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Abstract

Hyperspectral imagers are present on most current and
future Earth-orbiting satellites and space missions, acquir-
ing immense amounts of rich data. Many clustering and
classification methods meet their theoretical or practical
limitations when confronted with such high-dimensional
data. The most popular neural map paradigm, the Self-
Organizing Map (SOM) has successfully been used for over
twenty years for a vast variety of data mining problems.
One attractive feature of SOMs is that they handle high-
dimensional data well. In the past several years new theo-
ries provided critical evaluation and insight to Kohonen’s
original SOM revealing suboptimal quantization proper-
ties and offering improved ways of data mining with neu-
ral maps. This short paper reviews our recent contribu-
tions provoked by the new theoretical advances: numerical
simulations and new heuristics in support of more intelli-
gent SOM clustering and more effective extraction of the
learned cluster boundaries, which are crucial for intelli-
gent, automated understanding of large amounts of intri-
cate high-dimensional data.
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I. ADVANCED VARIANTS OF
SELF-ORGANIZING MAPS

Unsupervised clustering and supervised classification
are both fundamental to the understanding and model-
ing of the structure of data. High quality clustering can
provide strong support for subsequent labeling and super-
vised classification. In this paper we concentrate on un-
supervised clustering by neural learning, highlighting as-
pects that respond to specific challenges inherent in high-
dimensional spectral images.

Learning by Kohonen’s original Self-Organizing Map
(KSOM) [1], [2] can be summarized as follows: Let V C ®¢
and A denote the d-dimensional input data manifold and
the regular grid of SOM Processing Elements (PEs, nodes,
or neurons), respectively. (A is typically a rectangular lat-
tice.) The SOM PEs are indexed by their (potentially
multi-dimensional) grid locations r. The weight attached
tonoder € Ais w, € R¢. For any x € V input the KSOM
algorithm selects a winner node s by

s = argmin||w, — x|| (1)
and then updates the weights according to
AWy = €hes(x — Wy) (2)

where € is constant, the neighborhood function hes, typi-
cally a Gaussian function centered over the winner node,

defines which weights get updated and to what extent.
SOMs perform topology preserving vector quantization,
where the optimal placement of the prototypes (the SOM
weights) is learned by adaptation during the above iter-
ational learning process. The topology preserving nature
of the quantization sets SOMs apart from other clustering
techniques. This process results in an ordered set of the
learned prototype vectors in A, according to their similar-
ity relations, and forms areas of PEs in the SOM grid that
collectively represent groups of similar input vectors.

Let P and @ denote the pdf of V' and the pdf of the con-
verged SOM weights in V', respectively. It has been proven
that P and @ are related by the power law

Q(w) = constant * P(w)“ (3)

where « is the magnification exponent [3], [4], and that
some values of a carry particular quantization or infor-
mation theoretical properties. @ = 1 maximizes informa-
tion theoretic entropy, therefore such an SOM produces
the best (information theroretically optimal) approxima-
tion to the pdf of the data with the given number of SOM
weights. « = d/(d + p) corresponds to minimum mean
squared error quantization of d-dimensional data in p-norm
[4]. @ < 0 enlarges SOM response areas for low-frequency
inputs, which increases the chance of the detectability of
unknown rare classes. Kohonen originally assumed that
the KSOM produced an @ = 1 mapping. It was shown
later that the inherent property of the KSOM is a map
magnification of o = 2/3 [5], [6], which is optimal in
neither minimum distortion nor maximum entropy sense.
This makes the faithfulness of the KSOM uncertain and,
especially for large and complicated data with many clus-
ters, decreases confidence in its potential to discover small
groups of data that may be the most important targets
when sifting through huge data streams. As the need in-
creases for distilling comprehensive data volumes for deci-
sion making or for the pursuit of scientific unknown, the
demand for more sensitive and precise understanding of
the data rises too. This demand brings some of these more
recently analyzed SOM properties into focus.

Faithful matching of the pdf of the input data (a = 1),
negative, or any other than 2/3 magnification cannot be
achieved with KSOM because it has no explicit control
over the magnification exponent. A SOM variant called
Conscience algorithm [7] was conceived to realize maxi-
mum entropy mapping (o = 1) through implicit control
of the magnification by adjusting the winning frequencies
of individual PEs with heuristics. Theoretical proof of the
achieved map magnification does not exist for the Con-
science algorithm, but it works very well in practice. In
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recent work we gave numerical verification of its o = 1
property [8] on 6-dimensional synthetic data. However,
the Conscience algorithm cannot induce any other value
of a.

A promising theoretical approach was put forward in [3]
for explicit magnification control of SOMs. We will refer
to this method as BDH after the initials of the authors.
In equation (2) the constant learning rate € is globally de-
fined, i.e., it is the same for all PEs for a given time step
and its value is independent of any local properties of the
map. The BDH is based on making the learning rate de-
pendent on the local density, that is, effecting

€r ¢ €0 P(Wy) (4)

This is achieved by changing € in equation (2) to

o-o(m(msp) @

where m is a free parameter, ¢ is the time step and Ats is
the time difference since the PE s won last. o is a con-
stant, and d denotes the effective dimensionality of the
receptive field of ws. (The receptive field of an SOM
weight is the subset of data points that are mapped to
that weight.) es(t) is locally determined but then applied
to all weight updates in the current step. By doing so the
local property of the map is propagated to the neighbors.
With a derivation similar to that in [5] where the o = 2/3
property of the KSOM was proven, [3] showed that the
learning rate in equation (5) modifies equation (3) to

Q(w) = constant * P(w)o" — p(w)§(1+m) (6)

where the free parameter m can be used for controlling the
value of o . Therefore, to achieve a desired magnification
exponent ozl, m=3/2x o' —1 should be used in equation
(5). The reader is referred to [3] for further details.

The theoretical proof of the BDH, unfortunately, is
limited to 1-dimensional data and to m-dimensional data
whose components are statistically independent (the pdf
separates into the marginals). Most real data do not meet
these conditions, which inspired our recent numerical sim-
ulations to chart the behavior of the BDH for “forbidden”
data. A systematic assessment in [9] and [8] shows va-
lidity up to moderately high-dimensional data, as well as
dramatic improvement in the detectability of rare species
compared to KSOM. Below we present an example.

Topology preserving mapping of the input manifold V'
to the output grid A is crucial for correct identification
of learned clusters. Topology preservation can be violated
for a number of reasons: small SOM grid size, large di-
mensional mismatch between V' and A, too fast learn-
ing, etc. It is possible to recognize topology violations
after clusters are extracted from the learned SOM but for
large and complex data this is costly. A better way is
to use a recently proposed measure of topology preserva-
tion, the Topographic Function [10]. This measure, which
was originally evaluated on moderate-dimensional data (1-
4 dimensions), is under our current investigation for high-
dimensional data. We show a preliminary application on
hyperspectral data below.

Extraction of the boundaries of the learned clusters can
be difficult when the data set is rich. To date fully auto-
mated tools do not exist. Since the knowledge about clus-
ter separation is largely contained in the learned weights
cluster boundary capture is often attempted through var-
ious visualizations of the weight distances between PEs.
The frequently used approach by [11], [12] works well for
smaller data sets with moderate number of clusters, and
the manual labor is tolerable. Large size and high com-
plexity complicates this task. A natural approach toward
automation is to cluster the SOM weights. With vastly
varying cluster statistics this can be a challenge. Partial
results were achieved by [13] and several works referenced
therein. [13] used an agglomerative multi-phase tree-based
clustering that is perhaps the most successful in the recent
literature. However, critical examination and repeating
their main experiment made it clear to us that 1) differ-
ent distance metrics are needed in order to accommodate
non-spherical clusters and allow singleton weight clusters
(for discovery of rare species!); 2) the size of the PE recep-
tive fields should be considered in the partitioning of the
tree; 3) the topology of the data should be considered in
some decision phases. The SOM topology was considered
in [14] in a limited manner. The receptive field size or the
local data topology, to our knowledge, has not been used
in SOM clustering. We are developing an algorithm based
on these observations. It shows more success than [13], at
least for moderate dimensional data [15]. A demonstration
follows in Section III. We refer the reader to [13] and [15]
for a discussion of previous works on this subject.

II. THE CHALLENGES OF EXTRACTING
INFORMATION FROM SPECTRAL
IMAGES

Spectral images are “stacked” images of the same spatial
area, each taken at a different wavelength. The individ-
ual images are called image bands. Hyperspectral sensors
acquire as many as 100-500 image bands simultaneously,
contiguously covering a given window of the electromag-
netic spectrum at very small wavelength increments. The
vector S¥ = (ST'Y, ..., SVE), where S}°¥ is the data value
in the kth image band (k = 1,..., NB) at pixel location
(z,y), is called a spectrum. It is a repeatable, unique
pattern identifying the surface material(s) within pixel
(z,y). The feature space spanned by VIS-NIR spectra is
[0,U]1VB ¢ RVP where U > 0 is an upper limit of the mea-
sured reflectivity. Sections of this space can be very dense
while other parts may be extremely sparse, depending on
the materials in the scene. Detailed clustering and classifi-
cation of hyperspectral imagery can provide a great wealth
of information. However, the intricate spectra pose unique
challenges due to high dimensionality, subtle pattern dif-
ferences, and other factors, discussed in more detail in [16].
Many favorite classifiers and clustering algorithms (such as
Maximum Likelihood, Parallel Piped, Mahalonobis Dis-
tance, K-Means or Isodata) have difficulty handling the
high-dimensional data vectors. Prior dimensionality re-
duction is frequently performed by PCA or wavelets, or by
selection of important image bands by domain experts. We
found undesirable loss of class distinction with all of these
methods [17], [18], [16]. Non-linear feature extraction such
as by [19] may retain more of the relevant information but
systematic studies do not exist to show their general power



for many classes with subtle spectral shape differences, and
that the discovery potential of small “interesting” groups
of data is preserved. Another, fundamental aspect is that
linear approaches such as PCA and/or methods based on
second order (Gaussian) statistics only, may not detect
some of the most interesting features because hyperspec-
tral images are characterized by higher order statistics [20].
Among the few methods that have successfully been de-
veloped to suit hyperspectral data, the rule based super-
vised classifier Tetracorder (formerly Tricorder) [21], linear
mixture modeling [22] (works well up to a handful of mix-
ing endmembers) and the hierarchical segmentation HSEG
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[23], [24] are mature and richly textured procedures with
many years of experience.

III. DATA ANALYSES

First we illustrate the dramatic effect of negative mag-
nification for the discovery of rare species in a Mars
Pathfinder spectral image taken at the landing site. A full
clustering of the entire (=~ 900 x 1000 pixel) image with a
Conscience (alpha = 1) SOM was published in [25] along
with some discussion of the geologic units. Here, Figure 1
compares alpha = 1 and alpha < 0 mapping showing the
differences for a selected small image area.
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Finding rare species in octant S0184 of the Imager for Mars Pathfinder SuperPan panorama, taken by the left eye of IMP. Left panel:
Enlarged small details of the 40 x 40 SOMs (left) and the clustered images (right).

Upper pair: Left: Conscience SOM detail, showing

the representation areas of cluster O (hot pink) and R (light green). Right: The prototypical image area where “black” rock units were
found by previous research. Labels and arrows point out the tiny, 15 - 25 pixel areas. O and R were both categorized as relatively pristine
(olivine or pyroxene rich) material before our clustering separated the two subtypes, consistent with predominantly ortho- and clinopyroxene
compositions. Lower pair: SOM and image detail, produced by BDH magnification with o < 0. Left: O is now represented by 7, R by 5
PEs, in contrast to the Conscience SOM representation of 3 and 1 PEs, respectively, and the separation by the white fences is more obvious.
In the image detail only the rare species are shown here superimposed on a grey scale image band. Right panel: The spectral signatures of
the rare clusters, offset for clarity. Left: Statistics from the Conscience SOM clustering. The upper graph is an average of the prototypical
O spectra (selected few spectra of confirmed black rock pixels). The middle graph is the mean of the O cluster with standard deviations
indicated for each spectral channel. It is apparent that although the Conscience SOM O cluster preserves some main characteristics of the
prototype, the pronounced absorption band toward 0.9 pm is lost, which means that many non-O spectra were captured in this cluster. The
cluster statistics of R shows marked differences from O (our discovery in [25].) Right: Statistics from the BDH SOM clustering. On the
upper graph, the mean of the (unfiltered) O cluster shows very good resemblance to the mean of the selected O prototypes on the left. This
means that negative magnification not only made the O cluster more easily detectable but also more consistent. Even though this O cluster
generated by BDH contains 818 pixels compared to 283 pixels in O generated by the Conscience SOM, it is a better match to the prototype
than its Conscience SOM counterpart in the left middle graph. The BDH R (194 pixels) versus Conscience R (79 pixels) exhibit very similar
general characteristics. A third, in-between cluster, labeled R1 (112 pixels) and colored blue in the BDH SOM is clearly separated from both
O and R, and possesses mixed traits. Several blue pixels occur in both the O and R prototypical areas in the left panel, lower right image.

The Conscience SOM (a = 1, verified for synthetic
imagery in [8]) not only produces faithful pdf matching
but has the additional advantage of only updating the
immediate neighbors during learning, therefore it is fast.
This makes it well suited for hyperspectral imagery. Fig-
ure 2 shows the result of a semi-manual cluster capture
from a Conscience SOM that learned the structure of
an AVIRIS image. The cluster identification was done
with the “remap” tool of our HYPEREYE environment.
HYPEREYE is an algorithm research, software develop-

ment and data analysis environment, some details of which
are posted at http://ece-old.rice.edu/HYPEREYE . In
“remap”, various knowledge representation layers (recep-
tive field density, weight distances between PEs visualized
as proportionally bright fences, etc.) can be overlain, and
visually detected weight clusters outlined with a cursor,
then the outlined PE area and the corresponding image
pixels highlighted in a selected color. Visualization param-
eters can be controled on the fly for proper scrutinization
of particular areas.



Fig. 2. Clustering a hyperspectral image with a Conscience SOM. The source data is a 194-band, 512 x 614 pixel AVIRIS image of a 10 x 12

square km area over the Lunar Crater Volcanic Field, Nevada. The image comprises 140 Mb of data. It contains, among other materials,
volcanic cinder cones (class A, red) and weathered derivatives thereof such as ferric oxide rich soils (L, brown; W, mauve), basalt flows of
various ages (black and medium blue classes, F, I), a dry lake divided into two halves of sandy (D, dark yellow) and clayey composition (E,
light yellow); a small rhyolitic outcrop at the bottom (B, white); and some vegetation at the lower left corner (J, dark green). A long linear
feature (G, dark blue) bordering the vegetated area is a scarp exposing a particular type of basalt. The labels are tied to spectral signatures
in Figure 3, right. Left: The 40 x 40 SOM with the captured clusters. The underlying representation of the SOM knowledge includes the
weight distances between PEs (black-to-white fences, for low-to-high weight differences); and the density (the size of the receptive field) for
each PE, represented by proportionally bright red color. The corners contain a number of inactive PEs with 0 density. In addition, we indicate
the extent of topology violations in this SOM by drawing lines from each PE to all those PEs which should be its neighbors based on data
space topology, but they are not neighbors. This is determined by the Topographic Function. In short, there are few violations, and they are
mostly connecting PEs within the same cluster (no violation on the cluster level). Several lines connect to unevaluated areas or to PEs in
other clusters. These are helpful in scrutinizing and improving the semi-manual cluster determination. Right: The clusters shown remapped
into image space. 36 clusters were found, each corresponding to a meaningful geologic cover type. 24 of these cover types were previously
studied through supervised classifications. The clusters corresponding to the previously classified areas match those remarkably accurately.

A more detailed description and comparison is given in [16].

Figure 3, left, shows a cluster-level verification of the
a = 1 property of the SOM in Figure 2. If the SOM is a
maximum entropy map, all active PEs should have about
the same number of data points mapped to them. On the
cluster level this translates to the number of PEs represent-
ing a cluster being proportional to the size of the cluster.
This is nearly true according to Figure 3. The deviations
can be due to the number of unaccounted PEs that were
simply not evaluated through the semi-manual cluster cap-
turing, and it can also be due to less than ideal learning.

IV. DISCUSSION AND FUTURE TASKS

The above considerations were made in the context of
fixed size SOMs. Size and other configuration aspects
(such as shape and periodicity) of the SOM grid are im-
portant issues wrt the success of data modeling, which we
omitted for space limitations. We mention, however, that
the Growing Self-Organizing Map (GSOM) [26] can auto-
matically determine the ideal configuration, at extra cost.

Our systematic verification of the BDH magnification
algorithm for higher-dimensional data is work in progress.
We have not yet fully evaluated its behaviour, especially
the finer tuning of the controls, for higher than the 8-

The number of unevaluated PEs between clusters shows,
however, that this semi-manual approach (however good
the results) is too laborious to get to all details.

The third example, explained in the captions of Figures
4 and 5, demonstrates the current capabilities of our auto-
mated SOM weight clustering on an 8-band urban remote
sensing spectral image of Ocean City. Former supervised
classification of this image and semi-manual SOM cluster
extraction [8] serve as benchmark.

dimensional cases in Figure 1 and in [8]. The prelimi-
nary results shown here are extremely encouraging, but a
lot more work is needed to make this a production tool.
Meanwhile, using the Conscience SOM for hyperspectral
data appears to reliably generate maximum entropy quan-
tization. We point out that at the same time it also
approximates minimum distortion quantization for high-
dimensional data because « = 1 = d/(d+2) as d increases.

Algorithmic problems in our SOM weight clustering
(Figure 5) stem partly from widely varied cluster shapes
and sizes, and from definition of thresholds that we aim to
derive from data and SOM characteristics. However, the
difficulty of this increases with spectral dimension. We
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Fig. 3. Left:Maximum entropy property of the mapping with Conscience SOM (a = 1) in Figure 2. The PE areas representing the various
clusters are very nearly linearly proportional to the size of the image clusters. The source of imperfection can be the many unevaluated PEs
in the SOM. The entropy measured directly from the SOM, normalized to the maximum possible entropy value for a 40 x 40 SOM, is 0.97.
Right: Mean spectral signatures of 23 of the classes in Figure 2 illustrate some of the subtle differences among verified geological cover types.
Classes E, K, N - P, Q - T (playa and outflow materials), for example, form a series with increasing amounts of water and clay (more details
in [16]). Spectra are offset for clarity. The dotted vertical lines indicate the atmospheric water bands.

Fig. 4. Left: An earlier supervised classification of the Ocean City image, mapping 24 known cover types. Red and white ovals show unclassified
shapes of buildings (the colour of the background, ’bg’). The black ovals show one rare class that was included in the supervised classification.
Semi-manual clustering produced a cluster map strikingly similar to this supervised class map [8]. Right: Clusters detected by our automated
SOM cluster extraction algorithm [15]. The agreement between the cluster map and supervised class map is very good. While the supervised
class map has many unclassified pixels, here the vast majority of the pixels are assigned to clusters, which produces more appearances of some
colours such as green and turquoise. The unclassified gray spots (in red and white ovals on the left) are now filled exactly, and with colours
(greenish-yellow, label a, in the red oval, and dark blue, Z in the white ovals) different from the existing 24 colours. See Figure 5 for their
labels and spectral signatures, distinct from the rest. The new-found rare clusters only occur at these locations. We also found subclusters.
One example is in the black rectangles (the supervised class M is split into M and e). Arrows indicate two subclusters of the former turquoise
water class: R (turquoise), water in the canals open to the ocean and f (dark turquoise), water in canals farther into the city.

consider our algorithm very preliminary at this stage and
continue to research and improve it.
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Left: The 32 clusters identified by our automated SOM weight clustering in the SOM of the Ocean City image discussed in Figure 4.

Arrows show rare clusters. Parent cluster M in Figure 4, Left, and in earlier semi-manual clustering [8] splits here into M and e. Similarly,
former cluster R splits into R and f. Right: The mean spectral signatures of 24 of the 32 clusters, offset for clarity. The standard deviations
are small, an indication of the clustering quality. The signatures of the rare clusters (C, V, Z, a) are distinct, the subclusters M, e, R, f show
slight but consistent spectral differences, justifying the algorithm’s identification of these clusters. Dotted lines at the top of the left panel are
signatures of earlier supervised classes P, Q, and N. These are grouped into one supercluster, Q (two sparate brown areas), by our clustering,

indicating an algorithmic imperfection.
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