
WSOM 2017

Empowering graph segmentation methods with SOMs and CONN
similarity for clustering large and complex data

Erzsébet Merényi1,2 • Joshua Taylor1

Received: 2 May 2018 / Accepted: 11 April 2019 / Published online: 21 June 2019
� Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
High-dimensional, large, and noisy data with complex structure challenge the limits of many clustering algorithms

including modern graph segmentation methods. SOM-based clustering has been shown capable of capturing many clusters

of widely varying statistical properties in such data. However, to date the best discovery results are produced by interactive

extraction of clusters from informative SOM visualizations. This does not scale for Big Data, large archives, or near-real-

time analyses. We approach this challenge by infusing SOM knowledge into leading automatic graph segmentation

algorithms, which produce extremely poor results when segmenting the SOM prototypes without this information, and

which would take a prohibitively long time to segment the input data sets. The knowledge translation occurs by casting the

SOM prototypes as vertices and the CONN similarity measure as edge weightings of a graph which is then presented to

graph segmentation algorithms. The resulting performance closely approximates the precision of the interactive SOM

segmentation for complicated data and, at the same time, is extremely fast and memory-efficient. We demonstrate the

effectiveness on a simple synthetic data set and on a very realistic fully labeled synthetic hyperspectral image. We also

examine performance dependence on available parametrizations of the graph segmentation algorithms, in combination with

parametrizations of the CONN similarity measure.

Keywords SOM clustering � Graph segmentation � CONN similarity � Big Data � Automation

1 SOM clustering for complex data

Self-Organizing Maps (SOMs [13]) have been shown

superior to many other methods in clustering highly

structured manifolds (data with complex, irregular and

noisy cluster structure, high feature dimension n, and/or

large volume [20]). This makes SOMs prime candidates for

making discoveries in Big Data scenarios.

Finding clusters with SOMs is a two-stage process. First,

an SOM, which consists of a rigid (usually 2-dimensional;

2-D from hereon) lattice of neurons i; i ¼ 1; . . .;N, each

with a prototype (weight vector) wi 2 Rn attached to it,

learns the structure of a given data manifold M � Rn

comprising S samples fxlgSl¼1, xl ¼ ðxl1; . . .; xlnÞ 2 M,

typically S � N. This is achieved through iterative adap-

tation of the prototypes to follow the data distribution.

Simultaneously, the prototypes are organized on the SOM

lattice in a topology-preserving fashion. Conditional on

correct learning including topology preservation, the pro-

totypes provide faithful approximation of the data distri-

bution and their ordering on the lattice reflects their

similarity relationships in data space. For this paper, we

assume that the correctness of learning has been verified.

(See some overview of verification methods and references

in [20, 21].) Further information that can be derived from a

learned SOM includes the number of data points mapped to

each prototype (visualized as a ‘‘hit map’’), the data space

distances of lattice neighbor prototypes (U-matrix and

variants, [10, 34], octagonal erosion [4], mU-matrix, [18]),

or more involved quantities like connectivity of prototypes

(CONN) by [31]. These can help locate contiguous groups

& Erzsébet Merényi

erzsebet@rice.edu

Joshua Taylor

jtay@rice.edu

1 Department of Statistics, Rice University, Houston,

TX 77005, USA

2 Department of Electrical and Computer Engineering, Rice

University, Houston, TX 77005, USA

123

Neural Computing and Applications (2020) 32:18161–18178
https://doi.org/10.1007/s00521-019-04198-6(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-8705-6186
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04198-6&domain=pdf
https://doi.org/10.1007/s00521-019-04198-6

of similar prototypes in the SOM grid where each group

collectively represents a cluster of similar data points.

However, while clusters may readily emerge from such

visualizations in relatively simple cases, cluster extraction

from highly structured manifolds is challenging because

the visualizations become much less clear-cut [20]. It is in

such cases where interactive segmentation tends to produce

better quality results than automated methods, but this

requires expertise and can be time-consuming. Conse-

quently, this does not scale with the demands of near-real-

time processing, autonomous situations, or large archives,

where it is most needed.

1.1 Objectives of this work

We present an automated approach to SOM segmentation

which closely approximates the details obtained with

interactive segmentation for complicated data and which is

very fast and memory-efficient. We achieve this by infus-

ing SOM knowledge into cutting-edge graph segmentation

algorithms which, by themselves, produce extremely poor

results when given the customary pairwise distances of the

SOM prototypes. We show that using an SOM-derived

similarity measure as edge weightings for graph-cutting

algorithms brings a break-through in their performance.

This is in agreement with previous experiments on several

different real data sets of considerable complexity, where

domain experts’ judgment and comparison against inde-

pendent results on the same data served as quality assess-

ment [21–23]. Here, we provide formal evaluation against

labeled ‘‘templates’’ for a highly structured extremely

realistic synthetic hyperspectral image in addition to

evaluation on simple synthetic data. In previous work we

utilized default parameterizations of the graph segmenta-

tion methods; in this paper we also explore available

parametrizations to assess the effect on clustering quality.

1.2 Previous work in automation of SOM
segmentation

Several automated approaches segment SOM prototypes

via hierarchical agglomerative clustering (HAC). HAC is

favored over parametric or partitive methods because it can

handle high-D inputs and irregularly shaped clusters (with

an appropriate distance metric). Various Euclidean dis-

tance-based linkage metrics between pairs of prototypes

such as centroid linkage [35], Ward measure [5] or centroid

linkage constrained by grid neighborhood contiguity [24]

have been demonstrated to work well in HAC for relatively

low-D data with a small number (3–8) of clusters. In [5],

more than 30 clusters are captured from 12-D time series

data, but no evaluation of how these clusters match rele-

vant known groupings is given. Another proposition [2] is

to generate a smooth function called the Clusot surface via

mixtures of ‘‘modified’’ Gaussians where the standard

deviations of the Gaussians are direction-dependent and

computed from the (normalized) data space distances to

neighbor prototypes in the respective directions in the lat-

tice, weighted by the winning frequencies. The resulting

surface has valleys where large prototype distances coin-

cide with low winning frequencies, which is then flooded to

detect peaks as clusters. Experimental results are modest,

probably owing to parametrization problems such as edge

weights in the graph. Common to the above examples, the

data sets are small (a few thousands of samples) and in

most cases contain few clusters (3–7). SOMs of larger data

sets—but still of low dimensionality and complexity—are

segmented with HAC by [9] restricting the merging to

lattice neighbor prototypes and excluding, from the HAC

phase, dead and heterogeneous prototypes from transition

regions between clusters. The latter are identified by high

relative dispersion of the pixel features in their receptive

field. This results in capturing four to five clusters of land

cover from IKONOS and Landsat5 3-band imagery with

very high (92–99%) accuracy.

More complex imagery is segmented by [33]. Four

million 20-D spectral signatures are learned with a

50 � 50 SOM, which is then clustered with HAC methods

to compare the effects of Ward, centroid, average, and

CONN linkages. The HAC with CONN linkage, which is

derived from the CONN similarity [31], generally outper-

forms the others, as well as k-means. Since our automated

approach also relies on this measure, we review CONN

briefly below. HAC is applied to SOMs of fMRI data using

a novel spatiotemporal distance measure composed of

pairwise correlations of prototypes weighted by an expo-

nentially decaying function of their lattice distance in [15].

While the correlation measure admits varied cluster shapes,

the combined measure may fail at sharp boundaries where

the manifold is discontinuous. The relatively large

weighting generated by close lattice proximity of two

prototypes across such a boundary may counteract the

small correlation of those prototypes in data space. This

could explain why their clustering success is limited to 3–4

brain areas.

As an alternative to HAC [30] explores spectral clus-

tering (SC) of the graph Laplacian of SOM prototypes. SC

(with scale parameter local to prototypes) outperforms

HAC methods with the above linkages in finding eight true

clusters in a remote sensing spectral image cube with 41

bands (input features) and 216,000 samples. Interestingly,

the same SC method performs significantly poorer on

seemingly simple 2-D data sets with 2–3 clusters. The

reason may be that these 2-D data sets have specific

challenges such as variable cluster shapes and densities

18162 Neural Computing and Applications (2020) 32:18161–18178

123

versus proximities, whereas other data may have clusters

more balanced in size and other properties.

Previous works illuminate that while clustering diffi-

culties can be caused by volume, feature dimensionality,

the number of inherent partitions and noise, the complexity

of a manifold—and thus the clustering challenge—ulti-

mately depends on the variations in cluster sizes, shapes,

densities, and the number and relative positions of clusters.

We aim to address the combination of these challenges.

1.3 The CONN similarity measure for SOM
segmentation

For capturing complex cluster structure interactively from

SOMs, we have successfully used the CONN similarity

measure, which is derived from the converged SOM and

expresses manifold connectivity rather than data space

distances [31, 32]. The connection strength CONN(i, j)

between prototypes attached to neurons i and j is measured

as the number of data vectors which choose one prototype

as their first, and the other as second SOM winner. The

visualization of the CONN matrix (CONNvis) over the

SOM can guide cluster extraction. This is illustrated in

Fig. 1 through the SOM segmentation of the 6-D 20-class

synthetic ‘‘spectral’’ image cube described in Sect. 2.4. (In

spectral images, n-D feature vectors are attached to (x, y)

spatial locations; these are the input vectors to SOM

learning.) In Fig. 1a, the SOM lattice of 20 � 20 neurons

(black dots) is shown with the CONN representation of the

learned manifold structure. A cell with no dot has an empty

prototype. In addition to the thickness of the line segments,

which expresses global relations of the relative connection

strengths, colors indicate the relative importance—a local

ranking—of the connections to other prototypes, in the

order of red (most connected), blue, green, yellow, and

gray shades. Together, the global connection strengths and

local rankings provide rich information about where the

manifold is strongly woven and where it is disconnected or

thin.

The CONN representation also reveals topology viola-

tions. As proven in [16] (under mild conditions), two

prototypes get connected if they are non-empty Voronoi

neighbors in data space, and they are chosen by (at least

one) data points as a pair of first and second SOM winners.

Thus, perfect topology preservation is achieved when

prototypes are connected to their lattice neighbors, or—in

case of a disconnected submanifold—there is no connec-

tion to lattice neighbors (these signify backward topology

violations, which are helpful in finding clusters). Line

segments connecting prototypes with a lattice distance

larger than one indicate forward topology violations, and

the line length and width, respectively, express the extent

and the severity of the violation. These can be analyzed to

separate serious violations from those inconsequential for

capturing clusters. Intuitively, we see from Fig. 1a that

clusters have many relatively weak violating intra-cluster

connections which do not interfere with cluster identifica-

tion, and connections across clusters are weak or missing.

CONN informs about the mapping quality, both visually

(with CONNvis overlay) and through quantitative CONN-

based topology measures [20].

Cluster boundaries are found between regions that are

strongly connected inside and have thin or no connections

to other regions. For visualization, a nonlinear binning of

CONN strengths is applied to aid the human eye. The bin

boundaries are automatically derived from CONN statistics

using the means of the kth-ranking connections of all

prototypes (k ¼ 1; . . .;N). Details on this and a cluster

Fig. 1 a Visualization of CONN values (CONNvis) over the 20 � 20

SOM of the 6-D 20-class data cube described in Sect. 2.4. It is easy to

discern at least 18 of the classes. b Interactively extracted clusters

labeled (by different colors) on the SOM. Ovals highlight rare

clusters. c Plurality labels of samples mapped to each prototype.

Letter labels (redundant with colors) are also indicated. Differences

with Fig. 1b occur because a few samples map to prototypes in other

classes (due to noise or imperfect learning at cluster boundaries), or

the human analyst did not label some prototypes in b. The ‘‘offend-

ing’’ prototypes have 1–2 samples mapped to them, which accounts

for the negligible confusion in image space. d Clusters shown in the

spatial image. This matches the spatial layout of the true classes

except for a few stray pixels

Neural Computing and Applications (2020) 32:18161–18178 18163

123

extraction procedure are given in [31]. This binning also

provides a sensible automatic thresholding scheme for

removing unimportant connections below the kth mean. In

this work, to keep experiments to a mangeable number, we

elect to use only one nonzero threshold for CONN values,

determined in a data-dependent fashion as the mean of the

fourth-ranking connections (k ¼ 4). The fourth-ranking

mean has been our empirically selected default in CONN

visualizations as it has worked well for the human analyst.

By using the same CONN threshold for the igraph

methods, we are assessing whether the support given to the

human expert benefits the automated algorithms. (Explo-

ration of value thresholds based on considerations of fur-

ther CONN statistics is the subject of a follow-up study.)

Connections can also be filtered by length. As elaborated in

[31] connections of length larger than one can be classified

as globally (severely) or locally topology violating. Locally

violating connections are between a prototype wi and those

of its Voronoi neighbors that are connected in data space

and fit within the tightest possible SOM neighborhood

around wi with length [1. The connected Voronoi

neighbors comprise the masked Delaunay graph proven by

[16] to be built by SOM learning and represent the topol-

ogy of the data. Within the lattice radius of the above

tightest neighborhood, we can consider a connection non-

violating and thus harmless for cluster identification. For

the 6-D 20-class synthetic data cube, the maximum number

of connected Voronoi neighbors is 16, which can fit within

a lattice radius of two [31]. Globally violating connections

in a well-learned SOM are typically caused by a few noisy

samples, and therefore, their removal can be beneficial for

segmentation. (This assumes that the SOM is free of strong

globally violating connections.) Thresholding by length

can also be informed by the mean strength of the connec-

tions of given length and by the percentage of data samples

involved in those connections. All of this information is

recorded in the connection statistics.

Figure 1b shows the SOM lattice with clusters of similar

prototypes extracted interactively from the CONNvis rep-

resentation. In Fig. 1c, each prototype is labeled by the

(known) plurality class of the samples mapped to it. Slight

differences with Fig. 1b are caused by a few samples

mapping to prototypes not in their classes (due to noise, or

imperfect SOM learning). Notably, a few non-empty pro-

totypes were left unlabeled by the human analyst. These

have only 1–2 samples mapped to them causing negligible

omission or confusion as seen in Fig. 1d which shows the

clusters in data space. This clustering is almost a perfect

match to the true classes.

2 Graph-based clustering of SOMs

All clustering schemes require a representation of the data

to be clustered and specification of some measure

describing the (dis-)similarity among members of this

representation. A graph G is a convenient tool to both

organize and represent this information: The collection of

N vertices V represents the N members to be clustered and

an N � N adjacency matrix fAijg encodes the relationship

(defined by the chosen (dis-)similarity) between vertices i

and j. A is often binary, but we will work with an extension

of this which permits an adjacency matrix E whose (i, j)

entries represent a graded similarity between i and j. A

partitioning C ¼ fC1; . . .;CnCg of V into nC mutually

exclusive sets defines clusters of vertices. Using the

information contained in E (or A), graph-based clustering

schemes optimize (over C) a measure Q(C) representing

some pre-defined quality of the partitioning C.

Modularity is a popular, graph-specific choice for Q(C)

which measures intra-cluster strengths relative to those that

would be expected from a random partitioning, subject to

certain constraints. Given a partitioning of vertices

C ¼ fC1; . . .;CnCg, let b ¼ jjvecðEÞjj1, so b is (double) the

sum of all edge weights in the graph. The observed pro-

portion of within-cluster edge strengths is then
1
b

P
ij EijdðcðiÞ; cðjÞÞ, where the sum runs over all pairs of

vertices, c(i) is a membership function yielding the partition

to which its vertex argument belongs, and dða; bÞ ¼ 1 if

a ¼ b and 0 otherwise. Now define the degree of vertex i to

be degðiÞ ¼
P

j Eij, which tabulates the total strengths of all

edges connecting i. A random graph which respects the

degree of each vertex thus has an expected weight between

vertices i and j of �Eij ¼ 1
b degðiÞdegðjÞ and an expected

proportion of within-cluster weights of 1b
P

ij
�EijdðcðiÞ; cðjÞÞ.

The modularity function characterizes the difference

between the observed and expected proportions of intra-

cluster strengths: QMODðCÞ ¼ 1
b

P
ijðEij � �EijÞdðcðiÞ; cðjÞÞ.

Many of the graph clustering methods discussed below

utilize the concept of modularity in some way.

2.1 Background on algorithm classes

The Fast & Greedy algorithm [3] is an extension of the

modularity-based algorithm of [25], fine-tuned for com-

putational performance. The agglomerative approach

begins with each vertex comprising its own partition. Two

partitions are repeatedly merged to produce the largest

increase (or smallest decrease) in QMODðCÞ, with the pro-

cess repeating N � 1 times to produce a final single parti-

tion. The resulting dendrogram is then cut to yield the

maximal value of Q(C), and the leaves of the cut define the

18164 Neural Computing and Applications (2020) 32:18161–18178

123

optimal partitioning C�. Because Fast & Greedy builds an

entire clustering tree it requires no operating parameters.

The Multilevel algorithm [1] is similar to Fast & Greedy,

but (unlike Fast & Greedy) if no gain is possible for

QMODðCÞ no merge occurs. After all vertices have been

examined a new graph is formed whose vertices represent

the partitions found in stage one; both intra- and inter-

partition weights are summed from each partition’s con-

stituent vertices. This process repeats in a hierarchical

fashion until no further increase in modularity is possible

via merging. As an exhaustive agglomerative algorithm,

there are no parameters governing Multilevel’s perfor-

mance, but because the initial vertex examined is randomly

chosen, repeated applications of the method are suggested.

Conversely, the Leading Eigenvector algorithm [26]

attempts a divisive (or top-down) approach to maximizing

the (same) modularity function QMODðCÞ by appealing to

so-called spectral methods of traditional graph segmenta-

tion. To begin, all vertices are placed in the same partition

and the goal is to allow modularity to guide the bisection of

this partition into a new partitioning C ¼ fC1;C2g. Note
that dðcðiÞ; cðjÞÞ ¼ 1

2
ðsisj þ 1Þ where s is an N-vector such

that si ¼ 1 if vertex i 2 C1 and si ¼ �1 if i 2 C2. The

modularity function can then be rewritten as QMODðCÞ ¼
1
2b

P
ijðEij � �EijÞsisj (since

P
ij Eij � �Eij ¼ 0). In matrix

form, defining B ¼ E � �E we have QMODðCÞ ¼ 1
2b s

TBs. B

is known as the modularity matrix; the signs of each

component of its second (approximate) principal eigen-

vector indicate vertex membership in C1 or C2 (B thus

takes the place of the graph Laplacian in traditional spec-

tral graph segmentation methods; see [8] for a more com-

plete overview). The algorithm proceeds iteratively to

compute a partitioning tree, splitting each node based on

the signs of the second principal eigenvector of the mod-

ularity matrix restricted to that node’s vertex members. A

branch terminates when either its representative eigen-

vector has no differing signs, or (optionally) its length

reaches a pre-defined value; when all branches terminate,

the resulting dendrogram is cut at the height producing the

maximal value of QMODðCÞ. Since branch length is an

optional parameter we have left it unspecified in the fol-

lowing results, allowing the tree’s growth to be completely

governed by the spectral modularity approximation.

The Walktrap algorithm [27] takes a completely dif-

ferent approach rooted in Markov chain theory to form its

candidate partitions. Assume a Markov chain with state

space = C, and initially let C ¼ V so that each vertex

comprises its own partition. The transition matrix for this

Markov chain is given by Pij ¼ Eij=
P

m Eim ¼ Eij=deg(i)

such that, at time t, the probability of the transition i ! j is

Pt
ij. Note that we expect Pt

ij to be relatively large for

strongly connected vertices unless their degree is made

large by many weak edges. From Pij, a time-dependent

distance is defined as dtij ¼
ffiPN

m¼1ðPt
im � Pt

jmÞ
2=degðmÞ

q

where degðmÞ is as above. These distances dtij are then

input to Ward’s algorithm [36] to choose two partitions to

merge. Post-merging, the state space (and transition matrix

P) is adjusted to reflect the new partition, repeating until a

full dendrogram is produced which is again cut at the

height producing maximal modularity. Unlike the Fast &

Greedy and Leading Eigenvector methods, Walktrap does

not use the modularity function to optimize the partitioning

during tree building. The number of steps t is a required

parameter.

Departing completely from modularity, the Infomap

algorithm [28] determines clusters based on a cost function

Q(C) guided by an information-theoretic analysis of ran-

dom walks on graphs. Utilizing the same transition prob-

abilities P as in Walktrap, Q(C) is constructed to describe

the total entropy of movement both between and within

clusters: QðCÞ ¼ qyHðQÞ þ
PnC

r¼1 p
r
�HðPrÞ, where qy is

the probability of moving between clusters and pr� is the

probability of movement within cluster r, HðQÞ is the

entropy of between-cluster movement and HðPrÞ is the

entropy of movement within cluster r. These quantities can

all be derived directly from the entries of P. Since mini-

mum entropy corresponds to the most information about a

stochastic system, the goal is thus to minimize Q with

respect to C. Because direct minimization of Q is in most

cases computationally intractable, a greedy agglomerative

partitioning scheme is devised, much like Fast & Greedy,

except merging occurs to minimize Q(C) in this case.

Owing to random initiation of neighbor evaluation, the

algorithm likely produces a local minimizer of Q. To

account for this, the entire process is repeated num.trials

times (which is the only parameter required) and the best

global minimizer of Q is selected.

When graphs are infused with SOM-specific knowledge

(outlined below), all of the above methods produce rec-

ognizably meaningful clusterings of our test data sets; the

main difference among them is the level of detail they

uncover in more complex cases. We have utilized their

implementations available in the igraph package [6]

available for the R programming language.

2.2 SOM-specific graph knowledge

Traditional use of the graph segmentation paradigm for

clustering involves representing each observation as a

vertex, with Eij a function of pairwise point distances

(usually Euclidean). For S observations, this requires

storing and analyzing a graph with S vertices and SðS�

Neural Computing and Applications (2020) 32:18161–18178 18165

123

1Þ=2 edges which can be infeasible for many large, modern

data sets. The relatively simple synthetic data cube

described in Sect. 2.4 has 16,384 observations, requiring a

distance structure of Oð108Þ elements. We instead propose

specifying a graph from learned SOM prototypes, typically

requiring
ffiffiffi
S

p
vertices and

ffiffiffi
S

p
ð

ffiffiffi
S

p
� 1Þ=2 edges. Contrary

to large observation-level graphs, the prototype-based

graphs are all feasible to store and are processed in seconds

(with CONN-weighted graphs requiring � 1 s in most

cases).

Our experiments show the drastic improvement that

CONN similarity affords graph segmentation algorithms.

Prototype-specific measures such as CONN harness infor-

mation about the manifold (such as density and topology)

which traditional distance-based similarities lack. To

highlight CONN’s capabilities, we will employ inverse

Euclidean distance (IED ¼ 1=ð1þ ED) where ED is the

usual Euclidean distance) as a benchmark similarity mea-

sure. CONN is, additionally, extremely sparse when com-

pared to IED; to isolate whether its sparsity structure or its

actual values are the largest contributor to its success we

also experiment with a sparse-IED (S-IED) graph whose

edge weights are taken from IED but whose sparsity inherits

that of the CONN (that is, edge weights equal IED where

CONN is nonzero, and equal 0 elsewhere). This modifica-

tion dramatically improves IED-based performance.

2.3 Evaluation methods

For comparative purposes, all igraph methods were

supplied with graphs derived from each of the CONN, IED

and S-IED similarity measures. For CONN and S-IED, all

combinations of the CONN value thresholdings tv 2 {0,

mean of fourth-ranking connections} and length thresh-

oldings tl 2 {2, 3 or 4} were considered. These are dis-

cussed in Sect. 1.3. The expected effect of thresholding is

(a) severing unimportant edges; (b) increasing the proba-

bility Pij (Sect. 2.1) due to lowering the degree deg(i) of a

node i while leaving the Eij, remaining after thresholding,

unchanged. This can increase the modularity of relevant

subcommunities or the chance of visiting those (by

Walktrap). For IED, which makes no use of CONN values,

no threshold applies. Thus each method produced 2 � 6 ?

1 = 13 clusterings. We ran Walktrap with 2, 4, 6, 8, and 10

steps; accordingly, the list of methods compared here

consists of the interactive clustering performed by the

human analyst (I-C), Infomap (abbreviated IM), Fast &

Greedy (FG), Leading Eigenvector (LE), Multilevel (ML),

and Walktrap with steps 2, 4, 6, 8, 10 (WT(2, 4, 6, 8, 10)).

WT(4), which is Walktrap’s default parameterization in

igraph, produced the most promising clustering in pre-

vious work [23] therefore one interest is to see if non-

default parameters may improve its relative performance.

LE’s parameterization involves specifying the number of

eigenvectors to compute (instead of the default maximum

number); we do not explore this because, theoretically,

allowing less than the maximum number of eigenvectors

cannot produce better results. Similarly, we use IM’s

default parameter of 10 repeated runs because fewer runs

are unlikely to produce better results in general. While we

may explore increasing the number of runs in the future,

we first study other parameters that are likely to have more

impact. By all comparisons FG, LE, and ML performed

equally on the data sets studied here, therefore we will

represent this group under the collective label ‘‘ML’’ and

only display ML’s results for space considerations. FG, LE

and ML all attempt direct modularity maximization, so

their self-similar performance is unsurprising.

We assess the quality of all results by comparing them

to known reference cluster structure using several mea-

sures. For quantitative assessment, we compare the number

of clusters returned from each clustering as well as two

cluster-matching indices: the Adjusted Rand Index (ARI,

[11]) which reports the corrected-for-chance proportion of

data point pairs assigned to the same cluster in both clus-

terings, and the Normalized Mutual Information measure

(NMI, [7]) which compares the information content in the

reference and candidate clusterings. For qualitative

assessment, we perform visual comparison to reference

images. Particular scrutiny is given to regions where small

cluster size or irregular properties (shape, size, density,

proximities) prove difficult for clustering algorithms.

To facilitate visual inspection and discussion, all can-

didate clusterings have undergone a process of reconcili-

ation to the reference clustering which involves assigning

known reference cluster labels to the best matching cluster

returned from the automated methods. The matching is

done by assigning, for example, reference label A to the

candidate cluster which has the highest Jaccard Similarity

Coefficient (JSC) with reference cluster A. The JSC is

calculated at the observation level (not at the SOM proto-

type level, even though the candidate clustering is per-

formed there) to better incorporate the characteristics of the

cluster in feature space. We stress that in this process only

the label is changed; candidate clusters remain otherwise

the same (in terms of their observation-level membership,

size, shape, etc.).

2.4 Demonstration on a 6-D synthetic spectral
image

Our synthetic spectral image cube has 6-D feature vectors

(the synthetic spectra) attached to each pixel location in a

128 � 128 pixel spatial area. This area is divided into 16

quadrants of 32 � 32 pixels, each quadrant representing a

18166 Neural Computing and Applications (2020) 32:18161–18178

123

spectrally homogeneous region (a spectral class) as seen in

Fig. 1d. In addition, four small classes are embedded in

some quadrants: T (lilac), 16 � 16 = 256 pixels; S (light

mint green), 8 � 8 = 64 pixels; Q (turquoise), 4 � 4 = 16

pixels; and R (magenta), a 1-pixel class (at the lower right

corner of the green quadrant (class C), not visible at this

resolution). Complete descriptions, including mean spectral

signatures of the classes, are in [18]. The feature vectors

within each class were generated by adding 	 5% Gaussian

noise to all 6 dimensions of a representative class signa-

ture, so the resulting classes are spherical. However, the

image has a non-trivial number of classes, highly similar

signatures in 6-D space (correlation coefficients of pairwise

dimensions range from 0.0081 to 0.5641 [18]), and it has

rare classes, which are increasingly harder to find with

decreasing size. Interactive segmentation separated all

clusters near-perfectly.

Figure 2 shows representative clusterings of the 20-class

synthetic cube as returned by ML and WT(4) for CONN

thresholding combinations. The value threshold, tv, was

chosen as the mean of the fourth-ranking connections (tv =

5.82 for this data set) while the length threshold of tl ¼ 3

was chosen because the length of non-globally violating

connections is
 2 for this data set, and tl ¼ 2 yields the

same visual results. See Sect. 1.3 for principles of value

and length thresholding of CONN. For compactness, we

present only CONN results since the S-IED similarities

performed nearly identically for these data. IED performs

poorly (generating only 1–3 superclusters as demonstrated

in [21]) and we exclude it from reporting. We note for

these data all methods (except for IED-based ones) perform

comparably, with the exception of IM which oversegments

(as reported in [21]) and suffers as a result. The number of

clusters (nC) in each clustering, as well as the agreement

measures (ARI, NMI) relative to the truth image, is

reported under each panel of Fig. 2.

For the synthetic 20-class data, all methods produce

clustered images that are recognizably similar to the truth.

Value thresholding results in a noticeable salt-and-pepper

effect of the resulting images for both methods (comparing

the right panels of Fig. 2a and d to g and j for ML, and

Fig. 2b and e to h and k for WT(4)). This is due to the

more than doubling of the number of determined clusters in

this case, which is itself a result of the increased sparsity

that value thresholding at the 5.82 level introduces into

CONN. While the increased confusion from value thresh-

olding may seem detrimental, it also allows ML to distin-

guish the small turquoise cluster (Q). Thresholding CONN

at length 3 with tv ¼ 0 (no value thresholding) also pro-

duces mixed effects: The mint green cluster (S) is separated

from the orchid colored cluster (P) but not as cleanly as

possible, grouping multiple non-S pixels together to form

S. We point out, however, that the over-segmentation

occurs at cluster boundaries that involve almost-empty

prototypes with weak connections; the true, larger clus-

ters—which are strongly connected within themselves—

have not been split.

In general, increasing either the CONN value or length

thresholds beyond a certain point would ultimately result in

over-segmentation of the image; this process becomes first

noticeable at cluster boundaries, as can be verified by

comparing the SOMs of Fig. 2a, b to their counterparts in,

particularly, Fig. 2g–k. While the human brain would

easily classify the bottom two rows of Fig. 2 as inferior,

agreement measures (ARI, NMI) on the whole do not

suffer as the cluster boundaries begin their dissolution due

to thresholding. Because of this, while using numerical

summary statistics such as these to find an ‘‘optimal’’

thresholding value might seem attractive, we urge caution

in using them alone as their information summarization is

not necessarily sensitive to what a human analyst would

call a good clustering.

2.5 Results on complex, high-D data:
the Megascene hyperspectral image

We use a hyperspectral urban image, part of the ‘‘Me-

gascene’’ synthetically generated at the Rochester Institute

of Technology through the DIRSIG modeling procedure

[12, 29]. This image is nearly indistinguishable from a real

hyperspectral image and it comes with truth labels for all

pixels. It comprises 400 � 400 pixels in 210 image bands

in the 0.38 to 2.4 lm visible-near-infrared spectral window,

with a spatial resolution of 2 m/pixel. The image looks very

realistic as seen in Fig. 3a. It contains 72 different surface

materials, including seven tree species and grasses, about

two dozen roof covers, a similar number of sidings, paving

and building materials (bricks of different brands and

colors, stained woods, vinyl, painted metals), and car

paints. Preprocessing consisted of removal of (simulated)

atmospheric effects and bad bands, conversion of radiances

to reflectances, and brightness normalization to remove

linear illumination effects [17, 19]. The multitude of

clusters, with widely varying statistical properties in 184-D

feature space (after exclusion of bad bands), presents a

formidable clustering task. Clusters extracted from a 40 �
40 SOM interactively are shown in the spatial image, and

in the SOM, in Figs. 3 and 4, respectively. The correctness

of the clusters can be checked against a map of truth labels

(Fig. 3c). In this truth image, we mask out the three largest

classes (K, T, V, medium green, salmon, and light green

colors, respectively, in Fig. 3b). This makes the variety of

the smaller classes visible. We will also use this masked

truth map, as well as the masked interactive clustering (I-

C) in Fig. 3d, for the evaluation of clusterings, as explained

below. Figures comparing the spectral characteristics of a

Neural Computing and Applications (2020) 32:18161–18178 18167

123

number of the I-C clusters with true classes are available in

[19] and show excellent match.

All igraph experiments were conducted and evaluated

as described in Sect. 2.3. For CONN and S-IED, CONN

value and connection length thresholdings {tv ¼ 0,

tv ¼ 20.79}, {tl ¼ NA, tl ¼ 3, tl ¼ 4} were used.

tv ¼ 20.79 is the mean of rank 4 connections. ML

continues to be the collective label for IM, FG, LE, ML

which performed equally on this data set too. The clus-

terings by igraph methods are compared, separately, to

both the truth image (Fig. 3c) and to the I-C (Fig. 3d).

From all comparisons, we exclude the large classes K, T, V

(as in Figs. 3 and 4), for two reasons: (a) The SOM of these

data is very fragmented within these large classes, which

ML WT(4)

tv=0
tl=NA

(a) nC = 19; ARI = 0.990; NMI = 0.993 (b) nC = 30; ARI = 0.988; NMI = 0.991

tv=0
tl=3

(c) nC = 20; ARI = 0.995; NMI = 0.995 (d) nC = 31; ARI = 0.993; NMI = 0.993

tv=5.82
tl=NA

(e) nC = 75; ARI = 0.982; NMI = 0.985 (f) nC = 75; ARI = 0.982; NMI = 0.985

tv=5.82
tl=3

(g) nC = 76; ARI = 0.988; NMI = 0.987 (h) nC = 75; ARI = 0.982; NMI = 0.985

Fig. 2 Automated clusterings from the SOM prototypes of the 6-D

20-class data by ML (column 1) and WT(4) (column 2) algorithms

using CONN similarity measure thresholded at: tv ¼ 0, tl ¼ NA (row

1); tv ¼ 0, tl ¼ 3 (row 2); tv ¼ 5.82, tl ¼ NA (row 3); tv ¼ 5.82,

tl ¼ 3 (row 4). For each panel, the segmented 20 � 20 SOM is

presented on the left and the resulting clustered image is on the right.

The number of clusters returned from each algorithm (nC), along with

the ARI and NMI agreement measures, is reported under each panel

18168 Neural Computing and Applications (2020) 32:18161–18178

123

puts the igraph algorithms at a disadvantage and no

meaningful comparison could be made for those areas.

(The human analyst has no difficulty identifying those

large classes despite this fragmentation, thanks to the mU-

matrix ‘‘fences’’ and overall connectivity structure.)

Addressing this situation is deferred to future work.

(b) These large classes would dominate comparison

statistics and obscure the performance of the more impor-

tant and more challenging smaller classes; and also visually

suppress them.

Comparisons are done by three quality indicators: (1)

Adjusted Rand Index (ARI). Normalized Mutual Informa-

tion (NMI) gives the very same trends, and therefore, we

omit it for space considerations; (2) Visual observation; (3)

The number of clusters coinciding with clusters in the

reference map. By each of these indicators, two relevant

subsets of the clusters are evaluated separately: The group

we call ‘‘Vegetation Clusters’’ and the group we call

‘‘Small Clusters’’. Vegetation Clusters (g, G, J, Z, s, t)

comprise the two larger maroon (G) and purple (g) clusters

(a) Natural color composite (b) Interactively produced cluster map

(c) Masked truth label map (d) Masked interactive cluster map
bg A B C D E F G H I J K L M N O P Q R S T U V W X

Y Z a b c d e f g h i j k l m n o p q r s t u v w

Fig. 3 a A natural color composite combined from red, green, and

blue spectral bands of the 400 � 400 pixel, 210-band synthetic

hyperspectral Megascene image [12, 29]. It covers 800 � 800 square

meters (2 m/pixel). Surface cover types in this image include trees,

grass, pavings, major buildings, tennis court, obvious in the image; a

variety of roof and other building materials (most on residential

homes, the material variety not obvious from this natural color

image); several types of car paint (each manifesting in 2–3-pixel

areas, not visible here). Altogether 72 classes of extremely varied

sizes and spectral properties are present. b Interactively obtained

cluster map (I-C) from the SOM in Fig 4, left. Material labels are

coded by color and letter as keyed at the bottom. c The map of truth

labels, overlain a grayscale image of the scene, with the large

background clusters K, T, V (grass, paved roads, and lots) masked

(removed) to provide better contrast for the many different roof

materials, and other unique material types such as tennis courts.

Twenty of these clusters are roof types of different spectral

characteristics, some with subtle discriminating features. d The same,

I-C cluster map as in b, with the K, V, and T classes removed

Neural Computing and Applications (2020) 32:18161–18178 18169

123

at the center left of the SOM in Fig. 4, left, and the medium

blue, dark green, and dark blue clusters at the lower right.

The Small Clusters are the rest of the clusters seen in the

SOM (after exclusion of the K, T, V clusters). The rationale

for separate assessment of these groups is that the members

of the Small Clusters in this image are too small compared

to the Vegetation Clusters. They range in size from 1 pixel

to a few hundred pixels (less than 1% of the image) each,

some less than 1/1000 of the image pixels. Statistics for the

union of the two groups would not reveal the quality of the

Small Clusters. Accurate identification of small-sized

clusters—such as those identifying different roofing

materials—is important from the point of view of a clus-

tering challenge, and for a user.

Comparison of the igraph clusterings to both the truth

label map (Fig. 3c) and the I-C (Fig. 3d), as reference

images, is done for the following reasons: (a) The I-C

discovered a few clusters which are not labeled as unique

in the truth map, but which are justified based on their

spectral characteristics. The igraph clusterings tend to

identify the same ‘‘new’’ clusters. One example is the grass

in the two baseball diamonds, outlined in rust color (label

Y) in the open field in the lower right of Fig. 3d while the

truth label map (Fig. 3c) indicates no difference there.

These new—legitimate—clusters lower the clustering

quality scores when comparing with the truth map. Com-

parison to the I-C provides a way to reward their discov-

eries. The igraph methods may also discover more

clusters where the human analyst left SOM areas unclus-

tered. (b) The truth label map has some inconsistencies.

The most conspicuous example is the labeling of some

pixels as tree species while the spectral signatures in those

pixels strongly differ from vegetation spectra. This can

happen when substrates are seen through trees; or strong

shadows are cast on part of the trees. The large cluster g

(purple) collects such signatures and consequently mixes

with (makes up about half of) the actual tree species (very

dark blue, purple, and lighter blue in the truth map) in a

salt-and-pepper fashion. Figure 5 illustrates the mislabel-

ing. This is also an example of how the labeling on the

object level may not always correspond to the spectral

distinctions on the pixel level; therefore, delineating the

actual feature (spectral) variations is important. Figure 6

presents the distributions of CONN versus IED similarity

values, which we discuss below to give insight for some

observations.

A summary comparison of methods with the truth image

and with the I-C by the Adjusted Rand Index (ARI) is

displayed in Figs. 7 and 8, respectively. The bar charts

show the relative agreements with the respective reference

maps for all methods in three parts, one each for the three

similarity measures (CONN, S-IED, and IED) used by

graph segmentation methods. Within each part, the indices

are shown for the Vegetation Clusters and the Small

Clusters groups separately. Over each bar, the number of

Fig. 4 Left: the SOM that produced the cluster map in Fig. 3b by

interactive segmentation. The discovered clusters are color-coded as

keyed in Fig. 3. The cells with medium gray color, appearing mostly

along major cluster boundaries, are ‘‘dead’’ SOM prototypes with no

data points mapped to them. Some cells (shown as black) were left

unclustered by the human expert, for reasons of colors limitations,

and partly because of uncertainty. These are among the groups of

Small Clusters in the upper left and lower left. The white ‘‘fences’’

(an alternative visualization, mU matrix, described in [18]) indicate

major cluster boundaries. Weaker boundaries are suppressed in this

view. Right: the same SOM as at left, as clustered by the top-

performing automatic method, WT(4). The large classes K, T, V are

masked out to show the areas excluded from evaluations. The letter

labels of the clusters are also overlain for convenience. The masked

out prototypes as well as the dead prototypes all have the gray ‘‘bg’’

color. This is also an example of comparison of clusterings on the

SOM prototype level, which we do (but not show) for every

clustering. The coincidence of delineated clusters between the I-C and

WT(4) clustering is remarkable

18170 Neural Computing and Applications (2020) 32:18161–18178

123

discovered clusters that coincide with clusters in the ref-

erence map is indicated.

Visual judgment of the relative fitness of all clusterings

was made by inspecting the respective segmentations of the

SOM (only WT(4) is shown, in Fig. 4, for space consid-

erations); and the cluster maps, taking into account the

matches within both the group of Vegetation Clusters (g,

G, J, Z, s, t) and the group of Small Clusters. This

assessment considers the spatial distribution of mismatches

on the pixel level. Given two clusters each with 50% match

to a reference map, one with matching pixels concentrated

in a coherent area and mismatched pixels at cluster

boundaries; and another with scattered mismatching pixels,

the visual score is much worse for the latter. The statistical

indices would assign the same score to both.

The visual ranking of the Megascene cluster maps

agrees with the ARI ranking with minor differences.

Cluster maps produced by two of the top-performing

automated methods and parameter combinations, and rec-

onciled to the I-C and the truth image, are compared in

Figs. 9 and 10, respectively. The results are discussed

below along with ARI evaluations.

First (as with the 6-D 20-class image) all methods do

very poorly with IED similarity, identifying 2–3 super-

clusters, i.e., no confusion but no useful detail. This is

evident from the ARI bar charts and from cluster maps, and

also consistent with experiments on other data in previous

work (see images in [21, 23]). (The ARI value is made high

in this case by the large superclusters, not by good match of

many relevant clusters.) The histograms of the CONN

versus IED values (Fig. 6) offer insight: CONN values

(purple) are sparse at the high-similarity end, while this

measure judges the majority of the data point pairs as

dissimilar, providing good discrimination among clusters.

In contrast, IED values are almost evenly spread over the

high-similarity range, with only a small fraction of the

values falling into the low-similarity end, suggesting much

less discriminating power than CONN. We omit the IED

cases from figures and further discussion and concentrate

on the performance of methods with the CONN and the

S-IED (IED with CONN sparsity) measures. Among these,

WT(4) or WT(2) produce better clusterings than IM, ML,

and WT(6–10) based on visual assessment. This is further

elaborated through the formal ARI scores.

Second, methods using the CONN measure generally

score a little higher than using S-IED, both in comparison

to the I-C and the truth map, with a few exceptions. This

difference is more noticeable visually (both in the SOMs

and in the cluster maps) than in the ARI charts.

The third general observation is that, by visual inspec-

tion, all methods/similarity measure combinations do better

with CONN value thresholding tv ¼ 20.79. The ARI charts

contradict in a few cases, which we point out below.

Experiments with connection length thresholding tl ¼ 3

and tl ¼ 4 produce negligible visual difference or, if at all,

slightly favor tl ¼ 3. We select tl ¼ 3 based on CONN

statistics: The length of non-globally violating connections

is 2 for the Megascene, and tl ¼ 3 leaves those connections

intact. Connections longer than 3 involve less then 0.5% of

the data, and have a mean connection strength lower than

the tv ¼ 20.79 threshold.

As measured by ARI, the fitness of each automated

method, chosen similarity measure and thresholding

scheme is very similar when compared to the truth map

(Fig. 7). The Vegetation group is large but the image

contains only 7 known tree species. (Grasses, T and V, are

excluded from this study.) Yet CONN and S-IED-based

methods yield many clusters in this group (anywhere from

thirty to sixty depending on method/similarity combina-

tion). The I-C produced six Vegetation Clusters, much

Fig. 5 Left: the spectral signature of pixels in cluster g. Right: the

signature of cluster J, Norway Maple tree (and that of other trees) is

dramatically different from the cluster g spectrum

0.0

2.5

5.0

7.5

10.0

0.00 0.25 0.50 0.75 1.00

Normalized Similarity

D
en

si
ty

Similarity CONN IED

Fig. 6 Distribution of CONN and IED similarity values for the 40 �
40 SOM of the Megascene data cube

Neural Computing and Applications (2020) 32:18161–18178 18171

123

more in line with the number and homogeneity of the

known vegetation classes. Consequently, the I-C achieves

the highest (but still relatively low) ARI score. IM severely

splinters the Vegetation Clusters, and its ARI score suffers

accordingly. Comparison to the Small Clusters in the truth

map tells mostly the same story, with all methods

6

56 60 67 69

29 33 40 42
34

32 38
47

31

28 41 43 31 31
40 44

0.00

0.25

0.50

0.75

1.00

I−C IM(10) ML WT(2) WT(4) WT(6)
Method

A
R

I

30

59 60 71 73 24
32 59 61 49 46 57 66 48 41 62 64 47 45 60 63

0.00

0.25

0.50

0.75

1.00

I−C IM(10) ML WT(2) WT(4) WT(6)
Method

A
R

I

35
44 55 56

21 27 40 41 18
42 48 47 34

34 44 43

42

33
45

43

0.00

0.25

0.50

0.75

1.00

I−C IM(10) ML WT(2) WT(4) WT(6)
Method

A
R

I 34
39 66 67

20

26
60 61

19 48 65 63
37 37

62 63

43 36

62 62

0.00

0.25

0.50

0.75

1.00

I−C IM(10) ML WT(2) WT(4) WT(6)
Method

A
R

I

1

3 3 3 3

0.00

0.25

0.50

0.75

1.00

I−C IM(10) ML WT(2) WT(4) WT(6)
Method

A
R

I

1 2 3 3 3

0.00

0.25

0.50

0.75

1.00

I−C IM(10) ML WT(2) WT(4) WT(6)
Method

A
R

I

Threshold tv=0 tl=NA tv=0 tl=3 tv=20.79 tl=NA tv=20.79 tl=3

Fig. 7 Adjusted Rand Index values for comparing clusterings by

igraph methods with the truth labels (Fig. 3c). The left and right

columns show, separately, the indices for the ‘‘Vegetation’’ and the

‘‘Small’’ classes, respectively. The number over each bar indicates

how many clusters the given method/parameter combination pro-

duced for the respective subset. I-C: Interactive clustering; ML:

Multilevel (represents FG, LE, and ML, which perform equally);

WT(x): Walktrap with x allowed steps. The colors signify CONN

thresholding as described in Sect. 2.2. tv ¼ val: removing connec-

tions with strength (CONN value) below val; tl ¼ length: removing

connections longer than length. Indices shown for methods using the

CONN (top row), the S-IED (center row), and the IED similarity

measure (bottom row)

18172 Neural Computing and Applications (2020) 32:18161–18178

123

performing even more similarly (and overall with higher

ARI scores around 0.50). The I-C is far superior in iso-

lating meaningful small details with an ARI 	 50% higher

in this group than the rest. We note, however, that the

confusion between the largest ‘‘vegetation’’ cluster, g, and

the truth labels for trees (as shown in Fig. 5) is largely

responsible for the generally low ARI score of the Vege-

tation Clusters.

Compared to the I-C (Fig. 3d), the ARI performance of

all methods (Fig. 8) is again about equal for the Small

Clusters but with an overall improvement of scores

hovering around 0.70. Inspecting the Vegetation Clusters

33 31 42 42

8

10

16

17

13

10

13

22
11

9
18

19
10

11

16

19

0.00

0.25

0.50

0.75

1.00

I−C IM(10) ML WT(2) WT(4) WT(6)
Method

A
R

I

47 47 47 47

25
29

43 43 42 36 43 46 43 34 46 46 42 38 45 45

0.00

0.25

0.50

0.75

1.00

I−C IM(10) ML WT(2) WT(4) WT(6)
Method

A
R

I
17

22 32 32

7 8
16 16

5

12 22
22

10

8

18 18

13

8

20 18

0.00

0.25

0.50

0.75

1.00

I−C IM(10) ML WT(2) WT(4) WT(6)
Method

A
R

I

29
30 43 43

20

23
43 43

22

42 47 45
36 35

45 45

40 35
45 44

0.00

0.25

0.50

0.75

1.00

I−C IM(10) ML WT(2) WT(4) WT(6)
Method

A
R

I

1

2 2 2 2

0.00

0.25

0.50

0.75

1.00

I−C IM(10) ML WT(2) WT(4) WT(6)
Method

A
R

I

1
3 2 2 2

0.00

0.25

0.50

0.75

1.00

I−C IM(10) ML WT(2) WT(4) WT(6)
Method

A
R

I

Threshold tv=0 tl=NA tv=0 tl=3 tv=20.79 tl=NA tv=20.79 tl=3

Fig. 8 Adjusted Rand Index for comparing clusterings by igraph
methods with the I-C (Fig. 3d). The left and right columns show,

separately, the indices for the ‘‘Vegetation’’ and the ‘‘Small’’ classes,

respectively. The number over each bar indicates how many clusters

the given method and parameter combination produced for the

respective subset. Acronyms and notations are as in Fig. 7. Indices

shown for methods using (top row) CONN, (center row) S-IED, and

(bottom row) IED similarity measure

Neural Computing and Applications (2020) 32:18161–18178 18173

123

yields markedly different behavior; IM’s tendency to return

many subclusters keeps its ARI agreement below 0.25 in

all CONN thresholding schemes, while the other methods

show different capacities to harness the effects of thresh-

olding. For example, value thresholding tv = 20.79 dra-

matically improves WT(2) ARI performance (from 0.59 to

0.92). Similarly, length thresholding alone (tv ¼ 0, tl ¼ 3)

increases the ARI score markedly. Applying both value and

length thresholding causes the ARI decrease back to 0.58.

All Walktrap parameterizations shown here behave simi-

larly. Interestingly, the S-IED Walktrap variants perform

best in the Vegetation Clusters with no thresholding. This

can be explained by the fact that S-IED only inherits

CONN sparsity but uses inverse Euclidean distance.

Thresholding removes edges from the graph for which the

CONN value is low. These tend to be edges between dis-

similar nodes, whose elimination further diminishes the

already low discrimination (as seen in Fig. 6) by Euclidean

distance. IM with S-IED also performs significantly better

with no CONN thresholding, not only by the ARI score but

also by markedly less fragmentation (17 vs 32 clusters with

tv ¼ 0 vs other thresholding). Interestingly, ML behaves

Fig. 9 Representative sample of the top automated clusterings,

produced by segmenting the SOM and inheriting the prototype labels

from the interactive segmentation as explained in Sect. 2.3. This

compares the automated segmentations to the I-C (excluding the large

classes K, T, V). Matching cluster labels are overlain on a gray scale

version of the spatial image. The results were judged by visual

inspection, which coincides with the ARI ranking with minor

differences. The left and right columns show, respectively, results

when the algorithms use the CONN and S-IED similarity for edge

weighting. In all cases, CONN value (connectivity strength) thresh-

olding is done with tv ¼ 20.79 (mean of fourth-ranking connections),

and no CONN length thresholding is applied. Top row: The best-

performing case, WT(4) with CONN similarity (left), and its S-IED

counterpart (right). For WT(4) CONN length thresholding with tl ¼ 4

or tl ¼ 3 is equally good in this case. Bottom row: The third-best

clustering after the WT(x) family, by ML with CONN similarity (left)

and S-IED counterpart (right). ML represents FG, LE, ML, which

perform equally

18174 Neural Computing and Applications (2020) 32:18161–18178

123

the opposite way: It does better with no thresholding when

using CONN; and better without when using S-IED. These

observations lead us to believe CONN’s values elucidate

the vegetation more cleanly, whereas only CONN sparsity

is needed to identify the small detailed clusters. This may

be due to the high degree of CONN separation of the Small

Clusters. Figure 11 provides a sense of the relative differ-

ences indicated by the ARI scores, in close-ups of repre-

sentative details. The best-performing WT(4) clustering

(second column) compares very well with both the truth

image and the I-C in terms of localizing roof materials,

trees, and the grass at the baseball diamond (cluster Y, rust

color, matching the same cluster in the I-C). The third

column portrays the ML clustering with S-IED (the mea-

sure most advantageous for ML) but with the same CONN

thresholdings as for WT(4), which is not ideal for ML

according to the ARI chart in Figs. 7 and 8. Compared to

performance with best thresholding for ML (from Figs. 9

and 10), these are noticeably poorer matches.

Some clusters, commonly returned by all methods, exist

in the I-C (and spectrally justified) but not in the truth map

for reasons we noted above. In addition to the previously

discussed baseball diamond (cluster Y), another readily

identifiable example is the large light blue building toward

Fig. 10 A sample of the top automated clusterings produced by

segmenting the SOM and inheriting the truth labels assigned to the

prototypes as explained in Sect. 2.3. This compares the automated

segmentations to the truth map (excluding the large classes K, T, V).

Matching cluster labels are overlain on a gray scale version of the

spatial image. The methods were judged by visual inspection, which

coincides with the ARI ranking with minor differences. The left and

right columns show, respectively, results when the algorithms use the

CONN and S-IED similarity measure for edge weighting. In all cases,

CONN value thresholding is done with tv ¼ 20.79 (mean of fourth-

ranking connections), and CONN length thresholding tl ¼ 3 except

for a. Top row: the best-performing case, WT(2) with CONN

similarity (left). In this case, we show WT(2) with S-IED (right) for

a different CONN length thresholding because the S-IED counterpart

with matching thresholding is significantly worse. Bottom row: the

third-best clustering after the WT(x) family, by ML with CONN

similarity (left) and the S-IED counterpart (right)

Neural Computing and Applications (2020) 32:18161–18178 18175

123

the upper right of the cluster map, a pool with glass cover

labeled ‘‘glass’’. However, there must be other material

(maybe metal) in the roof structure, which is marked by all

clusterings as different and therefore mismatch the truth

map. The igraph methods also discover common small

classes in addition to those present in the I-C. All these

lower ARI scores when, in fact, they indicate more precise

clustering.

Despite their differences, all methods that use CONN or

S-IED similarity localize the major structures (fields, trees,

large buildings) and most smaller objects like various

roofs, glass, very well. The differences in cluster delin-

eation come down to the ability to discriminate more finely

between spectrally similar materials. The small scale on

which different materials alternate in this image generates a

large number of mixed pixels causing unavoidable confu-

sion at cluster boundaries. The main confusion caused by

the labeling of g type pixels (whose spectra are inconsistent

with vegetation) as vegetation unduly decreases the ARI

score for the Vegetation Clusters. Given this and the noise,

the relatively low ARI scores versus truth labels (around

50% for Small Clusters and 25% for the Vegetation

Clusters) can be considered very good for this image.

Visual impression confirms this. Further, all methods

identify ‘‘extra’’ clusters’’ (consistent with discovery of the

same by the I-C) that are spectrally justified but not dis-

tinguished in the truth map. While this again lowers the

ARI scores, it attests to their discovery capabilities, and

ARI values still provide relative merits.

In summary, the graph segmentation methods examined

here, with the use of SOM prototypes and CONN similarity

measure and further enhanced by CONN thresholdings,

show great potential for high-quality automation of SOM

segmentation in the case of large data cubes with complex

structure.

Fig. 11 Details from the lower right corner of the image, showing

representative performance differences between the top-performing

WT(4) with CONN similarity, and ML with S-IED, thresholdings as

indicated. a The truth map; b WT(4) with CONN similarity and its

best thresholding, as compared (reconciled) with the truth map; c ML

with S-IED and the same thresholdings as for WT(4), as compared to

the truth map. d I-C; e the same WT(4) clustering as in (b) but

compared to the I-C; f the same ML clustering as in (c) but compared

to the I-C

18176 Neural Computing and Applications (2020) 32:18161–18178

123

3 Discussion, conclusion and outlook

Common to all algorithms we evaluate is that they do best

when their input is the CONN graph (SOM prototypes with

CONN similarity as edge weighting). Informing the IED

adjacency matrix with CONN sparsity (S-IED) dramati-

cally improves the outcome of the IED-based methods, but

they still underperform those that use the CONN edge

weighting. Considering that (under mild conditions, and

assuming correct SOM learning) the CONN graph is the

weighted masked Delaunay graph of the n-D data cloud

[16, 31] where the weighting senses the ‘‘weak seams’’ in

the manifold in both global and local relations, this is

perhaps not surprising.

We conclude that the usual pairwise Euclidean distances

of the SOM prototypes alone as input to graph segmenta-

tion algorithms—while reducing computation time and

storage demands by magnitudes—do not help produce

clusterings with a quality anywhere near that of interactive

cluster extraction for complicated large data sets. In con-

trast, employing the inherently sparse CONN matrix pro-

duces results that approach the quality of interactive SOM

clustering. Additionally, automatically determined, data-

dependent thresholdings of the CONN edge weightings

reveal further benefits that help increase modularity or the

probability of visiting relevant subcommunities (by

Walktrap) and thereby increase performance. The auto-

mated approaches can utilize more nuanced information

from the CONN matrix than the human operator, and do

not get tired, which can result in more complete labeling of

the SOM as is the case in the Megascene example. With the

automated methods the SOM segmentation takes negligible

time, � 1 s, eliminating the bottleneck that currently

prohibits high-throughput analyses.

In this paper, we cluster somewhat complex 6-D syn-

thetic data, and realistically complex and noisy, simulated

hyperspectral image data whose cluster structure can be

verified against known templates of truth labels, and

against independently produced interactive clustering.

These data sets facilitate experimentation with a wider set

of graph segmentation algorithms for systematic and more

thorough isolation of the relative advantages. Walktrap

with 4 or 2 steps works best for the large hyperspectral data

in this study. However, depending on general data char-

acteristics which can significantly vary for different types

of Big Data (e.g., terrestrial hyperspectral imagery, astro-

nomical imagery, fMRI data cubes) different combinations

of segmentation algorithm, parametrization, similarity

measure (CONN or S-IED), and CONN thresholding may

be best. This work is the first step in charting the behaviors

in this combined parameter space. Follow-up work will

extend this to other types of large, complex data. Finally,

we note that SOM learning—the key to all of this—is a

lengthy iterative process. To accelerate it, parallel hard-

ware implementations can be used (see, e.g., [14]) to bring

the overall processing time of cluster discovery to a level

that scales with Big Data.

Acknowledgements We thank Dr. John Kerekes, Rochester Institute

of Technology, for the RIT synthetic hyperspectral image cube and

accompanying truth labels. This project was partially supported by a

North American ALMA Development Cycle 5 Study Program,

administered by the National Radio Astronomy Observatory, with the

consent of the US National Science Foundation.

References

1. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast

unfolding of communities in large networks. J Stat Mech Theory

Exp 10:P10008

2. Brugger D, Bogdan M, Rosenstiel W (2008) Automatic cluster

detection in Kohonen’s SOM. IEEE Trans Neural Netw

19(3):442–459

3. Clauset A, Newman MEJ, Moore C (2004) Finding community

structure in very large networks. Phys Rev E 70:066111. https://

doi.org/10.1103/PhysRevE.70.066111

4. Cottrell M, de Bodt E (1996) A Kohonen map representation to

avoid misleading interpretations. In: Proceedings of the 4th

European symposium on artificial neural networks (ESANN’96),

D-Facto, Bruges, pp 103–110

5. Cottrell M, Rousset P (1997) The Kohonen algorithm: a powerful

tool for analyzing and representing multidimensional quantitative

and qualitative data. In: Proceedings of the international work-

conference on artificial neural networks, pp 861–871

6. Csardi G, Nepusz T (2006) The igraph software package for

complex network research. InterJournal Complex Syst 1695:1–9

7. Danon L, Daz-Guilera A, Duch J, Arenas A (2005) Comparing

community structure identification. J Stat Mech Theory Exp

09:P09008

8. Fortunato S (2010) Community detection in graphs. Phys Rep

486(3–5):75–174. https://doi.org/10.1016/j.physrep.2009.11.002

9. Goncalves M, Netto M, Costa JAF (2008) A new method for

unsupervised classification of remotely sensed images using

Kohonen Self-Organizing Maps and agglomeration hierarchical

clustering methods. Int J Remote Sens 11(29):3171–3207

10. Hamel L, Brown C (2011) Improved interpretability of the uni-

fied distance matrix with connected components. In: Proceedings

of the 7th international conference on data mining (DMIN’11).

CSREA Press, Las Vegas, pp 338–343

11. Hubert L, Arabie P (1985) Comparing partitions. J Classif

2(1):193–218. https://doi.org/10.1007/BF01908075

12. Ientilucci E, Brown S (2003) Advances in wide-area hyperspec-

tral image simulation. Proc SPIE 5075:110–121

13. Kohonen T (1988) Self-organization and associative memory.

Springer, New York

14. Lachmair J, Merényi E, Porrmann M, Rückert U (2013) A

reconfigurable neuroprocessor for self-organizing feature maps.

Neurocomputing 112:189–199

15. Liao W, Chen H, Yang Q, Lei X (2008) Analysis of fMRI data

using improved self-organizing mapping and spatio-temporal

metric hierarchical clustering. IEEE Trans Med Imaging

27(10):1472–1482

16. Martinetz T, Schulten K (1994) Topology representing networks.

Neural Netw 7(3):507–522

Neural Computing and Applications (2020) 32:18161–18178 18177

123

https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1007/BF01908075

17. Mendenhall M, Merényi E (2009) On the evaluation of synthetic

hyperspectral imagery. In: Proceedings of the first workshop on

hyperspectral image and signal processing: evolution in remote

sensing (WHISPERS 2009), Grenoble. http://www.ece.rice.edu/

*erzsebet/papers/. ISBN 978-1-4244-4687-2

18. Merényi E, Jain A, Villmann T (2007) Explicit magnification

control of self-organizing maps for ‘‘forbidden’’ data. IEEE Trans

Neural Netw 18(3):786–797

19. Merényi E, Taşdemir K, Farrand W (2008) Intelligent informa-

tion extraction to aid science decision making in autonomous

space exploration. In: Fink W (ed) Proceedings of the DSS08

SPIE defense and security symposium, space exploration tech-

nologies, vol 6960. SPIE, Orlando, p 69600M. http://scitation.aip.

org/dbt/dbt.jsp?KEY=PSISDG&Volume=6960&Issue=1.

20. Merényi E, Taşdemir K, Zhang L (2009) Learning highly struc-

tured manifolds: harnessing the power of SOMs. In: Biehl M,

Hammer B, Verleysen M, Villmann T (eds) Similarity-based

clustering, vol 5400. Lecture notes in computer science. Springer,

Berlin, Heidelberg, pp 138–168

21. Merényi E, Taylor J (2017) SOM-empowered graph segmenta-

tion for fast automatic clustering of large and complex data. In:

12th International workshop on self-organizing maps and learn-

ing vector quantization, clustering and data visualization

(WSOM? 2017), pp 1–9

22. Merényi E, Taylor J, Isella A (2016) Deep data: discovery and

visualization. Application to hyperspectral ALMA imagery. Proc

Int Astron Union 12(S325):281–290. https://doi.org/10.1017/

S1743921317000175

23. Merényi E, Taylor J, Isella A (2016) Mining complex hyper-

spectral ALMA cubes for structure with neural machine learning.

In: 2016 IEEE symposium series on computational intelligence

(SSCI), pp 1–9. https://doi.org/10.1109/SSCI.2016.7849952

24. Murtagh F (1995) Interpreting the Kohonen self-organizing fea-

ture map using contiguity-constrained clustering. Pattern

Recognit Lett 16(4):399–408

25. Newman MEJ (2004) Fast algorithm for detecting community

structure in networks. Phys Rev E 69:066133. https://doi.org/10.

1103/PhysRevE.69.066133

26. Newman MEJ (2006) Finding community structure in networks

using the eigenvectors of matrices. Phys Rev E 74:036104.

https://doi.org/10.1103/PhysRevE.74.036104

27. Pons P, Latapy M (2005) Computing communities in large net-

works using random walks. In: Proceedings of the 20th interna-

tional conference on computer and information sciences,

ISCIS’05. Springer, Berlin, Heidelberg, pp 284–293. https://doi.

org/10.1007/11569596_31

28. Rosvall M, Bergstrom CT (2008) Maps of random walks on

complex networks reveal community structure. Proc Natl

Acad Sci 105(4):1118–1123. https://doi.org/10.1073/pnas.

0706851105

29. Schott J, Brown S, Raqueo R, Gross H, Robinson G (1999) An

advanced synthetic image generation model and its application to

multi/hyperspectral algorithm development. Can J Remote Sens

25(2):99–111

30. Taşdemir K (2011) Spectral clustering as an automated SOM

segmentation Tool. In: Proceedings of the workshop on self-or-

ganizing maps (WSOM 2011), pp 71–78

31. Taşdemir K, Merényi E (2009) Exploiting data topology in

visualization and clustering of Self-Organizing Maps. IEEE

Trans Neural Netw 20(4):549–562

32. Taşdemir K, Merényi E (2011) A validity index for prototype

based clustering of data sets with complex structures. IEEE Trans

Syst Man Cybern Part B 41(4):1039–1053. https://doi.org/10.

1109/TSMCB.2010.2104319

33. Taşdemir K, Milenov P, Tapsall B (2011) Topology-based hier-

archical clustering of self-organizing maps. IEEE Trans Neural

Netw 22(3):474–485

34. Ultsch A (2005) Clustering with SOM: U*c. In: Proceedings of

the 5th workshop on self-organizing maps (WSOM 2005), Paris,

pp 75–82

35. Vesanto J, Alhoniemi E (2000) Clustering of the self-organizing

map. IEEE Trans Neural Netw 11(3):586–600

36. Ward JH (1963) Hierarchical grouping to optimize an objective

function. J Am Stat Assoc 58(301):236–244. https://doi.org/10.

1080/01621459.1963.10500845

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

18178 Neural Computing and Applications (2020) 32:18161–18178

123

http://www.ece.rice.edu/%7eerzsebet/papers/
http://www.ece.rice.edu/%7eerzsebet/papers/
http://scitation.aip.org/dbt/dbt.jsp?KEY=PSISDG&Volume=6960&Issue=1
http://scitation.aip.org/dbt/dbt.jsp?KEY=PSISDG&Volume=6960&Issue=1
https://doi.org/10.1017/S1743921317000175
https://doi.org/10.1017/S1743921317000175
https://doi.org/10.1109/SSCI.2016.7849952
https://doi.org/10.1103/PhysRevE.69.066133
https://doi.org/10.1103/PhysRevE.69.066133
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1007/11569596_31
https://doi.org/10.1007/11569596_31
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1109/TSMCB.2010.2104319
https://doi.org/10.1109/TSMCB.2010.2104319
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1080/01621459.1963.10500845

	Empowering graph segmentation methods with SOMs and CONN similarity for clustering large and complex data
	Abstract
	SOM clustering for complex data
	Objectives of this work
	Previous work in automation of SOM segmentation
	The CONN similarity measure for SOM segmentation

	Graph-based clustering of SOMs
	Background on algorithm classes
	SOM-specific graph knowledge
	Evaluation methods
	Demonstration on a 6-D synthetic spectral image
	Results on complex, high-D data: the Megascene hyperspectral image

	Discussion, conclusion and outlook
	Acknowledgements
	References

