are reviewed. The necessity of faithful
topological mapping for correct interpretation is emphasized. The effectiveness of the presented approaches is
demonstrated through case studies on real hyperspectral imagery.
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1 Introduction

Hyperspectral imagery is one important example of recent, modern high-dimensional data. Acquired remotely
by airborne or spaceborne sensors it is comprised of hundreds of spatially co-registered image bands. Each
image band is obtained at a different wavelength through a narrow bandpass. Fig. 1.a illustrates the concept.
Associated with every image pixel there is an n-dimensional feature vector across the wavelength dimension,
which is called the spectrum of the material in that pixel. These n-dimensional vectors are the patterns
to cluster or to classify for the identification of surface materials. In contrast to traditional multi-spectral
imagery, such as, e.g., Landsat TM, which uses a small number of broad bandpasses with large gaps over a
given wavelength window, hyperpsectral sensors sample the same window contiguously and at regularly spaced
wavelengths. The typical wavelength range for passive optical imaging is 0.4 — 2.5 ym (Visible to Near-Infrared),
measuring reflected sunlight, or 3 — 12 pm (Thermal Infrared), measuring emitted heat. At hyperspectral
resolution (10 — 20 nanometers) sufficient detail is recorded to capture the unique compositional fingerprints
of surface materials. Fig. 1.b shows an example of the spectral detail that multi-spectral and hyperspectral
resolutions provide. See, e.g., [1] for a review. The history of hyperspectral remote imaging is about 15 years
old. In the past 810 years this technology has matured, and presently a handful of sensors is offered for data
collection, operated by commercial companies or government agencies. The best known are AVIRIS, developed
by NASA/JPL [2], followed by HYDICE (Naval Research Lab [3]), Probe-1 and HYMAP (Earth Search Science,
USA and HyVista, Australia), Hyperion (by NASA, on the Terra satellite,) DAIS (DLR) in Germany, and
CASI in Canada. Their numbers have been growing in the past 3-5 years. The wealth of information provided
by these advanced sensors proved spectacularly promising for a wide variety of large scale real applications.
Environmental monitoring, exploration geology, precision farming, ecosystem monitoring, assessment of natural
hazards, of water and air quality, battlefield characterization, planetary research, and many other areas eagerly
seek to utilize hyperspectral imagery.

However, the dramatically increased spectral resolution makes the exploitation of hyperspetcral images a
substantial challenge due to the high dimensionality of the data. The difficulties caused at the same time by huge
data volumes, will not be discussed here. We assume that computing power and/or parallel implementations
will respond to that question. The focus of this paper is the clustering and classification of hyperspectral images
at full spectral resolution, i.e., the analysis of several hundred dimensional data spaces.

'Download color copy from http://www.ece.rice.edu/~erzsebet/emann.html, ICICIS’02 paper.
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Figure 1: a) Left: The concept of hyperspectral imaging. Figure from Campbell, 1996. b) Right: The spectral signature
of the mineral alunite as seen through the 6 broad bands of Landsat TM, as seen by the moderate spectral resolution
sensor MODIS (20 bands in this region), and as measured in laboratory. Hyperspectral sensors such as AVIRIS of
NASA/JPL produce spectral details comparable to laboratory measurements.

Why do we have to deal with such high dimensionality? Why not to reduce it to a few dozens or less
dimensions, prior to classification? The answer may be surprising: hyperspectral signatures do not seem to lend
themselves to significant reduction. While for classifications involving a relatively small number of specifically
targeted surface units substantial dimensionality reduction may be possible, applications that seek to exploit the
sophisticated sensor information for the discrimination of many surface covers, or which seek to make discoveries
in hyperspectral imagery, dimensionality reduction has not been successful. The best example we have seen is
perhaps by [4], who reduced a 224-channel AVIRIS image to 35 channels using the same neural network that
was subsequently used for the classification of the eight surface units that they were interested in. The point we
make here is that the feature extraction method was a powerful non-linear (neural network) method, claimed
to produce the best possible image band selection for the particular case, yet 35 bands were necessary for the
8-class categorization. By costumary measures (such as, for example, PCA) the intrinsic spectral dimensionality
of hyperspectral images is low, 5 — 10 at most. Yet, efforts to reduce dimension to the predicted low numbers
without significant loss of class distinctions have remained unsuccessful so far. A more detailed list of dimension
reduction studies of hyperspectral data (including PCA, wavelets and Self-Organizing Maps (SOMs)) and results
is given in [5, 6]. It appears that the intrinsic dimensionality (ID) of hyperspectral images is not well understood.
The spectral bands, many of which are highly correlated, may lie on a low-dimensional but non-linear manifold,
which is a scenario that eludes many conventional classification and clustering techniques.

Dimension reduction, in any case, carries the risk of missing a discovery. Later in this paper we will see
examples of discovering small, statistically insignificant spectral units, which are very interesting, and which
may not be seen from less than full spectral resolution data. It is imperative therefore to have methods that are
capable of handling the full dimensionality, to enable discoveries, and to establish benchmarks for dimension
reduction and classification performance studies.

What are then, the challenges associated with classification and clustering data of hyperspectral resolution?
First, time tested favorites, covariance based classifiers such as Maximum Likelihood, Mahalonobis Distance,
require at least as many training samples per class as the number of bands plus one, in order to have a non-
singular covariance matrix. This creates a severe problem in remote sensing applications where often only a few
precious training samples are available for some rare class. It may also happen that the entire class of interest
contains less than the required number of training pixels! In such situations the above classifiers break down
for mathematical reasons. Dimensionality reduction (or feature extraction) is frequently accepted in order to
accomodate the data for traditional methods but this may result in an undesirable loss of information. In the
presence of sufficient number of training pixels, classifiers based on second order statistics (covariance based
classifiers) will still miss interesting variations in the data. Table 1 illustrates the highly non-Gaussian nature
of a hyperspectral image cube: the third and fourth order statistics, skew and kurtosis, which would both be 0
for Gaussian data distribution, show strong variations along different slices across the image cube. Some of the
higher values are typed in bold face for emphasis. Indeed, as we will see below, on real hyperspectral imagery
the Maximum Likelihood and Mahalonobis Distance classifiers perform poorer than others that we tested [7].



|| band # | Skewness Kurtosis || band # Skewness Kurtosis ||

1 0.0387754 -0.325047 101 0.30173 0.951647
11 -0.0071132 -0.17189 111 0.183944 0.147923
21 -0.204628 0.325475 121 0.133933 | -0.141926
31 -0.554751 0.588788 131 0.240551 0.176545
41 -0.970494 1.11788 141 -0.427421 1.01846
51 -1.2609 1.69146 151 0.0547962 0.73411
61 -1.26399 2.02341 161 -0.190321 1.06755
71 -0.440014 1.84514 171 -0.500422 2.09482
81 0.0691932 8.51355 181 -0.843997 2.45075
91 0.292169 0.833326 191 -0.768847 1.7723
All -1.81785 3.09868

Table 1:

The non-Gaussianity of a hyperspectral image cube. Statistics of 20 selected bands. Data: AVIRIS 224-band
image of the Lunar Crater Volcanic Field, Nevada, 1994.

Another important analysis tool is clustering (unsupervised classification), for discovery or in support of
subsequent supervised classification. With high spectral dimensionality, many of the methods used for low-
dimensional data spaces become impractical or fail for other reasons. For example, pairwise scattergrams or
ratios, costumarily used for images with a few bands, are untractable for a human beyond a dozen or so
bands. The performance of familiar statistical clustering techniques tend to decline at high dimensions, and
beyond 3-dimensional spaces the difficulty of visualizing high-dimensional cluster structure arises. Yet, sensitive
automated cluster detection is critical for high-dimensional data spaces because of the possibility of discovering
knew knowledge through the detection of surprising relationships.

In the following, we present successful Artificial Neural Network (ANN) clustering and classification of real
hyperspectral imagery with as many as 200 data dimensions, and discrimination of many (20-30) classes. The
strength of our ANN approaches lies in the application of Self-Organizing Maps (SOMs). After introducing the
test data, techniques and theoretical considerations are described along with presentation of sample results.

2 Sample Hyperspctral Test Image: The Lunar Crater Volcanic
Field

The Lunar Crater Volcanic Field (LCVF) has been one of several standard sites imaged yearly by AVIRIS. It was
the focus of a number of independent, detailed studies such as the large-scale NASA-sponsored Geologic Remote
Sensing Field Experiment (GRSFE) [8], individual PhD works and other projects through which substantial
amount of field knowledge, ground truth and other supporting data were accumulated [9, 10, 11, 12]. Fig. 2
shows a natural color composite of the LCVF, with locations representative of various cover types marked by
their respective class labels. The LCVF contains, among other materials, volcanic cinder cones (class A, reddest
peaks) and weathered derivatives thereof such as ferric oxide rich soils (L, M, W), basalt flows of various ages (F,
G, 1), a dry lake divided into two halves of sandy (D) and clayey composition (E); a small rhyolitic outcrop (B);
and some vegetation at the lower left corner (J), and along washes (C). Alluvial material (H), dry (N,O,P,U)
and wet (Q,R,S,T) playa outwash with sediments of various clay contents as well as other sediments (V) in
depressions of the mountain slopes, and basalt cobble stones strewn around the playa (K) form a challenging
series of spectral signatures for pattern recognition as seen from Fig. 2, right panel. A long, NW-SE trending
scarp, straddled by the label G, borders the vegetated area. On this color composite, containing information
from only three image bands, many of the cover type variations do not manifest. They become visible in the
cluster and class maps. After atmospheric correction and removal of excessively noisy bands (saturated water
bands and overlapping detector channels), 194 image bands remained. These 194-dimensional spectra are the
input patterns in the following analyses. Details of this data set are in [7].

3 Self-Organizing Maps for Clustering and Classification of Hyper-
spectral Images

The use of ANNs for large-scale and complex classification tasks such as for hyperspectral image interpretation
is motivated a) by their massively parallel architecture, which provides speed and convenient hardware imple-
mentation for integrated, on-board, (near) real-time processing; b) by their power in pattern recognition. The
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Figure 2: a) Left: Color composite of the Lunar Crater Volcanic Field, Nevada, USA. The original image, taken
by AVIRIS in 1994, comprises 140 Mbytes of data, 512 x 614 pixels, covering a 10 x 12 square km area. The 224
spectral bands span the 0.38 to 2.5 micron wavelength range. One red, one green, and one blue band was selected
from the 224 bands, and combined into an RGB representation for this display. Labels mark 23 main geologic features
as well as locations of training pixels for the respective class categories. The letters correspond to the class labels
used throughout the paper. b) Right: Typical spectral signatures of the 23 geologic units indicated by the labels on
the color composite. The spectra are offset vertically for viewing convenience, with reference reflectance values for
each curve at left, and the labels of the respective cover types at right. Original image is in color. Download from
http://www.ece.rice.edu/~erzsebet/emann.html, ICICIS’02 paper.

focus of this paper is to provide a contribution to this second point. For a comprehensive review on ANNS, see
e.g., [13]. Earlier works documented capabilities of ANNs (mostly Back Propagation ANNs) for remote sensing
spectra for a relatively small number of classes (5-12) and for low-to-moderate number of channels (6 — 60).
A review is provided in [6]. The case of highest spectral resolution, 60 channels, in a previous study [14] uses
synthetic data which, by virtue of Gaussian data construction, favors the Maximum Likelihood classifier. While
all earlier works provide valuable insights to various aspects of classification, full exploitation of hyperspectral
data requires further efforts.

A small number of works attempted to apply ANNs to hyperspectral imagery [4, 15, 6]. [4] reduced the
original 224 AVIRIS bands to 35 prior to classification and found that the 35 bands they obtained with feature
extraction by a Back Propagation ANN, contained enough information for the discrimination of the 8 classes
that they were interested in. [7] present a rigorous and systematic performance evaluation of four conventional
and an SOM-based ANN classifier on the LCVF image introduced above, using the full spectral resolution,
discriminating among 23 classes. The ANN classifier, with 90% accuracy, outperformed the others. In this
case, reduction to 30 bands led to the loss of a number of the 23 classes, demonstrating that by using all
(or nearly all of the 224) AVIRIS bands, detection of more, geologically meaningful spectral variations, and
increased classification accuracy is to be gained through a sophisticated enough method. The key to success is
the Self-Organizing Map.

We use SOMs in two ways in the interpretation of hyperspectral imagery, or high-dimensional data spaces
in general. One is clustering, with the objective of discovering similarity groups, unknown structure in the
high-dimensional space. The other is to aid in supervised classification, by first performing the clustering,
and then connect the converged SOM to a categorization layer. This latter approach helps prevent teaching
inconsistent information, and produces better generalization from a small number of training samples, and thus
it results in higher classification accuracy, as described below. In both cases, faithful SOM representation of
the high-dimensional clusters is crucial, therefore we discuss some aspects of that next.

3.1 Clustering and discovery in hyperspectral images with SOMs

Self-Organizing Maps (SOMs) [16] implement a mapping procedure which, if correctly applied, should end in
a topology preserving projection of the high-dimensional data onto a low-dimensional lattice. In most cases a
two-dimensional SOM grid is the common choice of lattice structure because of its easy visualization [17]. In
general, this choice is not guaranteed to produce a topology preserving mapping which, informally speaking,
means that similar data vectors are mapped onto the same or neighbored locations in the lattice and vica versa



[18]. If neighborhood preservation fails the map becomes “twisted” leading to misinterpretation of the cluster
structure of the high-dimensional input space [19]. A further aspect that should be addressed for faithful SOM
mapping is the problem of the detection of rarely occurring surface material classes in the images.

Figure 3: Clusters identified in a 40 x 40 SOM. Each grid location represents one neuron. The SOM was trained
on the entire 194-band LCVF image, using the DeSieno (1988) algorithm. Original image is in color. Download from
http://www.ece.rice.edu/~erzsebet/emann.html, ICICIS’02 paper.

Figure 4: The clusters from Fig. 3 remapped to the original spatial image, to show where the different spectral types
originated from. Ovals and rectangles highlight examples discussed in the text. Original image is in color. Download
from http://www.ece.rice.edu/~erzsebet/emann.html, ICICIS’02 paper.

Figures 3 and 4 show a successful mapping of the 194-dimensional data space of the LCVF hyperspectral
image onto a 2-dimensional SOM lattice of 40 by 40 neurons. It was generated by a modification of the
original SOM [16], the conscience algorithm of DeSieno [20]. 32 groups of neurons that were found to be
sensitized to groups of similar spectra in the 194-dimensional LCVF input data, are indicated by various colors.
The boundaries of these clusters were determined by a somewhat modified version of the Ultsch and Simeon
method [21]. Areas where no data points (spectra) were mapped are the grey corners with uniformly high fences,
and are relatively small. The black background in the SOM lattice shows areas that have not been evaluated
for cluster detection. The spatial locations of the image pixels mapped onto the groups of neurons in Fig. 3, are
shown in the same colors in Fig. 4. Color coding for clusters here is the same as that of corresponding classes in
the supervised classification in [6] to show similarities. (Those class maps are not shown here for lack of space



but [6] is accessible for download, see link in reference list.) Colors for additional groups were added.

This cluster map is remarkably accurate in outlining geological variations in the LCVF. The SOM detected
all classes that were known to us as meaningful geological units and that were classified in [6]. The “discovery”
of classes B (rhyolitic outcrop, white), F (young basalt flows, dark grey and black, some shown in the black
ovals), G (a different basalt, exposed along the scarp, dark blue, one segment outlined in the white rectangle),
K (basalt cobbles, light blue, one segment shown in the black rectangle), and other spatially small classes such
as the series of playa deposits (N, O, P, Q, R, S, T) is significant. This is the capability we need for sifting
through high-volume, high-information-content data to be alerted to interesting, novel, or hard-to-find units.
In addition, the SOM detected more, spatially coherent, clusters than the 23 classes that were defined originally
for supervised classification. The SOM’s view of the data is more refined and more precise than that of the
geologist’s! [6] contains a direct comparison of this cluster map with known surface features. For example, class
A (red in Fig. 3 in [6]) is split here into a red (peak of cinder cones) and a dark orange (flanks of cinder cones)
cluster, that make geologic sense. The maroon cluster to the right of the red and dark orange clusters at the
bottom of the SOM fills in some areas that remained unclassified (bg) in the ANN class map, in Fig. 3 in [6].
An example is the arcuate feature at the base of the cinder cone in the white oval, that apparently contains a
material different enough to merit a separate spectral cluster. This material fills other areas too, consistently
at the foot of cinder cones (another example is seen in the large black oval). Observation of further refinements
are left to the reader.

Correctness of this mapping was verified semimanually, by observing that all the known surface units were
found, and by validating the geologic meaning of the additional discoveries (the 9 clusters that were identified by
the SOM in addition to the 23 originally specified classes.) However, for large-scale production we need a more
automated approach to ensure correct mapping. A growing SOM (GSOM) method was developed to generate
a guaranteed topology preserving mapping in a simple hypercube structure of the lattice [22]. By defining an
exact measure, and monitoring topology violation during the learning of the SOM, [23] can determine the best
strategy for alleviating the topology violation: either increase the number of neurons in the present dimension
of the SOM, or increase the dimension of the lattice. Preliminary experiments with the GSOM resulted in a
3-dimensional SOM for this LCVF image, producing a clustering that is comparable to that in Fig. 4 [24]. We
are in the process of thorough evaluation of the GSOM for hyperspectral imagery.

A mapping that matches the probability density (pdf) of the input data is preferable, because it represents
regions of the input space with resolutions appropriate for their relative densities. If the SOM is used as a
classifier system the distribution of the weight vectors across the SOM lattice is determined by a power function
of the probability density of the data vectors [25], with the so-called magnification factor as the power. The
map magnification factor, m(z), which is the number of neurons representing a subsection dz of the input
space, is required to be proportional to the pdf. For magnification factors less than 1, which is the case for
the standard Kohonen SOM, it may be difficult or impossible to separate spectral patterns of seldom occurring
surface materials. The original SOM algorithm does not meet the above requirement and tends to overrepresent
regions of low density, and underrepresent regions of high density [13]. This could prevent sensitive separation
of spectral clusters with subtle signature differences, such as the sandy and clayey part of the playa (classes D
and E, dark and light yellow), or the splitting of class A into the red and dark orange clusters. The conscience
algorithm of DeSieno [20] adjusts the winning frequencies of the SOM neurons so as to ensure proper spreading
(compaction) of information that is dense (sparse) in the input feature space. See details in [6]. Van Hulle
points out that adding a conscience algorithm to the SOM does not equate to equiprobabilistic mapping, in
general. However, for very high dimensions, a minimum distortion quantizer (such as the conscience algorithm)
approaches an equiprobable quantizer [26] (page 93). The above clustering seems to support this statement,
as seen from an empirical evaluation in Fig. 6 of [6].

As shown in [27] it is possible to control the magnification of the SOM by the introduction of a local learning
rate that is dependent on the data density. The corresponding learning scheme can easily be implemented into
the standard learning rule. Since this is a rigorous control for pdf matching that could be very valuable in a fully
automated environment (such as on-board computational intelligence in space missions or Earth monitoring)
we are interested to see if magnification control can replace the more heuristic DeSieno algorithm, with equal
success for high-dimensional data.

3.2 Supervised classification of hyperspectral images with SOM hybrid ANN

Back Propagation neural networks, which are the most popular and best known ANN paradigms, can be
very difficult to train as their complexity increases non-linearly with the number of spectral bands and the



possibility for the gradient descent learning rule to get stuck in local minima increases dramatically with
the high dimensionality of the weight space. Dimensionality reduction is frequently applied to high spectral
resolution data to achieve tolerable training time, or training convergence at all (e.g., [4, 28]). We use an hybrid
ANN architecture with a 2-dimensional Self-Organizing Map connected to an output layer with a Widrow-
Hoff learning rule [29, 30]. This network scales up well, training convergence is relatively fast and easy as
demonstrated by previous works with up to 200 channels and over a dozen classes. This ANN construction
gave us more accurate results than Back Propagation for under- and unevenly represented classes in improving
asteroid taxonomy [31, 32], and discovering Martian surface units [15]. By first forming a cluster map of the data
in an unsupervised learning phase, it is less likely to learn inconsistent class labels in the subsequent supervised
phase than Back Propagation (will not merely memorize the training information). This results in better
generalization from even a small set of unevenly distributed samples, and consequently in higher classification
accuracy. [33] recently offered proof of the advantage of combining unsupervised traning with supervised, in
case of small training population. For details on the SOM-hybrid ANN used in our work we refer the reader to
[32] and [31]. For classification of the LCVF image we used a network configuration of 194 input (30 and 13 for
additional subsampled cases), 23 output nodes, and a 40-by-40 2-dimensional SOM in the hidden layer.

Our SOM-hybrid ANN was built and tested in NeuralWare’s NeuralWorks Professional II/PLus [30] graphi-
cal interface environment, then deployed using NeuralWare’s Designer Pack, and embedded in our own software
environment that has specifically been developed for the exploitation of high dimensional data such as large hy-
perspectral images. Knowledge extraction, process monitoring and visualization capabilities were also developed
in-house.

Table 2. summarizes the performance of the five classifiers compared in [7], for three different band sets.
ANN refers to our SOM-hybrid neural net described above. The other four classification methods are common
techniques well documented in remote sensing and statistics texts. The Minimum Euclidean Distance (MED),
Maximum Likelihood (MLH), Mahalonobis Distance (MHD) and Spectral Angle Mapper (SAM) classifications
were performed with the ENVI image processing software [34]. Rigorous statistical estimation of classification
accuracy was done as prescribed by accepted literature (e.g., [35, 36, 37, 38]). The evaluation was based on a
ground truth image file, painstakingly constructed for this study containing up to 200 test pixels for each class,
as allowed by the size of the class. The details are provided in [7].

For training of the covariance based classifiers (MLH, MHD), a minimum of 4485 samples would be required
for 194 bands and 23 classes ((194 + 1) x 23 = 4485), in addition to the test samples. Our 942 original training
pixels sampled the classes unevenly, with some classes represented by only a handful of spectra, and thus only
sufficed to classify a 13-band subset of the AVIRIS image with MLH and MHD. To have a better comparison
with the MLH and MHD capabilities, a 30-band data set was classified using an augmented training set. The
creation of an augmented training data set (raising the number of training samples to at least 31 in each class)
presented a challenge but it was doable, with careful work by a domain expert. There was, however, no way to
identify more than 31, let alone 195, reliable training pixels for every class since several of the small classes (such
as B, the rhyolitic outcrop, or the small classes Q, R, S, T), contain too few pixels. Therefore the MLH and MHD
classifications could only be run for the 30-band and 13-band data sets. This is a typical scenario in remote
sensing, illustrating one of the pressing reasons for the need for new computational intelligence techniques.

194-band classification | 30-band classification | 13-band classification
% K % K % K
ANN 89.80 0.8925 75.02 0.7386 77.08 0.7598
MED 82.04 0.8126 72.85 0.7166 73.29 0.7187
SAM 80.21 0.7914 67.10 0.6538 67.54 0.6583
MLH 50.87 0.4822 63.23 0.6172
MHD 72.53 0.7140 73.87 0.7276
Table 2:

Summary statistics of the performance of five classifiers. Data: AVIRIS 1994 hyperspectral image of the Lunar
Crater Volcanic Field, Nevada, USA.

For lack of space, to view the classification maps and for detailed discussion of the classifiers’ performances
we refer the reader to [7]. Table 2, taken from [7] indicates that the SOM-hybrid ANN did best with nearly 90%
accuracy on the full spectral resolution, and it outperformed the other four classifiers on the lower resolutions
as well. In addition to the classification accuracy Table 2. lists the so-called kappa-statistics, a frequently used
index of classification performance in remote sensing.



Another successful recent hyperspectral image analysis with the same method, for ecosystem studies in the
Grand Canyon, Arizona, USA, is reported in [39].

4 CONCLUSIONS and FUTURE DIRECTIONS

Principled applications of Self-Organizing Maps and hybrid ANNs containing SOMs are extremely promising
for clustering and classification of very high-dimensional data spaces. Correct and rigorous approaches such
as described in this summary allow reliable “precision mining” of highly complex data such as hyperspectral
imagery, at full spectral resolution. This enables fine discrimination of a large number of surface materials in
classifications, and it provides the potential of discoveries to the extent of detail that the advanced spectral
imagers capture. Current and near future work is focused on thorough testing of the theories outlined and
integration thereof into one powerful tool for hyperspectral image analyses.
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