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Abstract

Efficient exploitation of hyperspectral imagery is of great importance in remote sensing. Artificial intelligence
approaches have been receiving favorable reviews for classification of hyperspectral data because the complexity of
such data challenges the limitations of many conventional methods. Artificial neural networks (ANNs) were shown to
outperform traditional classifiers in many situations. However, studies that use the full spectral dimensionality of
hyperspectral images to classify a large number of surface covers are scarce if non-existent. We advocate the need for
methods that can handle the full dimensionality and a large number of classes to retain the discovery potential and
the ability to discriminate classes with subtle spectral differences. We demonstrate that such a method exists in the

family of ANNs. We compare the maximum likelihood, Mahalonobis distance, minimum distance, spectral angle
mapper, and a hybrid ANN classifier for real hyperspectral AVIRIS data, using the full spectral resolution to map 23
cover types and using a small training set. Rigorous evaluation of the classification accuracies shows that the ANN
outperforms the other methods and achieves ~90% accuracy on test data.
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1 Introduction

High spatial and spectral resolution images from
advanced remote sensors such as NASAs AVIRIS
(e.g., [1]), Hyperion, HyMap, HYDICE [2], and others
provide abundant information for the understanding and
monitoring of the Earth. At the same time, they produce
data of unprecedented volume and complexity. Unrav-
eling important processes such as the evolution of the
solid earth, global cycling of energy, oxygen, water, etc.,
the responses of the biosphere to disturbances, and oth-
ers mandates the best possible exploitation of the data.
The challenge is to develop methods that are powerful
enough to make use of the intricate details in hyperspec-
tral data and are fast, robust, noise tolerant, and adaptive.
While the growing number of spectral channels enables
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discrimination among a large number of cover classes,
many conventional techniques fail on these data because
of mathematical or practical limitations. For example, the
maximum likelihood and other covariance-based classi-
fiers require, on the minimum, as many training samples
per class as the number of bands plus one, which creates a
severe problem of field sampling for AVIRIS 224-channel
data with many classes. Dimensionality reduction is
frequently accepted to accomodate data for traditional
methods, but this can result in an undesirable loss of
information. Covariance-based methods, in particular,
often fail to detect subtle but discriminating features in
the spectra even when enough training samples are avail-
able, because they are limited to working with first and
second order statistics, while hyperspectral imagery is
typically far from being Gaussian.

The use of artificial neural networks (ANNs) for com-
plex classification tasks is motivated by their power in
pattern recognition. For a review, see, e.g., [3]. Many
earlier works documented ANN capabilities for remote
sensing spectra on relatively modest scales: few (5 to
12) classes, low-to-moderate number of channels (e.g.,
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[4-17]). Several studies for higher spectral resolution
(e.g., 60 channels in [18,19]) used synthetic data which
often favor a particular (such as maximum likelihood)
classifier, by virtue of (Gaussian) data construction. Oth-
ers offered some principled dimensionality reduction and
showed high accuracies with the reduced number of
bands for a moderate number of classes (e.g., [20-22]).
Some research targeted selected narrow spectral windows
of hyperspectral data to classify one specific important
spectral feature [23]. A small number of ANN works clas-
sified hyperspectral data directly, without prior dimen-
sionality reduction [24-26]. Experience suggests that the
difference in quality between the performance of clas-
sical methods and ANN classifiers increases in favor of
the ANNSs with increasing number of channels. However,
this has not yet been quantified for large-scale classifica-
tion of many cover types with subtle differences in com-
plex, noisy hyperspectral patterns. Assessment of ANN
performance versus conventional methods for realistic,
advanced remote sensing situations requires comparisons
using the full spectral resolution of real hyperspectral
data with many cover classes because conventional tech-
niques are most likely to reach their limitations in such
circumstances. Systematic evaluation is needed to ensure
powerful, reliable, automated applications of ANNs or any
other classifiers. The present paper is a step toward filling
this gap.

We are comparing popular and easily accessible stan-
dard classifiers with a neural network paradigm. One
aspect that we want to demonstrate in particular is that by
using all (or nearly all of the 224) AVIRIS bands more, geo-
logically meaningful spectral variations can be detected
than from the same AVIRIS cube reduced to 30 to 40 or
less bands; that hyperspectral imagery is highly complex
and detailed surface cover information can be extracted
with sensitive enough methods.

Another point we wish to highlight is that a sophisti-
cated ANN paradigm can perform well with a small train-
ing set, which is always a concern for remote sensing tasks.
There have been studies to mitigate the effect of a small
training set [27,28] by iteratively labeling unlabeled data
with the classifier under training and adding newly labeled
samples to the training set. These studies, however, were
done mostly on synthetic data or low-dimensional real
data [29,30], and the relative benefits decreased with
increasing dimensionality. While these methods are very
interesting and statistically well founded, they often favor
particularly distributed (Gaussian) data and need prior
probabilities, and it is unclear how well they would do on
the full spectral resolution of real hyperspectral data.

The methods and analysis presented here provide a
quantitative comparison between ANN and traditional
covariance-based classifers using an AVIRIS data set. The
data and classification algorithms utilized in this study are
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described, and analysis and results of the comparisons are
presented, followed by a discussion of outstanding issues
and future directions.

2 Study area, data, and preprocessing

2.1 The geologic area and data

The Lunar Crater Volcanic Field (LCVF) was the primary
focus of the NASA-sponsored Geologic Remote Sensing
Field Experiment (GRSFE) conducted in the summer of
1989 [31]. Since 1992, the large playa in the LCVE, Lunar
Lake along with the surrounding terrain, has been one of
the several standard sites used as a calibration location
by the AVIRIS team and imaged yearly by AVIRIS. We
selected this site because it has been studied extensively
and independently by other workers, and because one of
the authors (WHF) has directly been involved in field
measurements and field mapping of cover types through
GRSFE and other projects [32-34]. Figure 1 shows a false
color composite of the Lunar Lake area analyzed in this
paper, with locations representative of various cover types
marked by their respective class labels used in this study.
The full list of classes is given in Table 1. The data con-
sidered here are a 614 samples by 420 lines subsection of
the image collected by AVIRIS on April 5, 1994 at 18:22
GMT. The LCVE, which lies roughly halfway between
the towns of Ely and Tonopah in northern Nye County,
Nevada consists of over 100 square miles of Quaternary
basaltic pyroclastic and flow deposits [35]. These deposits
lie atop ignimbrites and silicic lava flows of Tertiary age.
The basaltic volcanics are in turn overlain by Quater-
nary alluvial and playa deposits. Also included with the
analyzed subsection are the Lunar Lake playa and out-
crops of the Rhyolite of Big Sand Spring Valley (label B)
mapped by Ekren [36]. Vegetation within the LCVF is
sparse, but locally abundant within washes (label C) and
atop the plateau (J) that makes up the lower left part of
the scene, bordered by “The Wall, a prominent NE-SW
trending scarp straddled by the label G in Figure 1.

The reflectance signatures of surface materials within
the LCVF have variations that range from subtle to sig-
nificant. Oxidized basaltic cinders (label A) are associ-
ated with many of the cinder cones in the LCVE. These
cinders are rich in hematite and thus have the promi-
nent absorption band at 0.86 um caused by crystal field
effects and also the diagnostic UV-visible absorption edge
attributable to the Fe>* - O?~ charge transfer absorption
centered in the UV. Hematite also has a high reflectance
in the near IR, and these oxidized cinders show up as
bright aprons (classes L, W) about the cinder cones in
the longer wavelength AVIRIS channels. The Rhyolite of
Big Sand Spring Valley that is exposed in the lower left
portion of the subsection of the AVIRIS image (label B)
contains enough iron so that it too displays the Fe3* - 02~
charge transfer edge. It also displays a 2.2-pm absorption
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Figure 1 False color composite of the Lunar Crater Volcanic Field (LCVF) site. Letters stand for the various cover classes used throughout this
paper and mark some of the training locations of distinguishing geologic features for the corresponding classes.

Table 1 The cover types in the Lunar Crater Volcanic
Field site

Class Cover type description #tr
A Hematite-rich cinders 72
B Rhyolite of Big Sand 22

Spring Valley
C Alluvium #1 50
D Dry playa 160
E Wet playa #1 115
F Young basalt 21
G Shingle Pass Tuff 14
H Alluvium #2 (with mixed scrub 50

brush, rocks, and soil)
| Old basalt 36
J Dense scrub brush stands 14
K Basalt cobbles on playa 37
L Ejecta blankets #1 (mixed hematite-rich 78

and unoxidized cinders)
M Alluvium #3 (iron rich) 14
N Dry wash #1 15
0O Dry wash #2 54
p Dry wash #3 45
Q Wet playa #2 15
R Wet playa #3 14
S Wet playa #4 15
T Wet playa #5 18
U Alluvium #4 (also iron rich) 36
\% Wet playa #6 14
W Ejecta blankets #2 (primarily unoxidized 33

cinders with smaller percentage
of hematite-rich cinders)

Total number of training samples 942

Cover types with class labels used in this study and with the number of original
training samples (# tr) identified for each class.

feature indicative of the incipient development of dioc-
tahedral clay minerals. Lunar Lake, which at first glance
might appear to be compositionally homogenous, in fact
displays several spectrally distinct surface units. These
surface cover units (‘wet playa’ classes E, Q, R, S, T, V)
are distinguished primarily on the basis of their clay con-
tent and on the basis of their adsorbed and, perhaps,
structurally bound hydroxyl and molecular water content.
(Higher water content means deeper absorption features
at approximately 1.4 and 1.9 pm and a consequent depres-
sion of the spectral continuum at longer wavelengths.)
Many of the alluvial, or ‘dry wash’, units (D, N, O, P) are
distinguished in a similar fashion by subtle variations in
the spectral continuum caused by clay and water content.

Twenty-three known, different geologic units were cho-
sen for this study based on field knowledge, geologic
meaning, and spectral properties. The pattern recognition
challenge posed by the spectral variations across these 23
classes is illustrated in Figure 2.

2.2 Data preprocessing

The LCVF image was atmospherically corrected and
converted to reflectance units, using the empirical line
method (e.g., [34,37]), which produced spectra with fewer
noise artifacts for this 1994 image than ATREM [38].
After exclusion of excessively noisy channels, as well as
duplicates among overlapping channels at the detector
interfaces, 194 bands remained with excellent signal-
to-noise ratio [39]. A brightness normalization such as
that described in [40] (also called the hyperspherical
directional cosine transformation [41]) was also applied
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Figure 2 Representative average spectra of the 23 LCVF classes listed in Table 1, vertically offset for clarity. Many signatures (such as the
clay-bearing series on the right) have subtle variations; others (such as the iron oxide-bearing species, A, L, W, F, G, on the left) have larger
differences. The vertical dotted lines near 1.4 and 1.9 um indicate data fallout where saturated bands in the water vapor windows were eliminated,

in order to eliminate linear illumination geometry effects.
This normalization divides all data vectors by their
Euclidean norm, producing unit vector length while pre-
serving the spectral angle relations of the bands. Unfortu-
nately, geometric albedo (any linear effect) is also elimi-
nated in this process; therefore, one may need to separate
classes that are spectrally the same but distinguished by
albedo, in a post-processing step (as in, e.g., [24]). Fortu-
nately, this is not a frequent situation, in our experience.
For the present analysis, the advantages of this bright-
ness normalization outweighed the disadvantages in that
the separation among spectral groups increased (due to
the enhanced spectral contrast between different species)
more than differences were masked by the loss of albedo
variations. Classes distinguished only by albedo were not
present among the LCVF units.

3 Classifiers and methodology for comparison
3.1 The ANN paradigm and the competing classifiers
Back propagation (BP) neural networks, which are per-
haps the most popular and best known among ANN

paradigms, can be difficult to train with high-dimensional
data as their complexity increases non-linearly with the
number of input dimensions and the possibility for the
gradient descent learning to get stuck in local minima
increases dramatically. Dimensionality reduction prior to
classification is frequently applied to high spectral reso-
lution data to achieve tolerable training time, or training
convergence at all with a BP network (e.g., [14,20]), or to
apply other methods.

To make use of the full spectral resolution, we used a
hybrid ANN architecture, the details of which are given in
[24,25]. Briefly, it consists of an input layer with as many
nodes as the number of spectral bands plus one ‘bias’ neu-
ron, a two-dimensional self-organizing map (SOM) [42] as
the hidden layer, and the SOM layer is fully connected to a
categorization learning output layer. Inputs to the output
layer are the responses of all SOM neurons with the three
largest responses normalized to sum to one, the rest set to
zero, before passing them to the output layer. The output
layer has one node for each class, i.e., the 1-in-c encod-
ing is used for class labels. (The cth output is expected
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to produce 1, the others to produce 0, for the cth class.)
It learns with a Widrow-Hoff (delta) learning rule [3,43]
and uses a linear activation function. This hybrid network
learns in two phases. First, in an unsupervised regime, it
builds its own view of the manifold structure by forming
a topology-preserving feature map of the data (clusters,
if they exist) in the hidden SOM layer (while the output
layer remains idle). In a subsequent supervised learning
phase, the weights between the SOM hidden layer and
the output layer are trained to recognize class labels. The
pre-formed clusters - the model of the data manifold - in
the SOM help prevent the learning of inconsistent labels
and thus greatly support accurate learning of class labels
in the supervised phase. This results in better generaliza-
tion from a small number of samples and leading to higher
classification accuracy, than without the SOM stage. Back
propagation, in contrast, is powerful enough to simply
‘memorize’ inconsistent labeling if the number of training
samples is small. For example, the network can learn to
assign labels A and B to two individual training samples
even if their characteristics are very similar (for example,
B is a mislabeled sample from class A). In this case, no rea-
sonable prediction can be expected because the network
does not derive general class properties. This situation can
be avoided with the hybrid ANN paradigm we described.
It is also much faster to train the supervised output layer
of this network than to train a BP network, since the out-
put layer only learns the labeling of the classes (based on
the cluster boundaries internally identified by the SOM).
The delta learning rule with linear activation function is
much simpler than back propagation, which helps rela-
tively easy training even with very high dimensional data,
in this SOM-hybrid architecture. The investment of train-
ing the SOM layer has the additional benefit that it can
be reused in different supervised training sessions, for
example, to train for various sets of classes, since the clus-
ter structure of the manifold is the same regardless of
how many classes are labeled. The good scale-up prop-
erties and high classification accuracies of this network
have been demonstrated by previous hyperspectral analy-
ses [24-26,44] for up to 200 spectral channels and 20 to 30
classes.

In a recent paper, Foody and Cutler [9] apply a similar
concept: they examine the data structure through SOM
clustering and manually evaluate how well the clusters
correspond to known cover classes, in order to assess the
potential of the particular data for the discrimination of
the known classes. The SOM-hybrid network that we use
helps accomplish the same, in an implicit and integrated
fashion. Misclassified labeled training samples (assum-
ing that the SOM learned correctly, the overall network
learned well, and that the training samples were labeled
consistently) will alert the analyst to discrimination prob-
lems. Conversely, in the case of labeling uncertainties (for
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example, at the boundaries of similar materials or in the
case of data that was labeled on the basis of some other
attributes than the given data contains), such misclassi-
fied labeled data can guide a revision of the labeling. (An
example of this is in [24].)

The quality of SOM learning (including topology preser-
vation, completion of ordering, optimal placement of
quantization prototypes (the SOM weights) in the data
space, and convergence) is important for ensuring good
results. For discussion of related issues, which are beyond
the scope of this paper, we refer to [45-48] and the refer-
ences therein. We mention here that we used, instead of
the basic Kohonen SOM [42], a variant called conscience
learning [49], which encourages all SOM neurons to win
with equal frequency through a biasing ‘conscience’ and
thereby maximizes information theoretical entropy of the
mapping. This leads to the best possible representation
of the data distribution with the given number of quan-
tization prototypes and thus facilitates the most faithful
learning of the cluster structure [47]. An additional ben-
efit of conscience learning is that it only needs to update
the immediate SOM neighbors, which makes it computa-
tionally efficient. Even though we did not use the extracted
clusters for establishing labeled classes in this work (we
used the determination of a domain expert for class desig-
nations), we know that the SOM in this study learned the
cluster structure of the LCVF data extremely well. This
was demonstrated by another study where the clusters
extracted from the SOM showed striking correspondence
with the supervised classes [44,50].

One important feature of this ANN is that the class pre-
dictions are characterized by a membership strength, and
below a predefined threshold of the membership strength,
the data sample is labeled ‘unclassified’ In addition, we
can record the membership strengths that each output
node predicts on the 0 to 1 scale, which can be used for
assessing the confidence in the class predictions.

This SOM-hybrid ANN was built and tested in Neu-
ralWare’s NeuralWorks Professional II/PLus [51], then
deployed using NeuralWare’s Designer Pack, and embed-
ded in our own software environment that has specifically
been developed for the exploitation of high-dimensional
data such as large hyperspectral images. Our own algo-
rithm research and data analysis environment builds on
NeuralWare and Khoros [52] functions and extends stan-
dard neural network capabilities.

The established classifiers that we compared with
the above SOM-hybrid ANN are maximum likeli-
hood (MLH), Mahalonobis distance (MHD), minimum
Euclidean distance (MED), and spectral angle mapper
(SAM) by Kruse et al. [53].

These non-ANN classifiers are well documented in
remote sensing texts [54-57] and are commonly available
in commercial image analysis packages such as ENVI and
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others [58-60]. We chose these non-ANN classifiers for
this study because of their widespread use and easy acces-
sibility. Two of them (MED and SAM) can process high-
dimensional input signatures without prior dimensional-
ity reduction, while MLH and MHD suffer from input
dimension limitations when the training set is smaller
than the number of spectral channels. This, however, is a
remote sensing reality that needs to be considered when
selecting classifiers for a task.

3.2 Evaluation criteria
Performance evaluation criteria were derived from the
requirements or necessities dictated by real-life tasks:

1. Classification accuracy

2. The capability of using the full spectral resolution

3. Dependence on the number of training samples. This
is of special interest in remote sensing as the
minimum necessary number of training samples in
the case of a covariance-based classifier (such as
maximum likelihood) for AVIRIS class data is over
200 per class, a prohibitively large number for a
dozen or more classes.

Sensitivity to uneven class representation and to noise
are two of several other important issues. While we do not
address these systematically in this paper, the experiments
we describe involve uneven class representation as well
as noisy data. Learning from unevenly represented class
samples is another strength of ANNs, compared to para-
metric classifiers, and it is an advantage in remote sensing
since even sampling across cover types is often impossible.

4 Analysis and results

4.1 The classification experiments

Altogether 942 training pixels were originally identified
across all classes ranging from as low as 14, to 160 samples
for a class, as shown in Table 1. This limited the applica-
tion of the covariance-based classifiers (MLH and MHD)
to a 13-band subsampled version of the data, with the
original training set. For training of the MLH and MHD
classifiers with 194-band data for 23 classes, a minimum
of (194 + 1) x 23 = 4,485 would be required. The other
three classifiers were not limited by the number of spectral
bands.

Since we also wanted to see if an increasing differ-
ence in the quality of performance manifests with the
inclusion of increasing number of bands, we created a
second augmented training set. We were able to increase
the minimum number of training samples for each class
to 31, which allowed us to employ the MLH and MHD
classifiers on 30-band data. For this augmentation, we
carefully hand-selected additional samples based on prior
knowledge of the surface cover types and on spectral
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similarity to the original samples. Details of the band
selection approach are given in Section 4.2 below. Further
augmentation, to include the MLH and MHD classifiers in
the 194-band experiment, was not possible, partly because
the known occurrences of some of the classes (such as B,
the rhyolitic outcrop) are smaller or much smaller (classes
Q R, S, T, for example) than 195 pixels. The classifications
were performed, after preprocessing, for 13-, 30-, and 194-
band cases, as applicable. Table 2 shows a summary of
classification runs performed on the 1994 LCVF AVIRIS
data using the full 194-band normalized AVIRIS data set
as well as the spectrally subsampled data sets containing
30 and 13 bands, respectively.

The SOM-hybrid ANN we used for this work had a
configuration of 194 input nodes (30 and 13, respectively,
for the subsampled cases) plus one bias node, 23 output
nodes, and a 40-by-40 two-dimensional rectangular SOM
in the hidden layer. The class labels were encoded as 23-
element unit vectors, with a 1 at the position of the output
neuron corresponding to the given class and zeros else-
where. The input samples were scaled into the [0,1] range
using the global minimum and maximum of the data. This
scaling preserves the relative proportions of the values in
the different dimensions, in this case the spectral angles
across spectral bands. The target output values did not
need scaling since each was already in the range {0,1}
because of the 1-in-c class label encoding. With normal-
ized SOM outputs and no bounded activation function in
the output layer, there was no need to scale the inputs and
the target output values into the range of a particular acti-
vation function, or to scale them at all. We performed this
internal scaling for the convenience of easier tractability of
the training. This scaling was done after the preprocess-
ing described in Section 2.2. To allow the SOM to learn
the cluster structure of the input data space, 300,000 unsu-
pervised learning steps were performed. In this phase,
all image pixels were used (without labels). The 300,000
may appear as a low number of training steps for nearly
the same number of data points (614 x 420); however,
many pixels have similar spectral signatures thus each
spectral type was shown to the SOM many times. The
subsequent supervised training was performed with the
training set shown in Table 1 or with the augmented train-
ing set for the MLH and MHD 30-band cases. Because of
the support from the SOM hidden layer, the supervised
training converged very fast. After 20,000 steps, with a
learning rate decreasing from 0.15 to 0.01, the training

Table 2 Classifications performed in this study and the
number of spectral bands used for each run

# bands Classification runs

13 ANN MED SAM MLH MHD
30 ANN MED SAM MLH MHD
194 ANN MED SAM -
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accuracy stabilized at 99.9%. In the recall phase, class pre-
dictions with larger than 0.1 decision strength (on a scale
of approximately 0 to 1) were accepted, leaving pixels
with less than 0.1 decision strength on all output nodes
unclassified. In the experiments we conducted with the
LCVF image, the percentage of unclassified pixels was low,
~3.45% for the ground truth test pixels (see below) in the
best classifications. In addition, the recorded map of deci-
sion strengths associated with each image pixel contains
very few instances where the class membership assign-
ment had to rely on less than 0.5 decision strength. There
are cases where a pixel had assignment into two (or some-
times three) competing classes, with significant decision
strengths (for example, 0.6 and 0.4). For the purpose of
this study we accepted the strongest class membership in
such cases.

One input sample to the ANN consisted of one image
pixel (one 194-element spectrum). No spatial context was
considered for input, for two reasons. If a k * k window is
selected automatically around the current pixel, the input
may contain contamination by spectral signatures that do
not belong to the given spectral class. In certain circum-
stances taking input from a window rather than from a
single pixel can be helpful and works well. For example,
Benediktsson et al. [61] construct feature vectors from
morphological attributes of a single image band. However,
when one works with high spectral resolution and with
many classes, some of which may have subtle discrimi-
nating differences such as seen in Figure 2, a window of
spatial context may blur class distinctions. This is espe-
cially a danger in the case of hyperspectral data that also
have high spatial resolution. Additionally, omitting con-
text in the input allows one to use the spatial coherence,
or lack thereof, to help judge the resulting classification.

The MED, MLH, MHD, and SAM classification results
were generated in the ENVI image processing software.
MED classifications were run for the 194-, 30-, and 13-
band cases using the following three sets of minimum
distance parameters: (1) no maximum standard deviation
around the training class means, which classifies all pix-
els to the closest class; (2) one standard deviation; and (3)
two standard deviations from the training sample means
for each class. The latter two can leave many pixels unclas-
sified. For the SAM classifications, a threshold of the
spectral angle was applied. This threshold specified the
spectral angle between an input and a target spectrum,
beyond which the input sample remained unclassified.
The default value of 0.1 radians was used. MLH and MHD
classifications were run for the 30- and 13-band data sets.
The original number of training data (Table 1) were used
to classify the 13-band AVIRIS image. The 30-band data
set was classified using the abovementioned augmented
training set. The MLH classifications were run twice for
each of the two subsampled data sets: once with prior
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probabilities and once without (i.e., with default, equal
prior probabilities). Prior probabilities were assigned to
each land cover class using area weighted estimates from
the MED and ANN results of the 194-band data set, as
well as from existing geological field knowledge of the
study site.

4.2 Selection of bands for covariance-based classifiers
The 13- and 30-band spectral subsamples of the 194-
band AVIRIS data set were constructed using a qualitative
assessment process by one of us (TBM), a domain expert.
For both the 13- and 30-band subsamples, band selec-
tion concentrated on diagnostic features in the visible and
VNIR (0.45 to 1.0 um) and the SWIR (2.1 to 2.35 um).
Visible bands were selected to identify iron oxide min-
eralogy reflectance features, primarily hematite, but also
goethite and jarosite. A band near 0.86 wm was also
selected for both the 13- and 30-band subsamples to iden-
tify the ferric iron absorption feature of hematite. VNIR
bands were included to identify the reflectance of vege-
tation. A total of eight spectral bands between 0.46 and
1.05 um were selected for the 13-band subsample; 20
bands in the same range were selected for the 30-band
subsample. Bands selected from the SWIR portion of the
spectra focus on diagnostic features related to clay miner-
als, micas, and other hydroxyl-bearing minerals, and were
centered around the absorption feature at 2.2 um. Four
bands between 2.15 and 2.34 um were selected for the
13-band subsample. Nine bands in the same range were
selected for the 30-band case, sampled slightly different
than in the 13-band case to provide a more even distri-
bution of the bands across the region. A single band at
1.62 um was selected for both the 13- and 30-band sub-
samples to identify a hydroxyl-bearing reflectance feature
which was present in all the playa and wash classes. The
30-band selection included all the bands selected for the
13-band case, with the exception of the abovementioned
slight difference for two bands.

Other approaches to band selection that we tried
included uniform subsampling and PCA, but neither pro-
duced better results than the band selection by the domain
expert. In a different study, wavelets [62] also remained
unconvincing for the task. We note that non-linear meth-
ods such as non-linear PCA (NLPCA, e.g., [63-65]) may
do a better job in selecting the most informative bands
than linear PCA or wavelets. Non-linear methods that also
take into account the classification goal can be especially
useful in the case of supervised tasks and may compete
with the human expert.

4.3 Classification results

All of the MED, MLH, and MHD classification results
were evaluated in terms of overall accuracies and «-
statistics, as detailed in Section 4.4, and in terms of the
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largest number of spectral bands used, to determine which
variant of the respective algorithm produced the best
results within its category. The best variants were then
compared with the SAM and ANN classifications. Of the
various MED classification runs, the 194-band run, with
no maximum standard deviation specified as a distance
constraint, provided the best map. When a distance con-
straint was imposed, the resulting class maps contained
too few classified pixels for the map to be useful. Of the
four MLH runs, the 13-band run with no prior probabil-
ities had the highest accuracy. There was little difference
between the MLH runs with and without prior proba-
bilities, probably due to the relatively large number of
classes and the resultant small probability values. Figure 3
presents a comparison of the best class maps produced
by four of the classifiers for the highest applicable num-
ber of bands: The ANN and SAM 194-band maps, the
194-band MED map with 0 standard deviation as distance
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threshold, and the 30-band MLH map, computed with-
out prior probabilities. The 13- and 30-band MLH maps
were visually very similar in their tendencies of the mis-
classifications, in spite of the higher (albeit still quite low)
accuracy of the 13-band MLH map. The observations we
make based on the 30-band MLH classification in Figure 3
are generally valid for the 13-band MLH map too. The best
MHD classification produced the least interesting differ-
ences with any of the others; therefore, it was not included
in Figure 3, for space considerations. It is easy to see by
visual inspection that there are obvious differences among
these class maps. Comparison of the classification maps to
each other and to the color composite of the site (Figure 1)
reveals that the ANN and the MED produced much more
detailed class maps than the MLH, and that they are also
more detailed than the SAM map, although the differ-
ences with the SAM map are more subtle. One example is
the almost complete omission of class B (white, rhyolitic

lcvi-194-ann~2

fov =104 med P

levi=30-mlh

Figure 3 Comparison of classification maps obtained with four of the classifiers. Clockwise from top left: ANN class map from 194-band data,
MED map from 194-band data, MLH map from 30-band data, and SAM map from 194-band data. The class labels are resolved in Table 1, and
spectral statistics are shown in Figures 4 and 5, for the ANN and MLH cases. The label ‘bg’ stands for unclassified pixels (background color). The ANN
and SAM class maps contain a considerable number of unclassified pixels, while the other class maps do not.
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outcrop) in the SAM map, another is the poor delineation
of the Shingle Pass Tuff unit (class G), as class F. ANN and
MED are, in addition, very similar to one another, which is
a strong support for these maps to be more accurate than
MLH. Detailed field knowledge [33] as well as previous
analyses of this scene by various authors [15,32,33,66,67]
also corroborate these observations.

One important point is that the ANN and SAM maps
contain unclassified pixels. In contrast, the other clas-
sifiers assigned a class label to all pixels in the cases
shown. Unclassified pixels in coherent patches may indi-
cate a potential new class. Along the borders of two cover
types, it may suggest that those two classes were not rep-
resented to the full extent by the training samples. This
can be determined by examination of the spectra at such
unclassified locations. Although it looks esthetically more
pleasing, the MED map is not more accurate than the
ANN map, as shown later, and does not leave spectral
units to be discovered.

Large areas are dominated by the L class in the MLH
map where the MED and ANN classifications display
considerable variability in accordance with the color site
composite. Class G also seems unreasonably extensive for
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the cover type, Shingle Pass Tuff, which occurs along The
Wall, a NW-SE trending scarp that represents the remain-
ing trace of the Lunar Lake caldera [36]. This scarp spans
across the label G in Figure 1 and is more accurately traced
by the ANN map. F (young basalt) is another class over-
estimated by the MLH. Several classes are almost entirely
missing from the MLH map. Of Q, R, S, and T, only the
rectangular training areas are classified. Class N appears
at a few miniscule spots and O overwhelms the wash area
where both the ANN and MED classifiers predicted N.
As seen from Figure 2, which displays the mean training
spectrum for each spectral type, the Q, R, S, and T classes
have very fine distinctions among themselves. The sub-
tle differences mainly occur between the 0.9 to 1.2, 1.4 to
1.6, and 1.95 to 2.2 pm windows, which may remain less
resolved with the 13- and 30-band selections than with
the full (194-band) resolution, as seen in Figures 4 and 5.
However, we point out here that the 30-band and even the
13-band cases of MED and ANN resolved more classes
than either of the MLH cases, including clear distinction
among the classes Q, R, S, and T as well as mapping N
and O more similarly to that of the 194-band cases. Class
], which is abundant in the lower left corner of the ANN
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MEAN VECTORS of TRAINING SETS and CLASSES, ANN
Lunar Crater Volcanic Field, AVIRIS '94 image

Figure 4 Mean spectra of training samples and mean of the pixels classified by the SOM-hybrid ANN. The mean spectra of the training
samples (solid lines) for each class and the mean of the pixels classified by the SOM-hybrid ANN into the respective classes (dashed lines), using the
standard deviation of the training samples. The mean of the predicted classes is well within
this standard deviation for almost all classes. For many - such as the clay-rich series on the right - the training and class means are virtually
indistinguishable (and therefore the dashed line of the class mean may not be easy to see), indicating a good match between the known training
representatives and the predicted members of the classes. The bare line segments centered at 1.4 and 1.9 um indicate data fallout regions in the
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MEAN VECTORS of TRAINING SETS and CLASSES, MLH
Lunar Crater Volcanic Field, AVIRIS 94 image
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Figure 5 Mean spectra of training samples and mean of the pixels classified by the MLH classifier. The mean spectra of the training
samples (solid lines) for each class, and the mean of the pixels classified by the MLH classifier into the respective classes (dashed lines), using the
30-band subsampled image cube. The vertical bars show the 1 standard deviation of the training samples. The mean of the predicted classes
departs considerably from the mean of the training samples for a number of classes on the left, indicating a poor match between the known
training representatives and the predicted members of the classes. In contrast, the match is very good for the classes on the right: the training
and class means are virtually indistinguishable (and therefore the dashed line of the class mean may not be easy to see). This, however, does
not mean excellent classification for all classes here, because a number of them have barely more than the training pixels classified into them.

and MED maps is also missing. Further visual comparison
of these class maps is left to the reader.

For convenience of visual comparison with the class
maps, we also show here a ground truth image (Figure 6)
that will be described, and referred to later, in Section 4.4.

The spectral plots in Figures 4 and 5 show training and
class statistics, for the 194-band ANN and for the 30-
band MLH classification, respectively. The averages of the
training spectra (solid lines) are overlain with the aver-
ages of the predicted classes (dashed lines). Large devia-
tions of the means, especially when the general shape of
the class mean shows a different characteristics, indicate
poor pattern recognition. Class G is an example of this
in Figure 5. One standard deviation of the training data
is also plotted (vertical bars) for each class to show the
spread of the training set. The training sets of the various
classes are inherently different in their ‘tightness’ because
some materials such as the cinder cones (class A) may be
represented by a more broadly varying spectral set than
others (e.g., the playa and wash units). These and addi-
tional statistics (for example, overlaying also the training
and class envelopes), summarized in similar plots, provide
a quick and easy semi-quantitative partial assessment of

Figure 6 The ground truth image. Containing at least 100 test
pixels for each of the 23 classes, with the exception of those classes
that consisted of less than 100 samples. A total of 4,332 test pixels
were collected, using stratified random sampling.
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classification accuracies. It can alert the analyst to poor
performance without having to do a full «-statistic. More
importantly, if the number of test samples used in confu-
sion matrices is small, the «-statistic may not reflect the
effect of many misclassified pixels (commission errors).
In contrast, in plots like Figures 4 and 5, the statistics
include all pixels classified into any class. We note, how-
ever, that a tight match of the training and class means
does not necessarily mean excellent classification, because
this representation does not include omission errors. For
example, in the right panel of Figure 5, all classes exhibit
very precise match of the means, however, the statistics
for a number of those classes (notably Q, R, S, T) includes
barely more than the training samples. This can be seen
from the class map in Figure 3 as well. In contrast, the
ANN classification has many pixels in all of these, as well
as other, classes and still exhibits a precise match between
training and class means. In this case (and similarly for
the MED), one can be more confident in the overall high
quality of the classification.

Some insight is provided into the generalization capa-
bilities of the MLH classifier in comparison to ANN and
MED (Figure 7). We show three examples of pattern mis-
match between the MLH prediction and the true class,
chosen from many similar cases observed. The top plots
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in each panel show how the sample pattern (thick line) fits
into the envelope of the training samples of the class into
which both ANN and MED classified them - apparently
correctly. The bottom plot shows how the same sample
fits with the envelope of the class into which MLH mis-
classified the pattern. The patterns in each case are not
simply misclassified by some small difference, but they
follow poorly the general shape of the class predicted by
MLH.

In the next section, rigorous accuracy evaluation is
given, through confusion matrices and « -statistics, for the
best classifications in each category, including the ones
in Figure 3. While we are aware of potential uncertain-
ties of the «-statistic, as well as alternative methods of
accuracy comparisons (e.g., [68-71]), we provide the «-
statistic (in addition to confusion matrices and simple
overall accuracy) because of its current use in common
remote sensing applications.

4.4 Assessment of classification accuracies

The evaluation of classification accuracies followed that
outlined in several standard texts on the subject (e.g.,
[72-75]). Statistical estimation of classification accuracy
has been a long studied and established subject that has a
vast literature. However, most theoretical considerations
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Figure 7 Typical misclassifications. Examples of typical misclassifications by the MLH classifier, from left to right, for a class J, a class Q, and
another class J sample. In each panel, the top plots show how the correctly classified sample pattern (thick line) fits into the envelope of the training
samples (thin dotted lines) of the corresponding class. The bottom plot shows how the same sample fits with the envelope of the class into which
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for sample sizes and other factors for the assessment of
map accuracy were developed and verified on low-to-
moderate dimensionality data (e.g., Landsat TM, MSS,
SPOT HRV) and allowing relatively large errors. With
hyperspectral data, the map accuracy is expected to
increase; therefore, the sample size required for rigorous
assessment of the accuracy within a meaningful error limit
and confidence level may become prohibitively large. The
works cited above, and others in the literature, offer rec-
ommendations for accuracy assessments. According to
the formula derived from binomial distribution [72], the
number of test samples needed for map accuracy assess-
ment is ntest = x> x p x (1 — p) / E%, where E is
the allowed maximum error in the accuracy assessment, x
defines the confidence level (confidence level correspond-
ing to x ‘sigma’), and p is the desired map accuracy. As
an example, for assessment of the classification at the 95%
confidence level within 4% error, this requires at least
2,700 test samples for the 23 classes in this study.

Table 3 Classification accuracies for the ANN classifications
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Computation of test sample size based on binomial for-
mulation has been criticized as inadequate for assessment
of the confusion among a large number (more than a
dozen) of classes and for a large number of image pixels
(e.g., [75]). The various studies seem to agree, however, in
their conclusion that in such cases (as is also our present
study), a minimum of 75 to 100 test pixels per class are
necessary for a statistically significant accuracy assess-
ment. The literature also strongly recommends stratified
random sampling for identifying the test samples. This is
especially important for our study as the LCVF image con-
tains a number of very small but geologically interesting
classes. (The rhyolitic outcrop, class B, or the Shingle Pass
Tuff unit, class G, are good examples.)

A ground truth image that meets these requirements
was painstakingly constructed and used for accuracy
assessment in this investigation. It contains at least 100
test pixels for each class, altogether 4,332 samples (indi-
vidually verified by one of us (WHF) with extensive field

194-band 30-band 13-band
User Producer User Producer User Producer

Class Accuracy Accuracy Accuracy
A 98.36 96.45 97.69 95.48 98.23 89.35
B 9533 71.50 67.95 53.00 88.29 49.00
@ 95.05 86.50 79.65 90.00 77.78 87.50
D 9249 93.81 81.63 95.24 81.67 9333
E 93.88 87.62 92.68 90.48 94.82 87.14
F 4048 85.00 41.98 85.00 39.00 97.50
G 100.00 64.74 87.72 57.80 100.00 64.16
H 96.92 100.00 97.44 69.09 95.24 90.91
| 50.81 63.00 79.05 83.00 48.08 75.00
J 100.00 96.00 99.04 8240 100.00 94.40
K 93.25 94.00 97.11 67.20 95.24 64.00
L 97.66 97.66 8546 90.65 94.81 93.93
M 91.67 82.50 84.21 56.00 93.20 48.00
N 88.32 9833 70.37 19.00 5833 30.33
O 94.90 96.13 62.68 86.13 80.86 66.77
P 97.25 82.67 77.52 66.67 70.03 92.67
Q 98.60 96.36 95.67 90.45 97.20 94.55
R 8846 92.00 9545 84.00 100.00 78.00
S 90.57 80.00 89.09 81.67 7867 9833
T 90.91 9231 92.65 96.92 91.80 86.15
U 7778 73.50 73.50 86.00 75.86 66.00
\% 100.00 62.00 43.21 70.00 23.27 74.00
W 94.36 92.00 85.29 72.50 79.49 77.50

Accuracy (%) = 88.71 Accuracy (%) = 75.02 Accuracy (%) = 76.39
Kk =08811 k =0.7380 Kk =0.7522
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knowledge of the test area). Exceptions are only those
classes that consist of less than 100 pixels. The ground
truth image was created in the ENVI software by first
selecting regions of interest (ROIs) that represented the
best examples of the classes, in order to achieve a strat-
ification for sampling. Application of stratified random
sampling is non-trivial because it is hard to know in
advance where all the classes are. For that purpose, a mask
of the cover types was created from the ANN and MED
classifications to provide the above ROIs, and test pixels
were randomly selected from each of these class ROIs.
The randomly picked pixels were then examined and were
selected to be used in the ground truth image only if their
reflectance spectra matched what was expected for those
surface cover classes and if the locations of the pixels
accorded with what was known for the site from one of
the authors’ (WHF) knowledge of the field site. The spa-
tial distribution of the resulting test pixels is shown in
Figure 6.

Table 4 Classification accuracies for the MED classifications
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Tables 3,4,5,6,7 present summaries of user and pro-
ducer accuracies from the costumary confusion matrices
and «-statistics for each classification. These were com-
puted using the ENVI software. The overall accuracies are
summarized in Table 8. The numbers in Table 8 support
the visual and semi-quantitative evaluations that we made
above.

In Table 8, an increase in the difference of accuracy
with growing number of bands can be seen in favor of
the ANN, compared to the runner-up MED. While in
the 13-band and 30-band cases, only a 2% to 3% dif-
ference shows between the ANN and the MED; for the
194-band case, the difference is a more impressive ~7%.
The comparison with the SAM does not show this trend;
however, the SAM remains ~9.5% below the accuracy of
the ANN, for all cases. The increase in accuracy between
the 13- and 194-band versions of the individual classifiers
is greater than 12% for the ANN, less than 9% for the
MED, and greater than 12% for the SAM. This underlines

194-band 30-band 13-band
User Producer User Producer User Producer
Class Accuracy Accuracy Accuracy

A 98.39 9839 98.39 98.71 98.39 98.71
B 96.05 36.50 56.76 21.00 66.67 23.00
C 54.63 56.50 42.80 55.00 4137 51.50
D 91.44 96.67 92.69 96.67 90.67 97.14
E 88.20 67.62 86.55 7048 87.10 64.29
F 41.05 97.50 4045 90.00 4130 95.00
G 100.00 67.05 100.00 6532 100.00 65.32
H 98.14 95.91 97.42 85.91 98.48 88.64
I 3349 70.00 24.62 65.00 24.33 64.00
J 100.00 100.00 98.02 98.80 98.81 99.60
K 9722 84.00 99.06 84.00 97.98 77.60
L 93.69 97.20 9324 96.73 93.27 97.20
M 98.18 27.00 91.61 16.50 88.24 2250
N 97.66 83.33 30.11 9.33 61.88 33.00
O 88.86 95.16 60.10 7871 71.79 81.29
P 80.00 96.00 66.14 97.67 65.31 96.00
Q 99.07 96.82 97.69 95.91 96.76 95.00
R 100.00 94.00 100.00 92.00 93.33 84.00
S 81.94 9833 67.06 95.00 65.48 9167
T 4561 80.00 54.64 81.54 4821 83.08
u 43.21 78.00 43.73 68.00 33.89 51.00
Y 7143 70.00 47.83 66.00 43.06 62.00
W 95.40 83.00 96.05 73.00 94.70 71.50

Accuracy (%) = 82.04

k =0.8107

Accuracy (%) =72.85

« =0.7140

Accuracy (%) =73.29

k =0.7187
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Table 5 Classification accuracies for the SAM classifications
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194-band 30-band 13-band
User Producer User Producer User Producer

Class Accuracy Accuracy Accuracy
A 98.34 95.48 98.70 73.55 98.77 7742
B 96.05 36.50 54.05 20.00 55.26 21.00
C 54.63 56.00 3542 4250 38.14 45.00
D 91.44 96.67 91.44 96.67 91.86 96.67
E 88.20 67.62 89.16 7048 89.40 64.29
F 41.94 65.00 40.26 77.50 42.17 87.50
G 100.00 8.09 100.00 18.50 100.00 24.86
H 98.14 95.91 97.56 90.91 98.04 90.91
| 33.49 70.00 24.80 63.00 26.52 61.00
J 100.00 100.00 98.41 99.20 98.80 99.20
K 97.22 84.00 99.04 8240 97.51 7840
L 93.69 97.20 94.84 94.39 94.50 96.26
M 100.00 27.00 94.44 17.00 92.98 26.50
N 97.66 8333 5.51 233 12.16 6.00
O 88.86 95.16 49.24 62.90 49.24 62.90
P 80.00 96.00 72.84 95.67 70.05 94.33
Q 99.07 96.82 97.71 96.82 96.77 95.45
R 100.00 94.00 79.63 86.00 7843 80.00
S 81.94 9833 63.01 76.67 61.04 78.33
T 4561 80.00 53.54 81.54 48.21 83.08
U 4321 78.00 39.21 64.50 36.67 60.50
% 7143 70.00 41.94 78.00 40.79 62.00
W 95.40 83.00 93.46 71.50 94.70 71.50

Accuracy (%) =79.18 Accuracy (%) = 66.37 Accuracy (%) = 66.81
« =0.7808 k = 0.6466 k =0.6510

that for high-dimensional data the sophistication of the
classifier can make a significant difference. It also shows
that even for low-dimensional data the difference in per-
formance can be considerable (such as in the 13-band
case). Somewhat puzzling is the fact that the accuracy of
most of the classifiers is lower for the 30-band case than
for the 13-band selection. We have not investigated the
reason of this seeming contradiction, but we can specu-
late that certain combinations of the subselected bands
(such as in our 30-band case) may not add more infor-
mation while it increases the burden on the classifier
for the discrimination of classes. One previous work that
seems to support this thought is [62], where an inconclu-
sive trend of classification accuracies was observed as a
function of band selections made with increasing number
of highest-magnitude wavelet coefficients. Another, more
recent, work showed that selection of bands based on
intelligent understanding of the data structure combined

with taking the classification goals into account produces
better results and a consistent trend with the number of
bands [76].

We add for completeness that if we exclude the unclas-
sified pixels from the confusion matrices as ‘neutral’ (nei-
ther wrong nor correct), the accuracy of the ANN and the
SAM classifiers are higher than shown in Table 8 (~92%
and ~82%, respectively), while the accuracies of the other
classifiers remain the same as those have no unclassi-
fied samples. While the statistic without the unclassified
pixels provides less than a complete picture of the classi-
fication quality, it is a valuable measure of the classifier’s
pattern matching capability and its sensitivity to uncer-
tainty. Table 9 lists the overall accuracies when calculated
without the unclassified pixels, i.e., the percentage of cor-
rectly classified test samples which were assigned a label
by the classifier. Table 9 also shows that the number of
unclassified test pixels is small (approximately 3.4%) for
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Table 6 Classification accuracies for the MLH classifications
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194-band 30-band 13-band
User Producer User Producer User Producer

Class Accuracy Accuracy Accuracy
96.81 97.74 96.87 99.68
B 96.97 16.00 87.23 61.50
C 58.08 84.50 80.44 90.50
D 62.86 94.29 87.34 95.24
E 3552 98.10 41.50 100.00
F 54.00 67.50 10.93 100.00
G 14.87 83.82 48.89 50.87
H 100.00 591 7751 73.64
I 82.08 87.00 36.72 94.00
J 100.00 1.20 0.00 0.00
K 80.00 8.00 98.55 54.40
L 3247 99.53 66.88 97.20
M 54.55 6.00 100.00 2.50
N 9273 17.00 100.00 6.33
o) 56.20 65.81 4931 69.03
P 9542 76.33 7132 90.33
Q 100.00 1227 100.00 17.73
R 100.00 68.00 100.00 32.00
S 96.88 51.67 9333 46.67
T 100.00 30.77 85.71 92.31
u 93.24 34.50 80.39 82.00
\ 5147 70.00 100.00 26.00
W 89.66 13.00 65.70 79.50

Accuracy (%) = N/A Accuracy (%) =49.72 Accuracy (%) = 63.23
kK =N/A k=04713 k =0.6136

the 194-band cases, and it remains below 10% for all cases.
It is interesting though that for both ANN and SAM the
30-band cases have more unclassified pixels than either
the 194- or the 13-band cases and that the exclusion of
the unclassified test pixels from the accuracy calculation
results in a reversal of the accuracy ranking between the
13- and the 30-band maps.

Customarily, classification accuracies are assessed for
several cross-validation folds, and their average and
standard deviation are reported. Here, we show the
results from single runs, for largely historical reasons.
We performed these experiments years ago when com-
puting power was too limited to do lengthy ANN train-
ing (including the training of an SOM) with 23 classes
of nearly 200-dimensional data, multiple times. How-
ever, one of us (EM) recently conducted cross-validation
runs with the same hybrid ANN and data as part of a
hyperspectral data compression study (WHISPERS [77]),
applying a different random cut of the labeled data via

stratified random sampling, using the same number of
training samples in each fold as shown in Table 1 of this
paper, and the rest for test samples. The average accu-
racy remained very close to that reported here (89.8% for
overall (weighted), which is what we report in this paper),
and 93.10% for unweighted), with less than 1% variation
(STD = 0.46%) across the folds. Since the ANN classi-
fier involves the most random elements of all methods
used in this work, the variance would be even smaller
for the other - deterministic - classifiers across the same
cross-validation folds. Thus, re-doing all the conventional
classifications for these cross-validation folds as well as all
Kk -tables would not produce additional value for this paper,
while it would be a difficult and time-consuming exercise.

5 Conclusions

The main thrust of this paper was to compare the perfor-
mances of classifiers for hyperspectral data under realistic
circumstances, for a large number of classes. We used real
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Table 7 Classification accuracies for the MHD classifications

194-band 30-band 13-band
User Producer User Producer User Producer

Class Accuracy Accuracy Accuracy
A 93.31 90.00 97.75 98.06
B 75.00 60.00 100.00 18.50
@ 5849 46.50 68.36 87.50
D 75.74 84.76 8347 93.81
E 99.44 84.76 39.11 100.00
F 35.87 82.50 10.03 100.00
G 100.00 50.29 36.75 24.86
H 7291 83.18 78.80 77.73
| 63.50 87.00 23.54 93.00
J 97.50 93.60 100.00 0.40
K 80.81 64.00 93.94 49.60
L 74.09 85.51 71.08 95.33
M 40.38 10.50 00.00 00.00
N 85.25 52.00 100.00 5.00
@) 57.49 60.65 4841 59.03
P 8243 8133 78.19 83.67
Q 87.76 94.55 100.00 11.82
R 8246 94.00 100.00 24.00
S 89.06 95.00 100.00 3333
T 89.71 93.85 94.83 84.62
U 4848 95.50 81.60 66.50
vV 2553 72.00 100.00 12.00
W 5153 59.00 84.92 76.00

Accuracy (%) = N/A Accuracy (%) =72.53 Accuracy (%) = 59.34
Kk =N/A Kk =0.7108 Kk =0.5726

Table 8 Summary of overall classification accuracies and « values for test data

194-band 30-band 13-band
% K % K % K
ANN 88.71 0.88 75.02 0.74 76.36 0.75
MED 82.04 0.81 72.85 0.71 73.29 0.72
SAM 79.18 0.78 66.37 0.65 66.81 0.65
MLH 49.72 047 63.23 0.61
MHD 7253 0.71 59.34 0.57

Table 9 Summary of overall classification accuracies for test data, computed with exclusion of unclassified samples

194-band 30-band 13-band
% #uc % #uc % #uc
ANN 91.89 150 82.13 375 81.24 259
MED 82.04 0 72.85 0 73.29 0
SAM 81.92 145 69.34 186 69.30 156
MLH 49.72 0 63.23 0
MHD 72.53 0 59.34 0

Numbers under #uc indicate the number of unclassified test samples (out of 4,332 test samples) for each case.
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AVIRIS data with real noise. The SOM-hybrid ANN clas-
sifier produced the most accurate map from the 194-band
hyperspectral data with 23 cover classes (89%), followed
by the minimum Euclidean distance algorithm (82%) and
the spectral angle mapper (79%). The two covariance-
based methods, maximum likelihood and Mahalonobis
distance, could not be applied to the full spectral reso-
lution, which resulted in the best case map accuracies of
63% and 73% for these classifiers, respectively, on reduced
dimensionality versions of the data.

We plan to extend the range of comparative classifi-
cation algorithms in subsequent work to more advanced
classifiers such as SVMs, tree-based methods, boosting,
and relatively new ones that have been gaining recogni-
tion. Some candidates are constrained energy minimiza-
tion (CEM) [78], ‘Tetracorder’ [79], and the n-dimensional
probability density function (n-dPDF) [80]. Further inter-
esting comparisons would be with Bayesian classifiers
(e.g., [81]), rule-based Al classifiers (e.g., [82]), or some of
those (variants of Bayesian, neural net, minimum distance
classifiers) in the data mining environment of ADaM [83].
However, not all of these (and other emerging) algorithms
are commonly available or straighforward to use; thus, a
comparative study would need more extensive collabora-
tion with their authors.

Equipped with the capability to produce a good bench-
mark classification with full spectral resolution, one can
do systematic dimensionality reduction and rigorously
assess the effect. We note that dimensionality reduc-
tion is most frequently performed by PCA or wavelets,
or by selection of important bands by domain experts.
We found undesirable loss of class distinction with all
of these approaches ([24,62] and as discussed in this
paper). Non-linear dimensionality reduction approaches,
especially with Al, neural network techniques such as
by [20,63-65,76], retain more of the relevant informa-
tion and can improve classification accuracy at the same
time.

A systematic investigation of the classifiers’ noise sen-
sitivity is a desirable subject of a future study. While one
classifier may outperform others in a low-noise situation,
another could prove more robust under noisy circum-
stances even if the classification accuracy is lower. These
and other properties of classifiers should make up a more
complete picture of the suitability of different methods for
different purposes.

ANN classifiers, including the above SOM-hybrid clas-
sifier, are directly applicable to fused disparate data (such
as stacked spectral, elevation, or geophysical measure-
ments), which could improve classification, but process-
ing such data with traditional methods is admittedly
a problem because estimation of the relative contribu-
tions of the different components is difficult [84]. Neural
approaches, in contrast, can derive those contribution
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weightings during supervised learning from labeled data
samples.

Economy of computation is another important aspect
by which methods could and should be compared. We
did not do it here because ANN learning is an inher-
ently massively parallel procedure which, when run on
sequential computers, is very slow. A training session for
this LCVF image, including the concurrent monitoring of
the training, can take hours on low-end Sun workstations
(depending on the CPU speed of the given machine). Real,
large-scale applications will need to invest in appropri-
ate massively parallel hardware in order to utilize the full
power of ANNSs.

Finally, we want to suggest that accuracy assessment will
need to be dealt with differently for hyperspectral classifi-
cations than for lower-dimensionality data. Hyperspectral
dimensionality poses a difficult challenge for rigorous per-
formance evaluations because of the unavailability of the
number of test samples required by theories. One possibil-
ity to overcome this, for the purpose of comparing various
classifiers, is to use synthetic hyperspectral imagery where
each pixel is labeled. This is becoming a realistic choice
through rigorous simulation work [85,86]. We want to
stress, however, the need for research that can yield new,
innovative measures of performance for accuracy evalua-
tion of class maps obtained from real data, for which it is
not possible to obtain the requisite number of test sam-
ples. Such new measures will have to produce the same
accuracies as the « -statistic or other widely accepted mea-
sures for test data that meets the theoretical sampling
requirements (such as the test data we constructed for
this study), while relying on less test samples and perhaps
using more of the internal characteristics of the data.
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