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Abstract

The use of neural maps, specifically Self-Organizing
Maps, is shown for “precision” mining of high-dimensional
scientific data. The motivation comes from the computa-
tional challenges posed by complex multiband spectral im-
ages acquired by advanced remote sensors. Today spectral
and hyperspectral imagers are present on virtually every
Earth-orbiting satellite and space mission, acquiring im-
mense amount of very rich data. Conventional clustering
and classification methods often meet their theoretical or
practical limitations when confronted with such data. This
paper reviews the mathematical challenges, the limita-
tions of some classical favorite methods, neural maps, and
presents sophisticated material identification from spectral
images with advanced Self-Organizing Maps.
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[. THE INFORMATION IN SPECTRAL
IMAGES anp THE CHALLENGES oF
EXTRACTING IT

Airborne and satellite-borne spectral imaging has
become one of the most important tools for collecting
vital information about the surface covers of Earth
and other planets. The utilization of these data in-
cludes mineral exploration, land use, forestry, ecosys-
tem management; assessment of natural hazards, wa-
ter resources, environmental contamination, biomass
and productivity; and many other areas of economic
and scientific significance, such as looking for possi-
ble signs of past or present life on other planets. The
data acquired by spectral imagers are “stacked” im-
ages of the same spatial area, each taken at a dif-
ferent wavelength. The individual images are called
image bands (Fig. 1).! Hyperspectral sensors, devel-
oped in the past 10-15 years, acquire as many as 100—
500 image bands simultaneously, contiguously cover-
ing a given window of the electromagnetic spectrum
at very small wavelength increments. The vector
ST = (ST, ..., Sy%), where S;¥ is the data value

1

in the kth image band (k = 1,..., NB) at pixel loca-
tion (x,y), is called a spectrum. Since materials re-
flect incident sunlight preferentially at various wave-
lengths, the resulting spectrum is a characteristic, re-
peatable pattern which provides a unique identifica-
tion of the surface material(s) within pixel (z,y). Sur-
face reflectance spectroscopy uses the visible and near
infrared (VIS-NIR) wavelength range, typically from
0.4 to 2.5 pm. The feature space spanned by VIS-NIR
spectra is [0, U]VB ¢ RVB where U > 0 represents an
upper limit of the measured scaled reflectivity. Sec-
tions of this space can be very densely populated while
other parts may be extremely sparse, depending on
the materials in the scene and on the spectral resolu-
tion of the sensor.

Examples of hyperspectral imagers are the Air-
borne Visible-Near-Infrared Imaging Spectrometer
(AVIRIS, NASA/JPL [1]), Hydice (Naval Research
Lab, [2]), SpecTIR (http://www.spectir.com/), Hy-
perion on the EO-1 Earth Observing satellite
(http://eol.gsfc.nasa.gov/Technology /Hyperion.html),
CASI (ITRES, Canada, http://www.itres.com/),
the Visible-Infrared Mapping Spectrometer (VIMS)
on the Cassini spacecraft, orbiting Saturn since
June, 2004, (http://saturn.jpl.nasa.gov/spacecraft/
instruments-cassini-intro.cfm). See a longer list at
http://www.geo.unizh.ch/~schaep/research/apex/
is_list.html . Detailed clustering and classification of
hyperspectral imagery can provide a great wealth of
information for scientists and decision makers. How-
ever, the intricate spectral patterns pose unique chal-
lenges for any of the following reasons:

o The patterns are high dimensional (dozens < NB <
hundreds);

o The number of data points (image pixels) can be
very large, > 1M;

o Given the richness of data, the goal is to separate
many cover classes;

Original figures are in color. Color paper posted at http://www.ece.rice.edu/~erzsebet /publications.html
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« Different materials may be distinguished by only
subtle differences in their spectral patterns;

o Very little training data may be available for some
classes; and classes may be represented very unevenly.

T I T T T T I T T T T |
-0 Alunite as seen by_|
“ L three systems
= [ _
(11}
/-~ EACH PIXEL EXHIBITS A ¥ i ]
/ CONTINUOUS SPECTRUM I [ j
N o 1.5 -
§ N + i ™ ]
\_‘ w = =
R ] | ]
=
\ < 1.0 — =
- L 4
a ™ 0 - -
* | 1 L MoD1s |
W l', Ig B 1
g e p
IMAGES ACGUIRED SIMULTANEOUSLY E i \ L .
IN MANY NARROW, REGISTERED 3 | \ L -
SPECTRAL BANDS z | L _
g ol 1 Loy TN A
WAVELENGTH —= 1 2 3

Fig. 1.

Left: The concept of hyperspectral imaging. Figure from [3].
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Right: The spectral signature of the clay

mineral alunite as seen through the 6 broad bands of Landsat TM, as seen by the moderate spectral resolution
sensor MODIS (20 bands in this region), and as measured in laboratory. Figure from [4]. Hyperspectral sensors
such as AVIRIS of NASA/JPL [1] produce spectral details comparable to laboratory measurements.

Additional complications arise from atmospheric
distortions, noise, illumination geometry and albedo
variations in the scene. These can be treated with
established preprocessing methods prior to classifica-
tion, and therefore are not discussed here.

Favorite traditional classifiers and clustering algo-
rithms (such as Maximum Likelihood, Parallel Piped,
Mahalonobis Distance, K-Means or Isodata) have
difficulty handling many image bands (the high-
dimensional data vectors S*¥ as input patterns) and
therefore perform poorly. For example, the Maximum
Likelihood and other covariance based classifiers re-
quire at least N B + 1 training samples for each class
in order to avoid a singular covariance matrix and the
collapse of the algorithm. This requirement may not
be possible to satisfy in a real remote sensing scenario,
such as in the case of unexplored regions of Earth, or
in planetary missions. Likewise, favorite clustering
approaches such as pairwise ratios, scatttergams, or
Principle Component (PCA) projections become im-
practical for hundreds of dimensions. Dimensionality
reduction (or feature extraction) prior to classification
is often performed in order to scale down the data
to traditional methods. However, it is not clear how
feature extraction can be done in order to preserve
relevant information (class distinctions) captured by
modern imaging spectrometers. The intrinsic (spec-

tral) dimensionality of these images is a subject of
open research. Dimensionality reduction is most fre-
quently attempted by PCA or wavelets, or by selec-
tion of important image bands by domain experts. We
found undesirable loss of class distinction with all of
these methods [5], [6], [7]. Non-linear dimensional-
ity reductions such as by [8] may retain more of the
relevant information but systematic studies do not ex-
ist to show their general power for many classes with
slight spectral shape differences, and that the discov-
ery potential of small “interesting” groups of data is
preserved. See [7] for a more detailed review.

In any case, finding optimal feature extraction for
every data set requires great preprocessing efforts. A
better alternative is to develop capabilities to handle
the full spectral dimension. This is important for dis-
covery as well as for benchmarking: once we know
the level of useful detail that can be extracted from
a high-dimensional data set using the full dimension-
ality, feature extraction and dimensionality reduction
algorithms can be developed and tested against that
knowledge. Another, fundamental aspect is that lin-
ear approaches such as PCA and/or methods based
on only second order (Gaussian) statistics may not
detect some of the most interesting features because
hyperspectral images are characterized by higher or-
der statistics [9]. More powerful, non-linear methods
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are needed for adequate knowledge extraction.

II. COMPUTATIONAL INTELLIGENCE
SOLUTIONS

A. Artificial Neural Networks

Artificial Neural Networks (ANNs) are massively
parallel, finely distributed learning machines that
learn to solve problems from examples. The interest
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Fig. 2.

in using ANNSs is a) for their extreme speed when im-
plemented in massively parallel hardware; b) for their
smart brain-like data processing. This paper deals
with the second aspect. A generic supervised ANN
architecture is in Fig. 2, top left. It consists of layers
of many simple Processing Elements (PEs) and the
layers are fully connected. The connection strength,
called weight, between any two PEs changes during
an iterational learning process:

® B B & 8 B & B W
® B B & 8 B B B W
. = 5 8 B ! ™
. 2 B 8 8 '?‘) R
™ s B /e &
» . 8 I I
- . @ B T

Top Left: A generic supervised ANN scheme. Small cricles indicate Processing Elements (PEs, or artificial

neurons), arrows represent the weighted connections between PEs. Bottom Left: The structure of a single PE.
Each PE performs a very simple fundction. Right: Self-Organizing Map scheme. The top rectangle represents PEs
arranged in a regular 2-dimensional SOM lattice. Each PE has a weight vector of the same dimension as the input
space, which points to the input space. The weight vector of a PE is a prototype of all input data points that are
closest to that weight vector. See description of how an SOM works, in the text.

Data samples are shown many times at the input
layer, passed through the subsequent layers in which
all neurons perform a simple weighted summation of
their inputs. The weights are adapted at each itera-
tion (after showing one input sample) according to a
learning rule and based on feedback from a teacher, so
that the network gradually approximates the correct
answers at the output layer. (Samples from pattern
classes are input as n-dimensional vectors, and class
labels are encoded as m-dimensional vectors at the

output layer.) ANNs can learn input-output map-

pings that are too complicated to describe analyti-
cally, or that have no analytical description. A com-
prehensive textbook on ANNs is, e.g., [L0]. ANNs
have been used by many authors to classify spectral
imagery (see [7] for some references). While most
applications successfully accomplish a more accurate
classification than traditional counterparts, the ma-
jority of these studies deal with relatively low dimen-
sional data (e.g., Landsat TM, Fig. 1, right panel).
The most frequently used supervised ANN classi-
fier, Back Propagation (BP), is very powerful and
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fairly well understood. However, a BP that is com-
plex enough to classify a hyperspectral image into
many classes (i.e., hunderds of input neurons, several
dozens output neurons and many hidden neurons, in
possibly multiple hidden layers) is hard to train. In
what follows, we discuss Self-Organizing neural net-
works, which can handle high-dimensional data, and
can produce a faithful representation of the structure
of a complex data space to allow detailed clustering
and discovery of interesting relationships in the data.
A converged SOM can also be used as the hidden
layer of a supervised BP-like ANN, in which the SOM
greatly helps fast and easy convergence, and by virtue
of its own preformed view of the data structure, pre-
vents learning of inconsistent labels (teacher errors)
thus helping highly accurate classification. Analyses
of hyperspectral data from Mars and asteroids using
such hybrid ANNs, and details of the hybrid architec-
ture, are presented by [5], [11], [12]. Each resulted in
improved scientific information extraction compared
to previous analyses with conventional methods.

B. The Self-Organizing Map neural paradigm

Self-Organizing Maps (SOMs), invented by Teuvo
Kohonen [13], are the most widely used neural maps
for topographic vector quantization (faithful model-
ing of the structure of an input data space). They are
intended to mimic the topological information map-
ping by biological neural maps that have been ob-
served to form in various areas of the cerebral cortex
[13]. Neural maps map data vectors x sampled from
a data manifold M C RPM of dimension D, onto
a discrete set A of neurons or processing elements
(PEs), denoted by (generally multi-dimensional) in-
dices r. Each PE has a weight vector w, € #PM. The
vector quantization is realized by a mapping ® (.4
through a winner-take-all rule: an input vector x € M
is mapped onto neuron i € A whose pointer wj is clos-
est to x:

Drgyq:x = 1(x) =argmin d(x,w), (1)
rcA

where d(x,w,) is a distance, most often the Eu-
clidean. The neuron i is called the winner. A reverse
mapping is defined as ® 4,04 : r — wy. The two
mappings together determine the neural map

U= (Prra, Pasnm) (2)

realized by the network (Fig. 2, right panel).

In the Self-Organizing Map [13] the neurons are
arranged on a prefixed grid A, usually a Dy4—
dimensional hypercube,
(r1,...,7py). D4 =2 is the most popular SOM grid
dimension, for its advatageous visualization. Other
ordered grids are also used [13].

In neural maps the pointers are adapted during
many steps of iterational learning to achieve an op-
timal set of prototype vectors for the quantization of
the input data, that is, to match the input pdf as
closely as possible. At each time step, a data point
x € M randomly selected from the input distribution
P (x) is presented to the map, the winning neuron i is
determined according to (1), and the weight w; along
with the weights of neurons in the winner’s neighbor-
hood are adapted, shifted toward x:

whose vertices are r =

Aw, = ehy(r,i(x)) (x — W) (3)

where the neighborhood function hy(r,i(x)) deter-
mines the extent of the adaptation for weights wy.
€ is a scalar learning rate. The neighborhood func-
tion and the learning rate should decrease with time.
hx(r,i(x)) is often of Gaussian shape

. 2
Pa(r,(x) = exp (—M) (@)

where d 4 (r,i(x)) is a distance measure on the set
A. In the SOM usually A = 202. Other neighborhood
shapes, for example rectangular as in Fig. 2, right, are
also used. Note that hy(r,i(x)) implicitly depends on
the whole set W of weight vectors through the win-
ner determination of i according to (1). The learning
described by equations (1) and (3) leads to the forma-
tion of contiguous areas of neurons in the SOM grid,
whose weights collectively represent (become proto-
types for) groups of similar data points of the input
manifold M. Thus clusters in M can be found by
evaluating the SOM weights as shown in Fig. 3.

The particular definitions of the distance measures
and winner selection define other neural map models
such as the Neural Gas [14] that are not discussed
here. Convergence of the Kohonen SOM learning has
not been proven beyond 1 dimension [15] due to the
fact that an energy function could not be found for the
SOM [16]. For some other neural map versions this is
possible (e.g., [17]) but a review is beyond the scope
of this paper. However, in practice convergence is usu-
ally not problematic. For more detailed overview of
SOMs see [18] and [19].
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Fig. 3. Clustering a 5-class data set with SOM. Left: Weight vectors are shown at each neuron’s location in the 10 x 10
SOM grid. It is easy to see that the weights adapted to the five different patterns contained in the input data set:
the weight patterns form distinct groups in the four corners and in the middle of the SOM. The input data are
shown in detail in [20]. Four of the five classes contain 4096 or 4095 data points while the fifth class has only one
data point. This rare class, which is also dramatically different from the other four classes, is represented by only 1
weight in the lower right corner (highlighted in pink), while the large classes have more prototype weights. Right:
Clusters identified in the SOM by visualizing the distances of the weights of adjacent neurons as fence heights, after
[21]. The darker the fence between two neurons, the smaller the difference between the corresponding weights, which
means that the receptive fields of those weights contain similar data. Areas of similar weights in the SOM represent
clusters in the input data space. Original figure is in color.

The subset of the input space
Vi={xeM:r=d_4(x)} (5)

mapped to neuron r according to (1) forms the recep-
tive field of neuron r. If the intersection of two recep-
tive fields V;, Vi is non-vanishing then Vi and Vy are
neighbored. The neighborhood relations of receptive
fields form a corresponding graph structure G in A:
two neurons r and r’ are connected in Gy if and only
if their receptive fields are neighbored. The graph
Gum is called the induced Delaunay-graph ([22]). Due
to the association between neurons and weight vectors
G also represents the Delaunay graph of the weights
[22]. This graph can be used to evaluate the topology
preserving condition of the map.

C. What is a correct SOM?

There are several interesting and very important is-
sues related to precise approximation of an input den-
sity distribution with SOMs. First, it is important to
have a topology preserving mapping ¥, which means
that the neighborhood relations between input space
M and output space A should be preserved in both
directions (P g4 and ® 4, 2¢). A mapping ¥ that is

not topology preserving (that maps a group of similar
input patterns to disconnected areas in the SOM grid,
thus producing a “twisted map”) can lead to false in-
terpretation of data clusters from the SOM. While to
some extent — especially for small input data sets —
one can catch topology violations by manual evalua-
tion of the detected clusters from a converged SOM,
this is very tedious and expensive for large data sets.
It is desirable to have formal tools that can alert
for topology violations. The Topographic Function
by Villmann et al., and the Topographic Product by
Bauer and Pawelzik [23], both described in [24], are
such algorithms. The Growing SOM [25] provides re-
mediation during learning.

D. Magnification in SOMs

Map magnification is another important theoreti-
cal aspect that we make use of. It refers to the rela-
tive size of SOM areas representing subsets of the in-
put space, and is formally described by the following
power law between the density of weights in the input
space Q(w) and the pdf P(x) of the input samples:

Q(w) = CP(x)" (6)
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where « is the magnification exponent and C'is a con-
stant [26]. As described by [26] a converged SOM
with @ = 1 maximizes information theoretic entropy.
a = D/(D + 2) for D-dimensional data corresponds
to minimum mean squared error quantization. a < 0
enlarges response areas in the SOM for low-frequency
inputs, which can help the discovery of low-probability
events by enhancing the detectability of rare classes.
Kohonen’s SOM algorithm (KSOM) [13] has been
shown to achieve o = 2/3 for 1- and 2-D maps un-
der certain conditions [27], which is optimal in nei-
ther minimum distortion nor maximum entropy sense.
A heuristic SOM variant called Conscience algorithm
[28] produces @ = 1 but not any other value. Bauer,
Der and Herrmann proposed a principled SOM algo-
rithm (referenced here as BDH) for the ezplicit con-
trol of the magnification exponent by using adaptively
adjusted local learning rates [26]. This possibility is
very attractive because it could be a tool for obtaining
various quantization properties, appropriate for spe-
cific data mining purpose. However, analytical proof
for successful magnification control only exists for 1-
dimensional data and for 2-dimensional data whose
components are statistically independent, while all in-
teresting real data are high-dimensional with all kinds
of correlations between data dimensions. Jain and
Merényi presented numerical simulations in [20] on
2-dimensional simple “forbidden” data with known
pdf, for which the achieved magnification « could
be computed from the SOM. Similarly, 6-dimensional
synthetic spectral images with known class structure
were examined for magnification effects. These exper-
iments indicate that the BDH algorithm may work for
data unsupported by the theory. Following we show
samples from analyses conducted on real spectral im-
ages with BDH, and with Conscience algorithm. We
are not aware that the validity and power of the in-
triguing BDH scheme has been gauged for real com-
plex data outside of our studies.

III. SOM STUDIES on REAL SPECTRAL
IMAGES

A. Discovery with negative SOM magnification

A 512 x 512 pixel, 8-band remote sensing image
of Ocean City, Maryland, was used to study the ef-
fect of forced negative magnification. This data set
is > 2 dimensional with high pairwise (0.5 to 0.95)
correlations. The actual a value achieved by the map
cannot be computed because the data distribution is
unknown (see [30], [20] for computing « for known
densities), but we can compare the areal representa-

tion of known small classes in the BDH SOM and in
an SOM that learned with the Conscience algorithm
to see if the rare classes occupy larger areas in the
BDH SOM. (In [29] we verified that the Conscience
algorithm does achieve a = 1 on similar synthetic
data.) We also look for previously unidentified clus-
ters. Fig. 4 demonstrates the discovery of a small
cluster. It also shows another, pale aqua class (V)
that was known at the time of an earlier supervised
classification, but became more pronounced by BDH
clustering. Fig. 5 compares the two SOMs. Shown on
the left is the 40 x 40 SOM formed by BDH learn-
ing with intended o = —0.8, using only the upper
right quadrant of the image, i.e., 1/4 of the data.
The newly discovered rare cluster (greenish-yellow) is
indicated by the middle arrow. The spectral signa-
ture of this cluster is distinct from all others as seen
in Fig. 4. Also indicated are two other small clus-
ters that correspond to the previously known V (pale
aqua) and C (white) classes from the supervised class
map (Fig. 4). The 40 x 40 Conscience SOM that was
learned using the entire image, is in the middle. The
new greenish-yellow cluster was hard to see in this
map, and was only found because we looked for it
based on the BDH discovery. This rare cluster covers
only 3 PEs in the Conscience SOM in contrast to 7
PEs in the BDH SOM where it is also more contoured
by stronger “fences”. Similarly, the previously knwon
small V class is represented by 4 PEs in the Con-
science SOM vs 6 PEs in the BDH SOM. The white
class (C) occupies 4 PEs in both SOMs, in spite that
within the 1/4 subimage used for BDH clustering the
white class only occurs in a small rectangle (not cir-
cled) at the upper right corner, while there are many
more white class pixels in the entire image used for the
Conscience SOM training. These observations clearly
indicate that, relative to Conscience SOM the BDH
performed negative magnification.

B. Rare clusters in a Mars spectral iamge

One of the most important things in the exploration
of other planets is the discovery of new, surprising
or rare materials. We analyzed a spectral image of
the Martian surface taken by the Imager for Mars
Pathfinder (IMP) in 1997. This image is one of the so-
called octants of the SuperPan (360 degree panorama)
image obtained by the left eye of the IMP, consisting
of 8 bands taken at wavelengths from 0.44 to 1.001
pm. The spatial size is nearly 1,000 x 1,000 pixels,
with a large area occupied by the landers ramp. The
Martian surface shows in about 600,000 pixels.
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Fig. 4. Comparison of supervised classification and BDH clustering with o < 0. Left: An earlier supervised classification
that accurately mapped 24 known urban cover types. Centered in the small black rectangle within the framed upper
right quadrant is an unclassified grey spot (the color of the background, 'bg’) apparently of the shape of a building.
Right: SOM clustering using BDH magnification control with & = —0.8 on the upper right quadrant of the image.
First, notice that the agreement between the supervised class map and this cluster map is striking, which inspires
confidence in the clustering. Secondly, notice that the spot that remained unclassified in the supervised map is now
filled exactly and with a new color (greenish-yellow). The spectral signature of this new cluster is distinct from all
others, moreover, it only occurs at this location: we discovered a rare class! Fig. 5 shows the SOM view of this
discovery, and the spectral signatures of clusters. Original figure is in color.

We clustered this image in a previous work [31] with
a Conscience SOM, and found known, very rare oc-
currences of a black rock type that is a fairly pris-
tine, olivine and/or pyroxene rich rock and of great
interest to geologists. We also found two subtypes of
the black rock, the spectral signatures of which show
mineralogic distiction: one subtype has an absorp-
tion at approximately 0.93 pm (consistent with or-
thopyroxene), the other has an absorption at around
1 pm (consistent with clinopyroxene or olivine). One
subset of the clustered image is in Fig. 6, with the inset
enlarging an occurrence of both rare subclasses. The
full image with class descriptions and corresponding
mean spectral shapes are shown in [31].

Fig. 7 compares the Conscience SOM and by a BDH
SOM of the same data. The representation areas of
both clusters increased, and their separation became
stronger, in the BDH SOM. Moreover, further sub-
types were discovered by the BDH, within the original

pink cluster (white) and in-between pink and aqua.
The corresponding mean spectral signatures shown in
[32] confirm these subclusters.

C. A 194-dimensional case

So far we illustrated the power of Self-Organizing
Maps on relatively low-dimensional (8-band) spectral
signatures. The reason is that we wanted to present
“hot new” results with controlled map magnification,
and our experiments with forced map magnification
still need a lot of careful simulations in order to
gauge the behavior of the BDH algorithm on higher-
dimensional data. However, we have excellent results
with Conscience SOM for 100-200 dimensional spec-
tral data. For example, using a Conscience SOM to
cluster 60-dimensional asteroid spectra helped formal
identification of suspected asteroid types that could
not be detected with other methods such as PCA and
minimum spanning tree clustering [5]. Discovery of a
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Color Panel: Comparison of SOMs developed by BDH versus Conscience learning. Left: The SOM learned

by BDH, a < 0, using the upper right quadrant of the Ocean City image. Middle: The SOM learned by Conscience
algorithm (& a = 1), using the entire Ocean City image. Right: The rare classes in the image. It is apparent, as
explained in the text, that the rare clusters are magnified in the BDH SOM in comparison to the Conscience SOM.
Original figure is in color. Graphs: The mean spectral signatures of half of the clusters identified with BDH SOM.
The spectrum of the new greenish-yellow cluster is the bottom one, and it is very different from all others (including
the other half of the clusters not shown because of space considerations).

new Martian soil type was made from 100-dimensional
data through the use of an hybrid ANN with a Con-
science SOM as the hidden layer [33]. Perhaps the
most challenging data sets we dealt with are AVIRIS
images. [7] presents segmentation of a 194-band image
into 32 clusters based on the 194-dimensional spec-
tral signatures. For lack of space the reader is re-
ferred to that paper for the figures. Besides showing
high degree of agreement with the geologist’s knowl-
edge, this cluster map also produced discoveries, sur-
face units that the geologist was unaware of! [7] also
demontstrates, on the same image, a highly accurate
supervised classification using the above mentioned
hybrid ANN, and how the high data dimension leads
to poor performance by a Maximum Likelihood clas-
sifier. Since we could verify the clusters (the data dis-
tribution) for this image based on ground truth, we
could make a crude estimation of the magnification
exponent to see if the Conscience algorithm produces,
as advertised, a linear relationship (o = 1) between
weight and data density for such high dimensional
data. Fig. 6 of [7] shows that to be the case.

IV. CONCLUSIONS AND FUTURE
DIRECTIONS

This paper argued that for complex scientific data
such as remote sensing spectral images, precise clus-
tering and classification pose unique challenges that

call for computational intelligence tools. Artificial
Neural Networks and in particular, Self-Organizing
Maps and advanced variants were described, and their
capabilities in information extraction from spectral
images were demonstrated through analyses of real
Earth and space science data. A new line of study,
assessment of the scope of the explicit magnification
control algortihm by [26] was presented along with
successful applications. This numerical validation of
the BDH algorithm is ongoing, and it needs much
more work to understand its use and applicability
to higher dimensional data. It is hoped that these
simulations will lead to increasingly more sophisti-
cated and more powerful analyses of intricate, large-
volume data. We want to point out that microspec-
tral imaging (spectral imaging through a microscope)
has been gaining recognition in the past few years for
distinguishing pathologies in biological tissues based
on spectral properties. This opens up a large field
of extremely important medical applications such as
identification of cancer cells on the basis of their chem-
ical composition rather than from morphological fea-
tures (which is a much more subjective judgement),
and thus has the potential of automating parts of the
screening process. The techniques we elaborated on
are directly applicable to such medical imagery.
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Fig. 6. Clusters obtained with a Conscience SOM, from IMP SuperPan octant S0184 of the Martian surface at the Mars
Pathfinder landing site. The full image and discussion of clusters is given in [31]. Here we focus on two extremely
rare clusters that are subtypes of a geologically relevant “black rock” material: the pink class and the pale aqua
class within the white rectangle and the white small oval, respectively. The same are enlarged and pointed at by
arrows in the inset. These occurrences contain less than 25 pixels each.

H'IF

Fig. 7. Left: Detail from the 40 x 40 Conscience SOM used in [31], showing the representation of the pink and aqua
“black rock” clusters from Fig. 6. Right: Detail from the 40 x 40 BDH SOM showing the representation of the
same two rare clusters. The separation between pink and aqua clusters is much more definite than in the Conscience
SOM. The areal representation of the aqua class is much larger in the BDH SOM. The original pink type has further
split into subtypes and is now represented by the pink and white areas together, doubling the representation area
(The white color was recycled here and is not the same spectral type as in the Conscience SOM).
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