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Abstract. The mineralogic composition of planetary surfaces is often
mapped from remotely sensed spectral images. Advanced hyperspectral
sensors today provide more detailed and more voluminous measurements
than traditional classification algorithms can efficiently exploit. ANNs,
and specifically Self-Organizing Maps, have been used at the Lunar and
Planetary Laboratory, University of Arizona, to address these challenges.

1. The challenge in spectral images

Surface composition of planets, including our Earth, is often investigated from
remotely sensed spectral images. These are “stacked” images of the same spa-
tial area, each taken at a different wavelength. The individual images are called
image bands. Surface reflectance spectroscopy usually includes the visible and
near infrared (VIS-NIR) wavelength range, typically from 0.4 to 2.5 ym. Hy-
perspectral sensors, developed in the past 5-10 years, acquire as many as 100—
500 image bands simultaneously, contiguously covering a given window of the
electromagnetic spectrum at very small wavelength increments. The vector
STy = (ST, ..., SNg), where SV is the data value in the kth image band
(k = 1,..., NB) at pixel location (z,y), is called a spectrum. Tt is a charac-
teristic pattern which provides a clue to the surface material(s) within pixel
(z,y). The feature space spanned by VIS-NIR reflectance spectra is [0, U]VE C
RNVB where U > 0 represents an upper limit of the measured scaled reflectiv-
ity. Sections of this space can be very densely populated while other parts
may be extremely sparse, depending on the materials in the scene and on
the spectral resolution of the sensor. The most advanced hyperspectral im-
agers such as AVIRIS (NASA/JPL [1]), Hydice, the NIMS and VIMS on the
Galileo and Cassini planetary probes, and others (http://polestar.mps.ohio-
state.edu/~csatho/wg35.html, under “Hyperspectral Imaging”), can resolve the
detailed spectral features that are known to characterize minerals and vegeta-
tion, from laboratory measurements. Classification of these intricate spectral
patterns poses special challenges because of any combination of the following:
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e The patterns are high dimensional (dozens < N B < hundreds);

e The number of data points (image pixels) can be very large, ~ 1M;

e Given the richness of data, the goal is to separate many cover classes;

e Geologically different materials may be distinguished by very subtle differ-
ences in their spectral patterns;

e Very little training data may be available for some classes; and classes may
be represented very unevenly.

Additional complications arise from atmospheric distortions, noise, illumina-
tion geometry and albedo variations in the scene. These are properly dealt with
prior to classification, but are not discussed here.

2. How Self-Organizing Maps help

Dimensionality reduction is often applied in order to accomodate these spec-
tral data to conventional calssifiers, or to Backpropagation (BP) networks. [2]
and [3], for example, classified AVIRIS spectral images for geological mapping,
both reducing the original 224 bands to 32, to achieve training convergence with
BP. This, however, can lead to a loss of information that negates the purpose
of sophisticated hyperspectral sensors. Instead, a better approach is to taylor
the tool to the sophistication of the data for effective exploitation. Although
rigorous proofs on convergence and uniqueness have yet to come forth for high-
dimensional data, 1- and 2-D analyses (e.g., [4-6]), and powerful results using
SOMs for large and complex data sets [7] give us confidence in our choice of
SOM-based approaches. The clustering power of the SOM, its generalization
from small amounts of training data and its relative ease of handling high data
dimensionality helped us extract more scientific knowledge from Martian, ter-
restrial and asteroid data than was obtained earlier with conventional methods
or BP [8-12]. Two examples will be given below.

NeuralWare’s implementation of Kohonen’s SOM was used [13]. Tt is based
on [14-16], and is algorithmically similar to [17], including a choice of (a rectan-
gular or a diamond shaped ’bubble’ type) neighbourhood topology. The neigh-
bourhood size is constant in time; however, a “conscience” mechanism [15] ad-
justs the winning frequencies of the PEs so as to ensure proper spreading (com-
paction) of information that is dense (sparse) in the input feature space. Update
of the weight vectors, in [17] notation, is given by mﬁ"’l =m! +a'(S —m}), for
1€ N, and mf"’l = m; otherwise, where ¢ is the index of the winning PE., N,
denotes the index set of the neighbourhood of PE.. ¢ = arg min;(||S—m;||— B;)
where the bias term B; = v(1/M — F}) adjusts the distance between the incom-
ing pattern S and PE; based on the historic winning frequency F; of PE;. M is
the number of PEs in the Kohonen lattice. F; is updated along with the weights,
according to FZ»H'1 = F! + B(6n, — F}!) where éx, is 1 for i € N,, 0 otherwise.
«, 3 and 7y are user controlled parameters decreasing in time.



A single categorization layer with Widrow-Hoff learning is coupled with the
SOM, for optional supervised training after SOM convergence, with the SOM
output as its input. The preformed clusters prevent learning of inconsistent
class labels. This is extremely helpful in the selection/verification of consistent
training samples which is difficult for many classes with subtle differences.

2.1. Discovery of new taxonomical groups of asteroids

Here we were presented with a small set (130 spectra) of diverse (~ 15) types of
asteroids, observed in the 0.4-1.0 and 0.8-2.5 um spectral windows. From the
earlier; 0.4-1.0 pgm data a compositional taxonomy was established by minimum
tree clustering. When the 0.8-2.5 pm data became available no further structure
was found, using PCA. S (silicate) type asteroids had long been believed to
have olivine- and pyroxene-rich subgroups (indicators of primary evolutionary
states), which are characterized by the shapes of the 1- and 2-pm absorptions
in the spectra. Yet formal identification eluded the conventional approaches.
We clustered the joined, 0.4-2.5 um spectra with an SOM and found the S
type asteroids falling consistently into 3 subgroups. The two end groups were
identified as olivine- and pyroxene-rich [8] [11], So and Sp in Figure 1.

Figure 1. (Original color image at http://www.lpl.arizona.edu/~erzsebet /emast.html)
SOM of 13-D asteroid spectra, from [11]. Cluster boundaries were extracted by the
u-matrix method [18], and hand-drawn for clarity. Line widths indicate separation
strengths. The S asteroids, just southwest of the center enclosed by a thick line, com-
prise the So, S (intermediate), and Sp subclasses separated by thinner lines. Each
small square represents one asteroid spectrum. Max. 4 x 4 spectra are visualized for
any of the 20 x 20 Kohonen PEs. For this clustering, 10 additional, equally possible
spectra were generated for each original one, based on the measurement uncertainties.

After finding these and other interesting new clusters, the SOM-based hybrid
ANN, described above, was used to “clean up” the previous taxonomical desig-
nations. Given the small, diverse data set, “jackknifing” was employed for this



classification, which resulted in an extremely low number of training samples
in each round. Recall success rate based on training with our adjusted class
labels increased to 90%, while forcing the old labels resulted in 70% success [8].
In comparision, a 3-layer BP network (with no SOM layer) “memorized” the
individual training samples and no consistent prediction could be achieved.

2.2. Hyperspectral image exploitation

Figure 2 shows a classification map of 23 surface covers for a volcanic field in
the Nevada desert, from an AVIRIS image, produced by the above-described
hybrid ANN architecture, with 194 input, 40 x 40 SOM, and 23 output PEs.
The full spectral resolution was used except for elimination of the saturated
atmospheric water-bands, thus retaining 194 of the original 224 bands. This
512 x 614 pixel image of a 10 x 12 km? area, comprising 140 Mb of data, is
considered moderate size. About 30K unsupervised and 20K supervised steps
sufficed to train our hybrid network to achieve very good classification accuracy
[12]. Coherent unclassified regions indicate possible additional classes.

levi=194—ann-2 -

Figure 2. ANN classification map of a 194-band AVIRIS image of the Lunar Crater
Volcanic Field, Nevada, U.S.A., into 23 geologic cover types, from [12]. Original color
image at http://www.lpl.arizona.edu/~erzsebet/emearth.html. No dimensionality re-
duction was done before classification. The spectral detail in the data allows distinction
of many relevant classes in the scene, including volcanic cinders (A) and weathered
derivatives (L, W), young and old basalts (F, G, I), clay-containing dry playa and
outwash materials (E, D, Q — T) and evaporites (N — P). Classes are described in [12].

Conventional classifiers, notably covariance based ones such as Maximum
Likelihood (ML) may do a superb job on Landsat images or other low-dimensional
data. However, in remote sensing, finding N B + 1 reliable training samples (as
needed by ML), for a large number of classes, NC', is an irrealistic requirement.
Some relevant geologic classes may not contain NC' pixels; and identification of
NC % (NB+ 1) samples can be prohibitively expensive, or impossible. For this
example, 23 x 195 = 4485 field locations would need to be verified to obtain



training material for ML classification. A BP network may be too difficult to
train with 194 input and 23 output nodes, and it may not generalize well from
small amounts of training pixels. For the classes B, Q, R, S, T, less than 10
training samples could be identified confidently. The entire training set for the
23 classes comprises only ~ 900 samples. [12] shows that reduction of the above
194 bands to 32 (or less) in order to apply a ML classifier, eliminates much
of the subtle discriminating features (Figure 3), resulting in a loss of 7 classes,
and severe under- or overestimation of the rest of the classes. (This exercise
was done with a strategic de-selection of bands to retain as much as possible
of the compositional representation of the relevant materials.) The accuracy of
the ANN classification allows examination of mineralogic properties from aver-
age (less noisy) class spectra rather than from single samples which is a current
practice. This was especially valuable for rare Martian data [9-10].

MEAN VECTORS of CLASSES
Lunar Crater Volcanic Field, AVIRIS ’94 image
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Figure 3. Mean spectral signatures of the classes in Figure 2. illustrate some of
the subtle differences among meaningful and spatially coherent geological cover types.
Classes E, Q-T, for example, contain increasing amounts of water and clay. Spectra
are offset for clarity. The dotted vertical lines indicate data fallout in the water bands.

3. Future work

Automation of detection/visualization/interpretation of clusters, similarly to
[17] but with a focus on the specifics of large (>100 Mbytes) hyperspectral
images, is underway. This will improve our capabilities to investigate the useful
information content of, and SOM behaviour for, (hyper)spectral images, discover
new knowledge more efficiently. The ultimate goal is parallel hardware imple-
mentation for envisioned on-board, real-time (and fast, on-ground) analyses.
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