Neurocomputing 112 (2013) 189-199

journal homepage: www.elsevier.com/locate/neucom

Contents lists available at SciVerse ScienceDirect

Neurocomputing

A reconfigurable neuroprocessor for self-organizing feature maps

J. Lachmair®* E. Merényi® M. Porrmann?, U. Riickert ?

2 Cognitronics and Sensor Systems, Bielefeld University, Universitdtsstrasse 21-23, 33615 Bielefeld, Germany

G Department of Statistics, Rice University, MS 138, 6100 Muain Street, Houston, TX, USA

ARTICLE INFO ABSTRACT

Available online 4 March 2013

Keywords:
Self-organizing feature maps

In this paper we compare a scalable FPGA-based hardware accelerator for the emulation of Self-
Organizing Feature Maps (SOMs) with a multi-threaded software implementation on a state-of-the-art
multi-core microprocessor. After discussing the mapping of SOMs to the reconfigurable digital

FPGA hardware implementation, we present how the modular system architecture can be flexibly adapted

Hardware accelerator
Hyperspectral data

to various application datasets as well as to variants of SOMs like Conscience SOM. Hyperspectral image
processing is used as a benchmark scenario for the comparison of our FPGA-based hardware accelerator

and state-of-the-art multi-core microprocessors. The hardware costs, power consumption, and scal-
ability of the FPGA-based accelerator using Xilinx Virtex-4 FPGAs are discussed. For the real-world
datasets used here, which require large SOMs, a speedup and energy reduction of one order of

magnitude are achieved.

1. Introduction

Since SOMs were first proposed by Kohonen [1], they have
become an important tool in analyzing high-dimensional data
such as those in hyperspectral imaging tasks [2,3] or medical
research [4]. Following the principle of operation of the human
neocortex, a SOM is able to generate a spatially ordered map of
similarity groups from input space in an unsupervised learning
process. A major advantage of this topology-preserving learning is
that it works well for high-dimensional data, and it provides
unique visualization possibilities. The underlying SOM knowledge
can facilitate detailed and precise extraction of clusters, either
through interactive visualization or with automated approaches
(I5] and references therein). SOM learning, however, is computa-
tionally expensive. Although parallelism is increasing in today’s
microprocessor architectures, the software-based simulation of
large SOMs with high-dimensional weight vectors still suffers
mainly from sequential processing.

When targeting the analysis of high-dimensional datasets in
energy-restricted environments like satellites or mobile robots,
dedicated yet flexible hardware implementations are necessary to
achieve the required real-time performance. The hardware accel-
erator proposed in this paper is based on the single-FPGA
neuroprocessor described in [6] and extends this architecture

* Corresponding author. Tel.: +49 521 106 67372,
E-mail addresses: jlachmair@cit-ec.uni-bielefeld.de {]. Lachmair),
erzsebet@rice.edu (E. Merényi), mporrmann@cit-ec.uni-bielefeld.de
{M. Porrmann), urueckert@cit-ec.uni-bielefeld.de {U. Rickert).

0925-2312/$% - see front matter @ 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.neucom.2012.11.045

@ 2013 Elsevier B.V. All rights reserved.

toward a flexible multi-FPGA-based SOM accelerator. In addition
to an enhanced scalability, leading to a speed-up that increases
almost linearly with the number of FPGAs, we extended the
instruction set of our neuroprocessor to the simulation of Con-
science SOMs (CSOMSs) according to [7]. This is motivated by both
the effectiveness of CSOMs for the analysis of large, high-
dimensional datasets and their advantages for hardware imple-
mentation. In the following Section the CSOM algorithm and its
realization in digital hardware will be introduced. Section 3
details the modular FPGA-based system architecture and its
partitioning. Section 4 presents a large real-world application
and the test environment for measuring performance in terms of
execution time and power consumption. The scaling properties of
our architecture in respect to the number of SOM neurons and
data dimensionality will be discussed as well. Finally, the experi-
mental results for the FPGA-based hardware accelerator are
compared to a multi-threaded software implementation and
selected hardware realizations developed by other researchers.

2. Conscience SOM implementation

The classical SOM algorithm causes a magnification of fre-
quently presented input data in the map, which manifests in a
disproportional number of SOM neurons allocated to their repre-
sentation while the same magnification effect results in an under-
representation of small clusters. Magnification, in general, is
induced by vector quantization algorithms, which can be formally
described as a power law relationship between the density of the
trained SOM weights Diw) and the density of the input data P(x)

190 |. Lachmair et al / Neurocomputing 112 (2013) 189-199

with x2 V¢ r?and wa rY :Diw)p P(x)*. In this relationship, r is
the magnification factor, which is an inherent property of a given
vector quantization algorithm [8,9]. To maximize the information
representation in the trained SOM, maximum entropy mapping is
desired, which equates to a magnification factor of 1. The classical
(2-dimensional) SOM induces r = 2=3 [10]. The CSOM achieves a
good approximation of a magnification factor of 1 by computa-
tionally inexpensive heuristics [7], and as shown in [11] this also
works for higher dimensional data. The CSOM heuristics consist of
adding a bias value B; (the conscience) for calculation of the
distance between input vectors X and w; in the SOM winner
selection (Eq. (1)), to discourage frequent winners from winning
and encourage infrequent winners to win (thus eventually equal-
izing the winning frequencies, achieving maximum entropy

mapping)

(L) We(l)Fp, Be(f)o L) wi(h)F, Bif)via c (1)
1
Bity=gity — Fitt) (2)
Ny
Fitt+ 1)y =Fi(t)+b(t)y; Fi(t) (3)
Wyt 1) =wi(6) -+ he (0[X(E) wyit)] (4)
(

a(ty if ac 03, © Psom

he)= . :
D) 0 if are ridpg, 4 /Psom

(5)
Here, X(£)a V < r?® is the vector from input space V presented to
the SOM at time step t; d is the dimensionality of the input data.
The parameter py determines what distance metric is used in the
input space. Currently, the choices are Euclidean (py=2) and
Manhattan (py=1). While the Manhattan distance is not a very
sensible metric in the input space we provide it because it is
implemented in the hardware for a choice in the computation of
SOM lattice distances. The parameter c is the index of the winner
neuron, Ny is the number of neurons in the SOM (static for
classical SOM and CSOM) and F; is the winning frequency of
neuron i. The bias B; (Eq. (2)) is calculated at each learning step.
The bias depends on the user-specified parameter g and the
winning frequency F; (Eq. (3)). The user-controlled parameters
(ab,g) have to decrease during simulation in order to strengthen
the already learned information. The parameter y; is 1 for the
winner and 0 for all other neurons. The distance metric applied in
the map M CrR™ is determined by the parameter peo, =1 or 2
(Eq. (5)); nis the dimensionality of the map; ra M is the neuron
position in the map. In contrast to the classical SOM the CSOM

only updates the immediate map neighbors. Thus, in the special
case of CSOM, the distance metric in the map directly determines
the number of updated neurons (i.e., in a rectangular SOM, for
n=2 and pgy =1 the neighborhood is diamond-shaped (Man-
hattan distance) including 4 neighbors, while pegy = 2 defines a
square neighborhood (Euclidean distance) including all 8 map
neighbors).

An advantage when mapping the CSOM to our hardware is the
similarity between the calculation of B; and F; to the weight
update algorithm of the classical SOM. Hence, F; and B; can be
easily calculated without the need for additional calculation units.
During weight update the lattice distance between each neuron
and the Best-Matching-Unit (BMU) in the map has to be calcu-
lated and the weights of the BMU (w,) as well as the weights of its
neighbor neurons are adapted according to Eq. (4). Another
advantage when using CSOM is the constant neighborhood func-
tion h¢; (Eq. (5)). which can be realized much easier in hardware
than a Gaussian function, often used in classical SOMs. Hence, for
the hardware implementation of the CSOM algorithm, the
instruction set of our neuroprocessor only had to be extended
to support bias and winning frequency calculation.

3. Modular system architecture

The modular system architecture of our hardware accelerator,
called gNBXe, is specified in VHDL and optimized for Xilinx FPGAs
(Fig. 1). It consists of a central control FPGA including the global
controller (GC) and several FPCGAs implementing the processing
elements (PE-FPGAs). The processing elements (PEs) are the
hardware units performing the calculations for simulating the
SOM neurons. The calculation precision (B, the number of
processing elements per FPGA (Ngg), and the local memory space
of each processing element can be flexibly chosen at design time
using VHDL generic parameters. The high flexibility of the
architecture is further increased by enabling each PE to emulate
not just one SOM neuron but to perform the calculations for
several neurons, thus facilitating the simulation of large maps.
Fig. 2 depicts the stages of the training process when simulating a
SOM with our hardware accelerator. After the FPGAs have been
configured, the training dataset is sent to the global controller.
Once the simulation process is started, all PE-FPCAs initialize
their neuron weights either randomly or with a custom weight
set. While training the SOM, the global controller distributes the
input vectors to the PE-FPGAs, which calculate the distances
between the input vectors and the neuron weights sequentially

HOST Local controller Processing field
datataddress
Global commands control
Control state signals -
unit \(E%}}”’ ﬂ@'{}
= data cache |— LU A% i
/ Parameter registers ir \
roor » adaptation cache — and \ PE PE L
: ECapeTion Fache. macro commands /fU.ﬂ/ _ (1.1
O | |= result FIFO |jt—i i _> e e _E}D.
(0,2) ? {1,2)]
results L : -
SDRAM (WTA unit J

Fig. 1. {Color online} Principle of the modular system architecture,

|. Lachmair et al. / Newrocomputing 112 (2013) 189-199 191

[send first input vecfor

Initializing
spread parameters
random or custom initalizing

: for all
I Spread adaptation program e
PE
cD_FB
Calc distance |[x(t) - w (t)|pv
for all
PE-FPGAs

find global BMU
get local BMUs and find global
BMU
for all
Neurons per
bPE

for all

PE-FPGAS
Get results
GR

Fig. 2. {Color online) Stages of the training process.

For all leaming
steps

I send next input vector

SA_AD
Calc distance ||r. -ri|Psow

for all components. To prevent unnecessary idle cycles of the
PE-FPCAs, the first input vector is already sent to the PEs during
initialization. When all required distances have been calculated,
the best matching unit (BMU) is determined: all PE-FPGAs per-
form a local bit-serial search to identify their local BMU's and
subsequently, the global BMU is determined by comparing the
BMUs of the PE-FPGAs in the global controller. To adapt the
neuron weights, the distance of the BMU to all neuron positions in
the map is calculated and the weights of the neurons inside the
neighborhood are adapted. When the number of pre-determined
training iterations has been reached, the trained SOM is sent back
to the global controller and can be fetched by the host system.

3.1. Global controller

The global controller (Fig. 3) connects the accelerator to the
host system and manages the training and adaptation data. To
ease the control logic inside the global controller, a memory
management unit has been implemented, which is working
independently from the control process itself. The training data
is stored in the external SDRAM, directly attached to the global
controller. In the current implementation, the entire dataset (used
for SOM learning) is randomized in software before downloading
it from the host PC to the SDRAM. Thus, the picking order of the
data vectors is pre-determined according to a pseudo-random
sequence. We do this in order to ensure that hardware and
software processing performs the exact same computation except
for the difference in precision, and so we can meaningfully
compare the outcomes of the software vs. hardware learning.
Once initialized, FIFOs organize the next needed data (X(t+1),
hejte+ 1), be+ 1), and gt +1)) and make it available to be sent to
the PE-FPCAs via broadcast communication. In cases of a multi-
FPCA system architecture, utilizing more than one PE-FPGA, the
global controller also compares the local BMUs from each PE-
FPGA, finds the global BMU, and sends the information back to the
PEs for adaptation.

Global controller

| sizex
e SiZEY

Y

~| SYDd4-3d 8y} 0} 8deps|ul)seopeolg

measure |

FIFO based SDRAM interface

IdV eXaNb oy} 0} soepB)UI 1SOH

rRound data_out | Y =
.SDRAM— P gl n |_1_| -
interface Arpiter | ——————
_ | Adaptation val. |—l-
- t

SDRAM |
256 MB / 64Bit

Fig. 3. (Color online} Architecture of the global controller.

3.2. Processing elements

The PE-FPGAs consist of a local controller, parallel processing
elements, and a winner takes all (WTA) unit determining the
local BMU.

The local controller translates the macro commands from the
global controller to control signals for the PEs. The availability of
training and adaptation data is managed using additional cache
structures. Fig. 4 depicts the architecture of the gNBXe processing
elements. The data path of the gNBXe-PE is realized in a five-stage
pipeline including additional pipeline bypasses for increased
performance.

To efficiently realize the Euclidean norm, each PE integrates an
embedded multiplier of the Xilinx FPCAs. Since there is no need
to calculate the root function for comparing the distance values,
the root function has not been implemented. We compare, as
many software implementations do, squared Euclidean distances.
As mentioned above, one design goal was high flexibility with
respect to the number of available neurons. Therefore, each
processing element is capable of performing the calculations for
multiple neurons. The number of neurons that can be emulated
by a single PE is only limited by the available memory. Each
neuron is represented by an individual address (the position in
the n-dimensional map) and its neuron weights. Both parts are
stored in the local address space of a PE, requiring d+n addresses.
For CSOM each neuron needs an additional address to store its
winning frequency F. Therefore, for each PE with a local address
space of k addresses, up to Ny, = [k=(d-+n)] neurons can be
stored and calculated sequentially for SOM simulation and
Nng = Lk=(d+n+1)] neurons for CSOM. Thus, each PE represents
Ny, neurons, dividing the complete SOM into Ny, sub-maps (in
the following called virtual layers), which are calculated
sequentially.

3.2.1. Winner-takes-all-unit

To handle multiple neurons for one PE sharing the same data
path, the distance calculation and the detection of the best
matching unit are divided into two parts and supported by a
central winner-takes-all-unit. First, the distance between an input
vector and the neuron weights of the same virtual layer is
calculated and locally stored in the PEs in d+4 32 clock cycles.
Subsequently, the BMU of all neurons on the same virtual layer is
determined by a bit-serial search In E- pgyy+Tlogyid)] clock

192 |. Lachmair et al / Neurocomputing 112 (2013) 189-199

I
| ALPHA no alphafiag
COMP. [o— State
E + REG
- REG i
- |
I
Adapt | — BMU flag
Eléd_mas | State
aram.
o | REG
' MUX | '
- | ! [output bus
MUX | ARG 2
- REC
input bus| = T SUM
: COMP.
.| comp. * i
REG |
MUX '
1 I |
L lseLEcT ! '
COMP. I |
il I |
REG | |
| 1 |
Fig. 4. {Color online) Architecture of the gNBXe processing elements.
neural processing neural processing
- elements global control and 5 elements
= interface to host = i —
g PE PE g PE PE
= = =y
3 PER] |{PE 3 'PE
o =
Q o
=) B PE for datasets and ° PE

configuration data

Fig. 5. (Color online) The RAFTOR prototyping system.

cycles. While repeating the distance calculations and determining
the best matching units for all neurons of each virtual layer,
requiring 2 additional clock cycles for switching between the
virtual layers, the local BMU of a PE-FPGA is detected by
successively comparing the found BMUs in 9 clock cycles using
the WTA unit. The overall number of clock cycles for the distance
calculation and detection of the best matching unit adds up to
(d-+E- psyyy -+ Mogy(d)] +14) - Ny,

3.2.2. Distribution of adaptation parameters

During adaptation the neuron weights have to be updated
using distance-specific user parameters (h.;). To distribute the
individual parameters, the distances between the map position of
the global BMU (stored in the PEs) and the positions of all other
neurons is calculated and stored in the PEs in n+3 clock cycles.
Subsequently, the local controller successively applies the

individual parameters for all neurons within a specific adaptation
radius to the PEs while the map distances are stepwise decreased.
Once a map distance reaches zero, the individual adaptation
parameter, applied by the controller in pg, +1 clock cycles, is
locally stored in the PEs. After the individual parameters have
been distributed, the adaptation of the neuron weights is per-
formed in d+3 clock cycles taking winning frequency calculation
into account. The overall number of clock cycles for distributing
the adaptation values and for adapting the neuron weights adds
up to (Psppg+d-+0+9)- Ny,

4. Experimental setup
Based on the RAPTOR-X64 prototyping system [12] (Fig. 5) we

have implemented a SOM accelerator with 16-bit precision and
2048 local addresses. A global controller clock frequency of

|. Lachmair et al. { Neurocomputing 112 {2013) 185-199 193

Table 1

Hardware costs, available processing elements {Np), and possible number of
neurons (Ny,,,) for Xilinx-Virtex-4 FPGAs using 16-bit precision, 2048 local
addresses and varying number of neuron weights {d}.

Hardware resources Global ctrl. PE-FPGAs

V2-4000 VAFX100 5% VAFX100
Npe 121 605
Slices 3173 {13%) 40,586 {96%) 202,930
RAMB16s 6 {60%) 252 {67%) 1260
MULT 18 = 185 121 (75%) 605
Ny, (d=2000) 121 505
Ny, (d=200} 1210 6050
Ny, (d=100) 2299 11,495
Ny, (d=8) 22506 112,530

33 MHz and a three times higher PE clock frequency (99 MHz)
have been achieved using five PE-FPGAs (Xilinx Virtex-4 FX100)
and a Xilinx Virtex2-4000 for the global controller. Table 1 shows
the hardware cost and the number of available neurons for the
gNBXe realization.

For comparing the analysis results and the performance of our
accelerator, two software implementations are used. On one
hand, a commercially available simulation environment is used
(see Section 4.1). On the other hand, a parallelized software
implementation of the CSOM running on a Core-i7 950 Quad
Core, code-named Bloomfield, core clock 3.07 GHz, working at
3.20 GHz utilizing Intel®* Turbo Boost Technology, has been
realized. The reference system has 6 GB RAM and uses an ASUS
P6T WS PRO mainboard. The software is written in Ci+ with
parameterizable precision and multi-threading enabled using the
OpenMP library. The hardware accelerator and the software
reference implementation are identically parameterized and
trained for real-world data using a Matlab front end.

The software implementation focuses on speed and inherent
parallelism and it incorporates all optimizations that have been
used for the hardware realization (e.g., avoidance of square root
calculation). The Core-i7 processor provides four cores and up to
eight threads (two threads per core).

Organization of the parallel calculation steps is done by block
cyclic scheduling. The pseudocode in Algorithm 1 details the
block cyclic scheduling for the distance calculation X w,
between an input vector and all neuron weights.

Algorithm 1. Distance calculation.

tunction find_gl obal _bmu (*x, g, num_threads)
Num_Parallel_threads' static (num_threads)
X, w, thread BMU' shared across all threads
local BMUSs, cur_dist' private to each thread
local_min_dist' DIST MAX
local BMU_* 0
for all i2 num_neurons do
cur_dist* g*1=N w;F)
for all da dim(x) do
if p, = =1 then

x in parallel

cur_dist+ = (x(d) wid))
else
cur_dist+ = (x(d) wi(d))?
end if
end for

if cur_disto local_min_dist then
local_min_dist' cur_dist
local BMU' wi-position

end if

id' thread_id

thread BMU[id]:BMU" local BMU
thread BMU[id]-distance® local_min_distance
end for x end in parallel
global BMU"' thread BMU[0]:-BMU
global_distance' thread BMU[O}:distance
for all c2 num_threads do
if thread BMU[c]-distance o global distance then
global_distance' thread BMU[c]:.distance
global BMU"' thread BMU[c}:BMU
end if
end for
return global BMU
end function

4.1. Processing large, real data

4.1.1. Data and test questions

To gauge both the algorithmic correctness and the learning
speed of the gNBXe implementation of CSOMs for relevant use-
case scenarios, we reproduce clustering of a large real dataset,
which was done in earlier data analysis studies using research
software [2]. Initial testing of the gNBXe has been reported in
[13]. The dataset used here is a spectral image, which represents a
wide class of important large and complex datasets. In a spectral
image each pixel is a d-dimensional vector called spectrum, where
every vector element is a light intensity (reflectance, radiance, or
emission) measured through a different spectral band centered at
a different wavelength. As materials interact with light preferen-
tially at different wavelengths, the spectrum at a given pixel
location characterizes the chemical composition of the surface
material in that pixel footprint. In hyperspectral images the spectra
can contain measurements in hundreds of narrow adjacent
spectral bands, resulting in unique fingerprints of the surface
materials. The rich information content in these data can yield
extremely detailed knowledge for monitoring environmental
conditions, resources, medical diagnosis, quality control in food
and drug industry, and more. Extraction of the relevant details is
non-trivial, however. A number of unsupervised methods - other
than SOMs - have been used by various researchers to exploit
hyperspectral data for discovery and mapping of material clus-
ters. Traditional methods, e.g., PCA, k-means, (fuzzy) c-means,
ISODATA, and (Gaussian or other) mixture models are most
frequently applied (either by themselves or in support of sub-
sequent supervised classification) or compared with proposed
new approaches [14-18]. These methods often provide robust
segmentations but find less of the significant clusters than those
exist in the data, or the accuracy of the clusters is not very high.
One reason is that many use a significantly reduced number of
spectral bands, another is that many are less than ideally suited to
deal with the highly irregular cluster structure typically present
in hyperspectral data. As an alternative approach, smart learning
algorithms such as SOMs have been demonstrated to achieve
excellent results, but in order to accomplish the same in reason-
able time for large tasks (real-time classification on-board a
spacecraft, searching in huge archives) fast hardware implemen-
tation such as the gNBXe is needed. In the experiment that we
present for hardware testing here, we recreate the SOM from the
clustering study by [2,19], where all spectral bands of a hyper-
spectral image (see below) were used, and from the resulting
SOM 23 geologically significant clusters of widely varying sizes
were extracted, verified by domain expert, and subsequently also
verified by highly accurate supervised classification based on the
clusters discovered through the SOM [20].

The dataset we use is a hyperspectral image of the Lunar
Crater Volcanic Field in Nevada, taken by NASA's AVIRIS sensor

194 |. Lachmair et al { Neurocomputing 112 (2013} 189-1989

(e.g., [21]) in 1994 with a spatial resolution of 17 m/pixel. It
comprises 614 x420 pixels in 194 spectral bands, amassing
190.84 Mbytes when each data item is a floating-point number,
which is the case during processing. The distribution of these data
is in 2-byte short integer form, appropriately scaled to preserve
precision. Clustering of this scene with software CSOMs along
with geologic interpretation of 23 extracted clusters is presented
in [2]. This image has been thoroughly analyzed through multiple
approaches (see references to previous studies) and the clusters
produced by CSOMs were interpreted and verified against field
knowledge by domain experts. Thus we have confidence that it
provides a solid baseline for assessing the quality of the gNBXe
learning as relevant for real applications.

We choose the LCVF dataset not only because it is fairly large
and the input vectors are high-dimensional (in the hyperspectral
image) but also because it has complex cluster structure which
poses non-trivial challenges for clustering algorithms [3]. One
aspect of this is that the CSOMSs learned with this data are quite
complex themselves, which makes comparison of software and
hardware results from an application point of view an
intricate exercise. Noise inherent in real imagery adds to this
challenge.

Gaining speed of processing and saving energy are obvious
advantages of hardware SOMs. But from a data analysis point of
view, before we can rely on hardware CSOMs, we need satisfac-
tory answers to several questions. Is there a degradation of cluster
distinctions, in comparison to CSOMs produced by software, due
to possible effects of lesser precision? If there is, how does it
depend on the hardware precision? Does it get worse with longer
learning? How does it depend on the data dimensionality, and on
the combination of increasing dimensionality and increasing
number of learning steps? While answering all these questions
in an exhaustive manner is outside the scope of this paper, below
we demonstrate excellent match between results from software
CSOM and from its gNBXe implementation, for a specific set of
parameters.

4.1.2. Software vs. gNBXe analyses

Data analyses with software CSOMs have been performed at
the Neural Machine Learning Group, Rice University, using
research modules developed in-house. These modules are built
on top of library functions from Khoros [22] and NeuralWorks
Professional [23], for development of new and advanced func-
tionalities. For perfect synchronization between software and
hardware, we deploy an initial state of a CSOM from the software
as a set of files which describes every detail of the CSOM including
the SOM weights and their winning frequencies at the given
learning step and the pseudorandom sequence of indexes which
the software uses for the “random” picking of input vectors. Both
software and hardware perform a pre-set number of learn steps
starting from this initial state, using the same order of input
vectors and the same schedule to decrease the learning para-
meters a(t), b(t), gty with time ¢. The resulting hardware CSOM is
loaded back into the software and a detailed comparison is made
with the software counterpart.

The CSOM has 40 = 40 neurons, and we use diamond-shaped
neighborhood in this experiment. The research software is run on
a Quad Core Intel Xeon W3550 3.0 GHz, 12 Gbytes DDR3 SDRAM
(Dell Precision T3500n), in Linux Red Hat operating system, using
a single CPU. Despite the 64-bit architecture, we use a 32-bit
system because of compatibility issues with some of the under-
lying 3rd-party components that the software is built on. The
gNBXe implementation utilizes four PE-FPGAs with a precision of
16 bits.

The variable parameters of the analysis experiment are shown
in Table 2. The learning parameters for this particular case do not
change because we start the runs from a fairly mature stage
where the aggressive decrease of these parameters has already
occurred. We should add that unlike in Section 4.2 where tests
are focused on specific performance aspects, and the software
implementation only contains the “bare” CSOM algorithms, the
research software in these experiments computes about a dozen
different types of SOM products, in which the gNBXe does not
compute. Therefore, we cannot claim a fair comparison of CPU
times, since we have no way of estimating how long it would take
the gNBXe to compute all of the same products, but given that
the bulk of the time is spent on SOM learning we still think it is
valuable to show the user time (data load and start-up operations,
CPU time+writing products once at the end) for the software and
the same for the gNBXe.

All else being equal, in a hardware vs. software experiment we
are concerned with the differences in the resulting weights,
winning frequencies, and the mapping of the input vectors to
the CSOM neurons.

The pertinent numbers, including the (information-theoreti-
cal) entropies of the maps, are presented in Table 3. The entropies
are normalized by the number of SOM neurons to facilitate direct
comparison across different-sized SOMs. The maximum possible
scaled entropy value is 1. Table 3 indicates a high degree of match
between hardware and software processing.

For a visual illustration, Figs. 6 and 7 show a representation of
the software and hardware CSOMs, respectively. Both learned for
1,031,520 steps (4 x the number of pixels in the LCVF image)
starting from a state at 325,328 steps, formerly produced by
software. Each grid cell represents an SOM neuron. Here, two
properties are visualized: the density (number of data points
mapped to the SOM neuron), indicated by the relative intensity of
the red monochrome color, and the distance of the neuron's
weight vector to the weight vectors of all eight neighbor neurons.
The weight distances are expressed by the modified U-matrix

Table 2

Parameters of the LCVF data analysis experiment compar-
ing results from software CS0M and gNBXe implemen-
tation.

Experiment parameters

LCWF
Input dimension 194
Data vectors 257,880
Learn steps 1,031,520
a startfend 0.02/0.02
b start/end 0.001/0.001
g start/end 0.1/0.1

Table 3

Results of LCVF data analysis experiments comparing statistics from software
CS0M and gNBXe implementation. The mean densities and entropies are shown
for active neurons {neurons that have data points mapped to them).

Analysis results, LCVF data Software gMNBXe Difference
User time (s} 413042 20.83 4100.59
User time per 1 M learn steps (s) 4004.21 2892 3975.29
Elapsed time (s} 4151.83 G2.08 4089.74
active neurons 1565 1569 —4
Mean weight value —0.2923 —0.2939 0.0016
Mean density 164.79 164.36 0.43
Scaled entropy 0.8931 0.9919 0.0013

|. Lachmair et al. / Newrocomputing 112 (2013) 189-199 185

Fig. 6. {Color online} SOM resulting from software training with the LCVF data,
Densities and mU-matrix are overlain on the SOM.

Fig. 7. (Color online} SOM resulting from gNBXe training with the LCVF data.
Densities and mU-matrix are overlain on the SOM.

(mU-matrix, [11]) appearing as gray scale “fences” between grid
cells. White fence means large distance (large dissimilarity),
darker fence means smaller distance. Visually, the two SOMs are
hard to distinguish.

From this real data analysis case, we can conclude that the
SOM produced by the gNBXe is remarkably close to its software
counterpart. This is not only supported by the statistics of the
weight values and winning frequencies (densities), but even more
strongly evidenced by the spatial distribution of the weights and
densities in the SOM. In Figs. 6 and 7 we see the same spatial
appearance of the weight distances (fences) and densities, with
very slight differences. The match is sufficient to identify the

same clusters in the data as from the gNBXe SOM and as from the
software SOM, which is the most important quality measure.

4.2. Performance measurement

After the “high-level” tests in the previous Section, relevant
from a data analyst’s point of view, now we present detailed
hardware characterization tests. In addition to the high-
dimensional LCVF dataset introduced in Section 4.1.1, we also
use a low-dimensional real dataset for hardware characterization
tests. The low-dimensional dataset is a spatial and spectral subset
of a multi-spectral image of Ocean City, Maryland, comprising
512 = 512 pixels in 8 spectral bands [24], altogether 8.39 Mbytes.
Analysis of this urban image with software CSOMs are described
in [25]. In future work we plan to compare hardware and
software clusterings of this dataset as well. By including it here,
our goal is to broaden the variety of real data characteristics for
the performance measurements.

For hardware characterization, the exXecution time and power
consumption are compared for the proposed hardware accelera-
tor and the Core-i7 implementation, described at the beginning of
Section 4. To measure the execution time of both architectures,
high-resolution timers are added in the C4+ functions of the
software CSOM as well as in the C+4- interface library for the
gNBXe. Additional hardware timers are added to the gNBXe VHDL
implementation, capturing detailed information on a cycle by
cycle basis. General timing analysis is done using a high-level
model of the neuroprocessor. The deviation between measured
and modeled execution time is less than 0.4% for the core
algorithm including initialization of the neuron map as well as
reading the map back to the SDRAM of the GC.

The power consumption of both the systems is determined in
several steps of granularity. The power for the core region of the
Core-i7 processor is measured on the 12 V supply rail. The power
for the gNBXe is measured on the 12V supply rail of the
prototyping system RAPTOR and additionally analyzed using
Xilinx XPower Analyzer. Current measurement is done with the
current probe amplifier AM503B from Tektronix and recorded
with an oscilloscope. Additionally, the primary power of the
complete system environment is measured on the 230V side of
the experimental setup.

4.2.1. Test cases

As explained in Section 3, the high flexibility of the neuropro-
cessor is achieved by the possibility to map multiple neurons to a
single PE. Additionally, it is possible to add further PE-FPGAs and
thus increase the available number of parallel PEs. For an in-depth
analysis of the scalability of the architecture, two test cases have
been defined, which are discussed in the following.

The first test case (case A) determines the power consumption
and execution time needed to reach the maximum parallelism for
a specific CSOM. Therefore, the map size is kept constant while
the number of PE-FPCAs is increased. As depicted in Table 1,
Ny =121 PEs can be realized on a single Virtex-4 FX100 FPGA.
The maximum parallelism is achieved with a one-to-one mapping
of neurons to PEs. With a maximum number of five PE-FPCAs
(Npg ppea). the largest map that can be completely calculated in
parallel has 121 » 5=605 neurons.

Test case A:

e Train a CSOM with 605 neurons using one PE-FPCA (5 neurons
per PE).

e Increase the number of PE-FPCAs in order to increase the
parallelism until each neuron is mapped to exactly one PE
(maximum parallelism).

196 |. Lachmair et al / Neurocomputing 112 (2013) 189-199

download map

0.5s;+12.64W

training
upload data 49.62s:+15.52W

8.33s,+6.86W

RAPTOR idle 18.59W

Fig. 8. (Color online} Execution time and power for training the CSOM with the
LCVF dataset in 1,031,520 learning steps, utilizing two PE-FPGA with Ny, =10.

training e:-:r:h:angir:;'S(;:\l;;\'lIr
s,+33.7

init neurons 207.07s:

0.36s;+59.7W

Core-i7 idle 20.12W

Fig. 9. (Color online} Execution time and power for training the CSOM with the
LCVF dataset in 1,031,520 learning steps, utilizing four cores of the Core-i7.

The second test case (case B) determines the power consump-
tion and execution time needed for the maximum number of
neurons that can be mapped to a specific number of PE-FPCAs. As
explained in Section 4, each Virtex-4 FPCA includes 2048 x 16 bit
of local memory. For the LCVF dataset with 194 spectral bands
and a two-dimensional neuron map, the maximum number of
neurons per PE (N} is [2048=(194 4 3)] = 10. For the Ocean City
dataset with 8 spectral bands the maximum number of neurons
per PE is 186.

Test case B:

e Train a CSOM with the maximum number of neurons for a
given dataset using one PE-FPCA.

e Increase the number of PE-FPCAs in order to increase the
number of neurons.

4.2.2. Experimental results

Fig. 8 depicts the current measurement for the neuroprocessor
training of LCVF dataset with Ny=2420 neurons, Npg ppga = 2, and
Ny, =10 in 1,031,520 learning steps. If the RAPTOR system is
idle, i.e., no FPGA is configured, it requires an idle current of
1.549 A, corresponding to a power consumption of 18.59W. The
total power of the complete system environment (including the
host PC) aggregates to 161 W. Configuring the FPGAs by upload-
ing the bitstreams and waiting until the digital clock managers
(DCM) are locked, takes about 2.62 s with 6.4W of additional
power. Because FPGA configuration is done once while powering
up the test system, the configuration time does not have to be
taken into account for the performance evaluation.

After the FPGAs are configured and the DCMs are locked, the
initial parameterization is performed, including 119 ns for setting
the startup configuration of the selected CSOM algorithm (e.g., the
map size and the distance metrics). Additionally, the input data is
loaded to the global controller during initialization. For the LCVF
dataset (9542 Mbytes when stored in 2-byte integer form) the
input data is uploaded in about 8.3 s requiring about 400 mW for
the global controller and 3.24 W for each PE-FPGA staying in idle

state. Uploading the dataset to the hardware is required only once
for each dataset. Nevertheless, this time is taken into account for
the comparisons in this paper. Training the CS0M in 1,031,520
learning steps for Ny = 2420 neurons requires 49.62s and 7.32 W
per PE-FPCA. Additional 510 ms are needed to download the
trained SOM to the host system.

Fig. 9 depicts the current measurement for the Core-i7 training
Npy=2420 neurons with the LCVF dataset. Four threads are used
since further increasing the number of threads did not result in a
significant speedup of the CSOM simulation (less than 2%) but
required an additional power consumption of about 12 W. The
cores of the microprocessor require a current of 1.68 A corre-
sponding to 20,12 W for just running the operating system, with-
out the CSOM algorithm. The resulting system power is about
142 W. The CSOM training starts with transferring the input and
configuration data from the Matlab front end to the C4-++ CSOM
function using a matlab executable (mex) file. The execution time
for the data transfer is 0.7 s, requiring an additional power of
about 27.54 W. This time is taken into account for both the CSOM
software and the hardware implementation. After the G4+ CSOM
function is called, the neuron initialization takes about 360 ms
with 59.7 W. Training the CSOM in 1,031,520 learning steps for
Nn = 2420 neurons is done in about 207.07 s with 62.15'W.
Finally, exporting the trained SOM from the C+4+ function to the
mex interface function is done in about 0.22 s with 33.78 W.

Table 4 gives a detailed view of the experimental results for
both test cases using the LCVF dataset with 194-dimensional
input vectors. A similarly designed measurement is done for the
Ocean City dataset and discussed in Section 4.3. In the top of
Table 4 the energy consumption and execution time for a fixed
number of neurons utilizing a different number of PE-FPGAs is
measured. While a minimum number of Ny, neurons per PE is
needed to simulate the desired CSOM, a maximum number of
Ni e €an be calculated in the same setup without additional cost.
The upload time stays constant for the training dataset and takes
the upload of the input data into account. The execution time for
training the CSOM decreases with the number of FPGAs used. In
the current implementation, the global controller limits the
achievable performance due to its low clock frequency. This will
be optimized in future work. While simulating the CSOM using
five PE-FPCAs in parallel requires more than twice the energy of a
single-FPCGA implementation, the total energy of the test system is
reduced by 33.7% due to the decreased simulation time.

In the middle of Table 4, the results for simulating the
maximum number of neurons for a fixed number of PE-FPGAS
are given. Similarly to the first test scenario, the time needed for
uploading the training dataset stays constant. In this scenario,
also the simulation time stays nearly constant while the number
of simulated neurons increases. Thus, performance (in terms of
emulated neurons per time) increases linearly with the number of
used FPGAs. Due to the added FPGAs, energy consumption
increases linearly with the number of PEs as well.

In the lower part of Table 4 four examples from the Core-i7
measurements simulating a CSOM with 605, 1210, 2420, and
6050 neurons are shown. The execution time increases nearly
linearly with the number of neurons. Only the memory require-
ments for the largest map with 6050 neurons exceed the level
3 cache and thus result in a significantly reduced performance.

4.3. Performance evaluation summary

Table 5 depicts the speedup and the percentage of saved
energy using the FPGA-based neuroprocessor compared to the
software implementation utilizing all four cores of the Core-i7 in
parallel. The setup used for comparison utilizes five Virtex-4 PE-
FPCAs each one identically parameterized as in the configuration

Table 4

Execution time and energy for test cases A and B for the LCVF dataset, utilizing several numbers of PE-FPGAs (Nserpca) and 4 cores of the Core-i7.

|. Lachmair et al. / Newrocomputing 112 (2013) 189-199

197

gNBXe-Execution time and energy for training a CS0OM with 605 neurons for the LCVF dataset in 1,031,520 iterations

N #Nige Neemca Nee Execution time () Energy (Ws)

Upload CSOM CSOM Upload RAPTOR System Total
605; 5 1 121 8.3 2534 195,62 30.21 525.36 5435 6286
726; 3 2 242 83 16.13 24259 57.1 454.15 3952 4706
726; 2 3 363 8.3 13.63 304.76 83.9 407.67 3549 4346
968; 2 4 484 83 13.95 414.03 110.88 413.62 3601 4539
605; 1 5 605 8.3 11.64 430.68 137.78 370.68 3229 4168
gNBXe-Execution time and energy for training a CSOM with N, for the LCVF dataset in 1,031,520 iterations
N e NN Nre-maa Neg Execution time {s} Energy (Ws)

Upload CSOM CSOM Upload RAPTOR System Total
1210; 10 1 121 8.3 49.15 379.4 30.21 1067 9268 10,744
2420; 10 2 242 8.3 49,62 7443 57.1 1076 9344 11,221
3630; 10 3 363 8.3 498 1113 83 1080 9373 11,649
4840; 10 4 484 8.3 5013 1487 110.8 1086 9426 12110
6050; 10 5 605 8.3 50.46 1857 137.78 1092 9479 12576

Core-i7-execution time and energy for training a CSOM with 605, 1210, 2420, and 6050 neurons for the LCVF dataset in 1,031,520 iterations {4 threads)

Ny Execution time {5} Energy {Ws) Execution time {5} Energy {Ws)
CSOM System Total CSOM System Total
605 51.87 3395 7384 10,779 2420 208.35 12,398 29,604 42,503
1210 93.92 6147 13,355 19,502 6050 743.42 48658 105584 154,243
Table 5 30
Speedup and percentage of energy savings when performing CSOM simulation :z:isﬂg ;:: .I&g:ndg:fs:;t“et.
with the gNBXe instead of a Core-i7. 25 ;
Ny Speedup Energy savings (%)
o
3
LCVF Ocean city LCVE Ocean city B .
o
w
CSOM Total CSOM Total
605 26 5.81 67.3 55.1 81.1 80.5
1210 4.16 7.02 823 64.5 84.3 83.8
2420 6.88 13.94 88.3 84.9 92 91.8 :
3630 9.12 17.96 914 88.7 93.8 93.6 €05 1210 2420 3630 4840 6050
4840 9.58 21.74 91.7 89.2 94.8 94.7 N,
6050 12.65 2541 93.6 91.8 95.6 95.5
60500 - 2097 - - 94.6 94.6 Fig. 10. {Color online) Speedup for CS0M leaming of more than 1 million vectors
112,530 - 16.56 - - 931 931 with 194 and 8 dimensions (LCVF and Ocean City data, respectively), comparing

that has been described in Section 4.2.1. The speedup is the ratio
of the execution time of the Core-i7 to the execution time of the
hardware accelerator, both including the time needed to upload
the input data (8.3 s for LCVF, and 0.436 s for Ocean City). The
energy savings in the “CSOM” columns are taking into account
only the hardware accelerator and the processor. The total energy
of the two systems is compared in the columns "total”.

As can be seen in Fig. 10, the neuroprocessor outperforms the
Core-i7 by a factor of two to six even for small and low-
dimensional CSOMs. When simulating large maps utilizing five
PE-FPGAs, our hardware accelerator achieves a more than tenfold
speedup compared to the Core-i7. The energy consumption
decreases with the increasing speedup of the hardware accel-
erator even when taking the total energy consumption of the test
scenario into account (Fig. 11).

4.4. Comparison to related work
A variety of approaches for hardware-implementations of self-

organizing feature maps has been proposed in the past. Although
some architectures are targeting ASICs (application-specific

the FPGA-based simulation with a multi-core based simulation.

100 T T
a0
F 80
= s
]
2 70}
L '
o 3
§ 60 -
—CSOM simulation energy saved in % (LCVF dataset)
50 | ~-total system energy saved in % (LCVF dataset) |
—CS0M simulation energy saved in % (Ocean City dataset)
~-total system energy saved in % (Ocean City d i)
605 1210 2420 3630 4840 6050
Ny

Fig. 11. {Color online) Percentage of energy savings for CSOM learning of more
than 1 million vectors with 194 and 8 dimensions (LCVF and Ocean City data,
respectively), comparing the FPGA-based simulation with a multicore based
simulation.

integrated circuits), today, the majority of digital hardware imple-
mentations is based on FPGAs. In the following, recent hardware
realizations are discussed and compared to the architecture

198 |. Lachmair et al { Neurocomputing 112 (2013} 189-1989

discussed in this paper. For a rough performance comparison we use
the number of possible weight updates (P¢,;) in units of million
per second, known as MCUPS (Million Connection Updates Per
Second), as given in Eq. (6). Here, (T)) is the time in microseconds
for one learning step, i.e., for processing one input vector.

v - d
T

Pl’.',f = (6}

Porrmann et al. presented a SOM neuroprocessor consisting of
a SIMD array of processing units controlled by an external
controller in [26]. In addition to the acceleration of SOM simula-
tion, hardware implemented pre- and post-processing for com-
ponent maps, pattern position maps, and U-Matrix visualization
was added. The design was implemented in a 0.8 mm standard cell
technology. Since the gNBXe presented here is a successor of this
ASIC implementation, both architectures share the same basic
concepts. For an implementation of 128 neurons with 128
weights and 8-bit precision, a performance of 1318.00 MCUPS is
achieved at a clock frequency of 45 MHz.

In [27] Hikawa proposed an approach ufilizing digital phase
locked loops as computation elements for SOM simulation. To avoid
multiplications, several simplifications to the original SOM algo-
rithm were made, e.g., Manhattan distance is used and only the next
neighbors of the best matching neuron are updated during adapta-
tion. In an FPGA implementation of 25 neurons with two weights
and 10-bit precision, 4.89 MCUPS are achieved using a Xilinx
XC2V250 FPGA operating at a clock frequency of 200 MHz.

The architecture proposed by Ramirez-Agundis et al. in [28] is
capable of performing batch update training, ie., the neuron
weights are updated after the entire training set has been applied,
to speed up simulation. Again, simplifications of the original SOM
algorithm include the use of Manhattan distance instead of
Euclidean distance calculation and the restriction of the adapta-
tion neighborhood to one (diamond shaped neighborhood) or
zero (only the best matching unit is updated). For an implemen-
tation of 256 neurons with 16 weights (8 bits), a clock speed of
70 MHz has been achieved for a Xilinx XC2V6000 FPCA. Since
updating the neuron weights requires 45 clock cycles, a perfor-
mance of 6372.00 MCUPS can be achieved.

A parameterizable IP core has been presented by Hendry et al.
in [29]. In this approach, the number of neurons, the dimension of
the input vectors, and the precision can be easily modified at
design time. Similar to the hardware accelerators described
above, the distance metric is limited to Manhattan distance.
Additionally, the adaptation parameters are limited to negative
powers of two. For an implementation of 256 neurons, 16 neuron
weights and a precision of 8 bits, synthesized for a 0:65 mm
technology, a performance of 660 MCUPS is achieved at a clock
frequency of 50 MHz.

Table 6 summarizes the characteristics of the hardware accel-
erator presented in this paper compared to related work. The
parameter Norm describes which distance norm has been imple-
mented in the referenced designs (column 1) and the column
“Adapt.” specifies whether the adaptation of the neuron weights
is performed by means of multiplications or by shift operations,
which limit the adaptation values to negative powers of two.

5. Conclusion

We have shown that the proposed gNBXe-based multi-FPCA
hardware accelerator for CSOMs significantly speeds up simula-
tion of high-dimensional datasets compared to state-of-the-art
multi-core PCs while the energy consumption decreases at the
same rate. We have shown this also in the context of a real data
analysis example, where the gNBXe hardware CSOM is envisioned

Table 6
Comparison of the proposed hardware accelerator to previously published
implementations.

Ref. prec: {bits) Ny d Norm Adapt. Pe; IMCUPS]
[27] 10 25 2 1 NJA 4.89
129] 8 256 16 1 Shift 560.00
[26] 8 128 128 1 Shift 1,318.00
28] 8 256 3 1 Shift 5,372.00
Core-i7 16 6050 194 1,2 Mult. 1,628.00
gNBXe 16 5050 194 1,2 Mult. 20,504.00

as a fast “clone” of the software equivalent, performing exactly
the same functions so that the SOM can be interchanged between
hardware and software. While we presented remarkable agree-
ment between hardware and software processing results for a
limited set of circumstances, there remain finer differences that
are of concern. In follow-up work we plan to address these finer
differences, characterize their sources, improve our understand-
ing of how to decrease them, and what the trade-offs are. This will
require finer grained studies on one hand (involving both syn-
thetic and real data), and extension of our experiments (with the
LCVF and Ocean City datasets) to a wider range of parameters, on
the other hand. Beyond that, much more work will be needed to
complete systematic studies to answer the more general ques-
tions we posed in Section 4.1.1.

We want to add that as another future step. We also aim to
extend the reconfigurable accelerator towards the emulation of
additional artificial neural networks. Furthermore, the number of
PE-FPGAs will be increased and high-speed serial 10s will be used
for communication between the GC and the PEs to further
increase the scalability of the system.

Acknowledgmenis

This research is partially supported by the Center of Excellence
Cognitive Interaction Technology (CITEC).

We thank Professor Bea Csathé, Department of Geology, SUNY
Buffalo, for the Ocean City dataset. Former data analyses and
development of software tools by the Neural Machine Learning
Group, Rice University, which are used for this study, were
partially funded by NASA Grants NNGOGGE95G, NNGOSGA94G
(and predecessor grants) and by DARPA through AFRL Contract
FA8650-09-C-7915 with Rice University FAB650-09-C-7915.

References

[1] T. Kohonen, Automatic formation of topological maps of patterns in a self-
organizing system, in: E Oja, O. Simula {Eds.}, Proceedings of 25CIA, Scand,
Conference on Image Analysis, Helsinki, Finland, 1981, pp. 214-220.

[2] E. Merényi, Precision mining of high-dimensional patterns with self-
organizing maps: interpretation of hyperspectral images, in: P. Sincak,
]. Vascak {Eds.}, Quo Vadis Computational Intelligence: Mew Trends and
Approaches in Computational Intelligence, Studies in Fuzziness and Soft
Computing, vol. 54, Physica Verlag, 2000.

[3] E. Merényi, K. Tasdemir, L. Zhang, Leamning highly structured manifolds:
harmnessing the power of S0Ms, in: M. Biehl, B. Hammer, M. Verleysen,
T. Villmann {Eds.}, Similarity Based Clustering, Lecture Notes in Computer
Science, Lecture Notes in Artificial Intelligence, vol. 5400, Springer-Verlag,
2009, pp. 138-168.

[4] D.G. Covell, A Wallgvist, AA. Rabow, N. Thanki, Molecular classification of
cancer: unsupervised self-organizing map analysis of gene expression micro-
array data, Mol. Cancer Ther. 2 {March} {2003} 317-332

[5] K. Tasdemir, E. Merényi, Exploiting data topology in visualization and
clustering of self-organizing maps, IEEE Trans. Meural Metworks 20 {4)
{2009} 549-562.

[G6] C. Pohl, M. Franzmeier, M. Porrmann, U. Rickert, gNBX - reconfigurable
hardware acceleration of self-organizing maps, in: Proceedings of the IEEE Int
Field-Programmable Technology Conference, 2004, pp. 97-104.

|. Lachmair et al. / Newrocomputing 112 (2013) 189-199 199

|7] D. DeSieno, Adding a conscience to competitive learning, in: Proceedings of
the IEEE International Neural Networks Conference, 1988, pp. 117-124.

8] PL. Zador, Asymptotic quantization error of continuous signals and the
quantization dimension, IEEE Trans. Inf. Theory 28 {March (2}) (1982} 139-148.

9] H.-U. Bauer, R. Der, M. Herrmann, Controlling the magnification factor of self-
organizing feature maps, Neural Comput. 8 {4) {1996} 757-771.

[10] H. Ricter, K. Schulten, On the stationary state of Kohonen's self-organizing
sensory mapping, Biol. Cybern. 54 {1986) 99-106.

[11] E. Merényi, A. Jain, T. Villmann, Explicit magnification control of self-
organizing maps for “forbidden” data, IEEE Trans. Neural Networks 18
{May (3)) {2007) 786-797.

[12] M. Porrmann, |. Hagemeyer, C. Pohl,]. Romoth, M. Strugholtz, RAFTOR a
scalable platform for rapid prototyping and FPGA-based cluster computing,
in: Proceedings of the International Conference on Parallel Computing,
ParCo2009, Symposium on Parallel Computing with FPGAs, Lyon, France,
1-4 September 2009.

[13] |. Lachmair, E. Merényi, M. Porrmann, U. Riickert, gNBXe - a reconfigurable
neuroprocessor for various types of self-organizing-maps, in: Proceedings of
the 20th European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, 2012, pp. 645-650.

|14] 0. Duran, M. Petrou, A time-efficient method for anomaly detection in hyper-
spectral images, IEEE Trans. Geosd. Remote Sensing 45 {12} (2007) 3894-3904.

|15] Y. Tarabalka,].A. Benediktsson, |. Chanussot, Spectral-spatial classification of
hyperspectral imagery based on partitional clustering technigues, IEEE Trans.
Geosci. Remote Sensing 47 (8) (2009) 2973-2987.

[16] A. Paoli, F. Melgani, L. Pasolli, Clustering of hyperspectral images based on
multiobjective particle swarm optimization, IEEE Trans. Geosci. Remaote
Sensing 47 (12} (2009) 4175-4188.

[17] T. Veracini, 5. Matteoli, M. Diani, G. Corsini, Robust hyperspectral image
segmentation based on a non-gaussian model, in: 2nd International Work-
shop on Cognitive Information Processing (CIP), June 2010, pp. 192-197.

[18] D. Lunga, 0. Ersoy, Kent Mixture Model for Hyperspectral Clustering via
Cosine Pixel Coordinates on Spherical Manifolds, vol. 407, ECE Technical
Reports, Purdue University, 2011, pp. 1-18.

119] T. Villmann, E. Merényi, B. Hammer, Neural maps in remote sensing image
analysis, Neural Networks 16 (3-4) {2003) 389-403.

|20] E. Merényi, W.H. Farrand, |.V. Taranik, T.B. Minor, Classification of hyper-
spectral imagery with neural networks: comparison to conventional tools, in:
T. Villmann, F.-M. Schleif (Eds.}, Machine Learning Reports, vol. 5, 2011,
pp. 1-15, 155M:1865-3960. on-line / http:/{www.techfakuni-bielefeld.de/
~schleiffmir/mir_04_2011.pdfS. Also submitted to EURASIP Journal on
Advances in Signal Processing.

[21] R.O. Green, Summaries of the Gth Annual |PL Airborme Geoscience Workshop,
1. AVIRIS Workshop, Pasadena, CA, 4-6 March 1996.

[22] |. Rasure, M. Young, An open environment for image processing software
development, in: Proceedings of the SPIE/IS&T Symposium in Electronic
Imaging, vol. 1659, Pasadena, CA, 14 February 1992.

|23] NeuralWare, Neural Computing, NeuralWorks Professional 1I/PLUS, 2003.

[24] B.M. Csathd, W.B. Krabill,]. Lucas, T. Schenk, A multisensor data set of an
urban and coastal scene, in: International Archives of Photogrammetry and
Remote Sensing, vol. 32, 1998, pp. 26-31.

|25] E. Merényi, B. Csatd, K. Tasdemir, Knowledge discovery in urban environ-
ments from fused multi-dimensional imagery, in: P. Gamba, M. Crawford
{Eds.), Proceedings of the IEEE GRSS/ISPRS Joint Workshop on Remote
Sensing and Data Fusion over Urban Areas {URBAN 2007), Paris, France,
11-13 Apnl 2007, pp. 1-13.

[26] M. Porrmann, U. Witkowski, U, Ridckert, A massively parallel architecture for
self-organizing feature maps, IEEE Trans. Neural Networks 14 (5) (2003}
1110-1121.

[27] H. Hikawa, FFGA implementation of self organizing map with digital phase
locked loops, Meural Metworks 18 (5) (2005} 514-522, [JCNN 2005.

|28] A. Ramirez-Agundis, R. Gadea-Girones, R. Colom-Palero, A hardware design of
a massive-parallel, modular NN-based vector quantizer for real-time video
coding, Microprocess. Microsyst. 32 (1) {2008) 33-44.

129] D.C. Hendry, A.A. Duncan, N. Lightowler, IP core implementation of a self-
organizing neural network, IEEE Trans. Neural Networks 14 (September {5}
{2003) 1085-1096.

J. Lachmair graduated as "Diplom-Ingenieur” in
Electrical Engineering at the University of Paderbom,
Germany, in 2011. Currently, he is a member of the
research group Cognitronics and Sensor Systems,
Center of Excellence Cognitive Interaction Technology,
Bielefeld University. Jan Lachmair's main scientific
interests are in resource-efficient massive-parallel
hardware architectures for artificial neural networks
and their applications to mobile systems.

E. Merémyi received her M.Sc. in Mathematics {1975)
and Ph.D. in Computational Science {1980) at Szeged
(Attila Jozsef) University, Hungary. From 2000, she
holds a joint appointment as a research professor in
the Departments of Statistics, and Electrical and Com-
puter Engineering, Rice University, Houston, Texas,
USA, where she teaches neural computing, statistics,
probability, and remote sensing courses. Her current
interests focus on artificial neural networks, self-
organized learmning, manifold learning, segmentation
and classification of high-dimensional patterns, data
fusion, data mining, knowledge discovery, and appli-
cation to information extraction from mult- and
hyperspectral remaote sensing imagery from Earth and other planets, hyperspectral
imagery of biclogical tissues, and from multi-variate medical data.

M. Porrmann is an Academic Director in the research
group Cognitronics and Sensor Systems, Center of
Excellence Cognitive Interaction Technology, Bielefeld
University. He is graduated as "'Diplom-Ingenieur” in
Electrical Engineering at the University of Dortmund,
Germany, in 1994. In 2001 he received a Ph.D. in
Electrical Engineering from the University of Pader-
borm, Germany, for his work on performance evalua-
tion of embedded neurocomputers. From 2001 to 2009
he was “Akademischer Oberrat” and from 2010 to
March 2012 he was an Acting Professor of the research
group System and Circuit Technology at the Heinz
Nixdorf Institute, University of Paderborn. Mario Porr-
mann's main scientific interests are in on-chip multiprocessor systems, dynami-
cally reconfigurable hardware and resource-efficient computer architectures.

U. Riickert received the Diploma degree in Computer
Science and a Dr.-Ing. degree in Electrical Engineering
from the University of Dortmund, Germany, in 1984
and 1989, respectively. From 1985 to 1994 he worked
on microelectronic implementation of neural networks
at the Faculty of Electrical Engineering (University
of Dortmund) and at the Techmical University of
Hamburg-Harburg, Germany. In 1995 he joined as a
Full Professor at the Heinz Nixdorf Institute, University
of Paderborn, Germany, heading the research group
"System and Circuit Technology" and working on
microelectronic systems for massive-parallel and
resource-efficient information processing. Since 2009
he is a Professor at Bielefeld University, Germany, heading the "Cognitronics and
Sensor Systems" group of the "Cluster of Excellence - Cognitive Interaction
Technology”. His main research interests are now bio-inspired architectures for
nanotechnologies and cognitive robotics.

