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Abstract. Leading-edge telescopes such as the Atacama Large Millimeter and sub-millimeter
Array (ALMA), and near-future ones, are capable of imaging the same sky area at hundreds-to-
thousands of frequencies with both high spectral and spatial resolution. This provides unprece-
dented opportunities for discovery about the spatial, kinematical and compositional structure
of sources such as molecular clouds or protoplanetary disks, and more. However, in addition to
enormous volume, the data also exhibit unprecedented complexity, mandating new approaches
for extracting and summarizing relevant information. Traditional techniques such as examining
images at selected frequencies become intractable while tools that integrate data across frequen-
cies or pixels (like moment maps) can no longer fully exploit and visualize the rich information.
We present a neural map-based machine learning approach that can handle all spectral channels
simultaneously, utilizing the full depth of these data for discovery and visualization of spectrally
homogeneous spatial regions (spectral clusters) that characterize distinct kinematic behaviors.
We demonstrate the effectiveness on an ALMA image cube of the protoplanetary disk HD142527.
The tools we collectively name “NeuroScope” are efficient for “Big Data” due to intelligent data
summarization that results in significant sparsity and noise reduction. We also demonstrate a
new approach to automate our clustering for fast distillation of large data cubes.
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1. Deep data and challenges
The currently most advanced radio telescope, the Atacama Large Millimeter and sub-

millimeter Array (ALMA), and next-generation telescopes produce data not only with
unprecedented volume but also with unprecedented complexity. ALMA opened an era
where hyperspectral data cubes are becoming the norm in radio and millimeter observa-
tions. Spatially resolved images of a source are simultaneously recorded in many different
molecular lines, each line resolved by dozens to hundreds of spectral (velocity) channels.
This offers a magnifying lens for our understanding of the physical conditions (tempera-
ture, density, and kinematics) of atomic and molecular gas, as well as of the distribution
of solid particles, in objects such as protoplanetary disks, molecular clouds, interstellar
medium, nearby galaxies, and more. Current data analysis approaches, however, are un-
derutilizing this rich information. In particular, the “depth” of the data — the detailed
spectral information — often forces either prior dimensionality reduction or integration
across spectral channels causing loss of potentially critical detail for discovery.

Traditionally, two approaches have been used for the extraction of physical (velocity)
structure from 3-D (3-dimensional) data cubes generated by radio and millimeter tele-
scopes like ALMA. One is to visually inspect simultaneously displayed images of each
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Figure 1. From (Boehler et al. 2016). Left: Traditional moment maps generated separately
from two molecular lines, 13CO J=3-2 at left, and C18O J=3-2 at right, from high-resolution
observations of the protoplanetary disk HD142527. The Moment 0 map shows the intensity of
the line emission, expressed in units of brightness temperature which corresponds to the gas
kinetic temperature if the line emission is optically thick, as in the case of HD142527. The
moment 1 map shows the velocity of the emitting gas relative to the observer. The dot-dashed
line indicates the rotation axis of the disk, and the dashed line shows the apparent major axis
of the disk. The moment 2 map shows the width of the line emission. Right: Position-Velocity
diagram for the 13CO J=3-2 line emission measured toward HD142527. The x-axis shows the
offset with respect to the center of the disk measured along the major axis of the disk. The
y-axis shows the velocity along the line of sight of the emitting gas relative to the observer. The
white dotted curves indicate the expected velocity for gas rotating at Keplerian velocity around
the central star. The vertical line shows the systemic velocity, i.e., the velocity along the line of
sight of the star+disk system relative to the observer.

spectral channel (a “channel map”) within a spectral line. A second technique is to inte-
grate the data along one dimension of a single line to calculate the so-called “intensity
moments”, at all pixel locations. The first three intensity moments correspond to the
spectrally integrated intensity (moment 0), the velocity corresponding to the center of
the line (moment 1), and the width of the line emission assumed to have Gaussian shape
(moment 2). The moment 0 image maps the spatial distribution of the emitting gas, the
moment 1 and moment 2 images, respectively, inform about the motion of the gas on
spatial scales larger and smaller than the spatial resolution of the observations. Alterna-
tively, 3-D data cubes can be integrated along one spatial dimension. This leads to the
so-called “position-velocity” diagrams, which are sensitive to kinematical properties of
the gas such as inflows or outflows.

Figure 1, left, shows the moment maps of the 13CO J=3-2 and C18O J=3-2 line emission
and the position-velocity diagram for the 13CO line of the protoplanetary disk HD142527.
This object is particularly interesting because the bright red and yellow ring in the
moment 0 maps is thought to have been formed by a newborn planetary system inside the
dark blue center of about 100 AU diameter (Isella et al. 2013). In addition, the moment
1 and velocity-position maps reveal that the general motion of the gas is consistent
with Keplerian rotation around a star twice as massive as the Sun. The moment 2 map
indicates a decrease in line width with the distance from the star. This is due to a decrease
in both the gas velocity and temperature with radial distance.
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Figure 2. Sample spectral signatures (means of small areas) from an ALMA data cube at two
different spatial locations of the protoplanetary disk HD142527. The cube comprises 100 channels
from each of two molecular lines (a total of 200 channels) stacked at the red dotted line in the
order of increasing frequency. The green vertical lines show the channel of the rest frequency
for each of the molecular species. The shift of the peaks relative to the rest frequency (velocity
difference or Doppler shift, between observer and source) is different in the two samples. The
radiation intensity (height of the peaks), as well as the relative difference in the peak intensities
between the two species is also different at the two locations. Notably, while the 13CO line at
left has a simple shape, the 13CO line of about the same width at right has a double peak.
These variations exemplify some of the complexity of the structure of the gas across the disk.
Data from (Boehler et al. 2016). The 200-element stacked spectra from individual pixels are the
200-D input vectors to our clusterings, straight after the standard ALMA reduction.

For precursors of ALMA, moment maps and position-velocity diagrams were suitable
to visualize the main characteristics of the molecular line emission, at least for simple
objects such as protoplanetary disks. However, moment maps do not scale up well to the
much more complex ALMA cubes. In particular, they might lead to erroneous conclusions
if the gas kinematics along a line of sight cannot be represented as a Gaussian line, as in
the case of gas moving at different velocities. At the same time, with potentially dozens
of spectral lines consisting of several thousand channels, visual analysis of channel maps
becomes infeasible, especially across multiple spectral lines.

Figure 2 shows sample spectra from a high-resolution ALMA data cube of HD142527
at two different spatial locations and in two molecular lines, C18O and 13CO, each line
comprising 100 channels concatenated along the spectral axis. The lines have an approxi-
mate width of 6 MHz and a spectral resolution of about 65 KHz per channel (0.11 km/sec
velocity resolution). Within each line, the apparent shift of the peaks relative to the rest
frequency at which the observed source emits radiation at rest in the observer’s reference
frame, indicates that the relative velocity of the gas varies across spatial locations due
to the disk rotation. The structure of the line (width, height and number of peaks) can
vary by spatial location and by species. For example, while the 13CO line at left has a
simple Gaussian shape, the one at right shows a main peak around channel 152 and a
second faint peak around channel 165, which would be missed by fitting a Gaussian. The
stacked full spectral signatures capture the complex variations of the combined composi-
tional and kinematic properties which may not be expressed by reduced-dimensionality
data or by single molecular lines. Our objective is to extract and map these variations
within a spatially resolved source, and to produce results efficiently for on-board analyses
or for discovery in large archives.

Recent methods to improve on the moment analysis include Clumpfind (Williams et al.
1994), Cloudprops (Rosolowsky & Leroy 2006), dendogram object identification (Houla-
han & Scalo 1992; Rosolowsky et al. 2008), and Discrete Persistent Structures Extractor
(DisPerSE) by Sousbie (2013).

Some rely on fitting Gaussian distributions (e.g., Clumpfind), limiting discovery to
simple structures. Some work well for finding particular structures (e.g., filaments in the
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case of DisPerSE) but do not generalize to different ones. Others (as the dendrogram
analysis) assume uniform and well-characterized noise.

2. NeuroScope for structure discovery
We demonstrate a clustering / pattern recognition approach with NeuroScope, a set of

neural machine learning tools, for identification of spatial regions that exhibit distinctly
coherent kinematic and compositional behavior based on the full spectral signatures of
(possibly) combined emission lines. This approach is insensitive to most limitations dis-
cussed above therefore more robust and flexible for analysis of ALMA data. The emerging
details indicate fuller exploitation of the rich ALMA data than by the traditional meth-
ods. In this study the input vectors to all analyses are the 200-D stacked spectra as in
Figure 2. The data have undergone the standard ALMA data reduction to correct for
atmospheric and instrumental effects (Boehler et al. 2016) but no other preprocessing.

Cluster discovery with NeuroScope tools involves learning the n-D data manifold with
advanced variants of Self-Organizing Maps (SOMs), and a recent similarity measure that
facilitates interpretation of the SOM’s knowledge based on connectivity properties of the
data manifold. This allows deeper exploitation of relevant details than customary uses
of SOMs and common similarity metrics, resulting in sensitive distinction of clusters.

The SOM (Kohonen 1988) is an unsupervised neural network which mimics the in-
formation summarization and organization of cortical areas in natural brains. The SOM
consists of a rigid (usually 2-D) lattice of artificial neurons each of which is connected
to an input layer of n neurons by an n-D weight vector, also called a prototype vector.
During SOM learning the prototypes are moved in the data space to reflect the distri-
bution (the pdf) of the data. At the same time they are ordered on the SOM lattice
according to their similarity relations in data space. This topology-preserving mapping
expresses an intelligent summarization of both the statistics (the n-D density distribu-
tion) and the topology of the data manifold. It facilitates discovery of clusters (groups
of similar patterns, e.g., similar spectra) from a learned SOM by evaluating the similar-
ity relationships of prototypes neighboring in the SOM grid, and segmenting the SOM
into groups of similar prototypes (data points mapped to a prototype cluster make up a
data cluster). This can be very challenging for data with complex structure, and success
depends on the quality of manifold learning and on the expressiveness and sensitivity of
the representation of prototype relationships.

For learning the data manifold we use the Conscience SOM (CSOM) by DeSieno (1988)
which produces more faithful pdf matching than the Kohonen SOM (KSOM) by inducing
equiprobabilistic (maximum entropy) mapping. For high-dimensional input data this was
verified by Merényi et al. (2007). The CSOM introduces a bias to achieve equal winning
probabilities across all neural units. Briefly, the prototype (weight) vector wi of neural
unit i in the SOM lattice A of NP neural units, is updated iteratively at every time
step t as follows. First, a winner neuron (or best matching unit, BMU) i is selected for
a random input vector x ∈ Rn such that with bias bj for neuron j

‖ wi − x ‖2 −bi �‖ wj − x ‖2 −bj ,∀j ∈ A. (2.1)

The bias bj is computed from the winning frequency pj , of neural unit j, as

bj = γ(t) × ((NP × pj ) − 1), (2.2)

where γ is a parameter. Second, all prototypes wj are updated:

wj (t + 1) = wj (t) + α(t)hi,j (t)(x − wj (t)) (2.3)

Here, hi,j (t) is a neighborhood function, α(t) is the learning rate. For the CSOM hi,j (t)
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can be fixed and of small size (e.g., the immediate SOM neighbors) instead of a large
neighborhood (e.g., Gaussian) that has to decrease with time in a KSOM. This provides
significant computational savings. With γ = 0 and large time-decreasing hi,j (t) the above
algorithm reverts to KSOM. The learning (as SOM learning in general) does not require
a pre-specified number of clusters, and needs very little parameter tuning. For successful
and correct identification of clusters from a learned SOM, the correctness of the manifold
learning and the quality of cluster extraction are critical. Many of these issues have
been addressed by Merényi et al. (2009) and Tasdemir & Merényi (2011), and references
therein. These include measures of topology preservation, to separate serious topology
violations from those that are inconsequential for cluster detection and can be ignored.

To delineate complex cluster structure we use the CONN measure by Tasdemir &
Merényi (2009) which expresses connectivity (hence the name CONN), rather than data
space distances, of the prototypes. The pair wise connectivities — the CONN graph — can
be visualized over the SOM lattice regardless of the data dimensionality, providing a view
of the salient properties of the manifold structure as in Figure 3, top of left panel for the
protoplanetary disk HD142527. On the lattice, black dots mark the positions of neurons.
A cell with no dot has no data vectors mapped to it (has an empty prototype). The
thickness of the line segments between two prototypes signifies the absolute strength of
their connection. The connection strength, CONN (i, j), between prototypes wi and wj ,
is measured as the number of data vectors that fall closest to wi or wj and second closest
to the other one, after the SOM has converged. Colors indicate the relative importance
of the connections to other prototypes. Red is most-connected, followed by blue, green,
yellow, and grey shades (not present for this data). The combination of global connection
strengths and their local ranking provides rich information about where the manifold is
strongly woven and where it is disconnected or thin. This representation and visualization
is done automatically and it is the input to clustering the SOM prototypes.

Cluster boundaries are found between regions that are strongly connected inside and
have thin or no connections to other regions. Default parameters for filtering unimportant
connections (inconsequential for clustering), and for a non-linear binning of the connes-
tion strengths to aid the human eye, are automatically computed from CONN statistics
and applied. Details on this and a cluster extraction procedure are given in Tasdemir &
Merényi (2009) and Merényi et al. (2009). The clusters of similar prototypes extracted
interactively from the CONN graph representation are shown in Figure 3, bottom of left
panel, while the corresponding clusters of pixels in the disk of HD142527 are at top right.

3. Comparison with the state-of-the-art
Figure 3, top of right panel, shows the cluster structure found in the protoplanetary

disk HD142527, using the combined (stacked) molecular lines C18O and 13CO (as in
Figure 2) as input data vectors. The first thing to notice is that the cluster map —
similarly to the moment 1 map — reveals regions of the disk moving at similar velocities.
Since the gas kinematics are dominated by rotation around the star, the cluster map is
roughly symmetric with respect to the axis of rotation of the disk (the dot-dashed line
on the moment 1 image). Looking more carefully, clusters at two symmetric positions
with respect to the minor (NW-SE) axis show an asymmetry in intensities, in agreement
with the moment 0 map. See, e.g., those indicated by the arrows (labeled W and N, two
different brown shades in the map) at the top of the right panel of Figure 3. The cluster
means additionally reveal that the relative intensity change for the two gas species is also
different at the two symmetric locations.

The neural map-based clustering is superior to the moments visualization in identifying
deviations from Keplerian rotation. For example, the bottom right panel in Figure 3 shows
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Figure 3. Left panel, top: SOM lattice of 20 x 20 neurons, with CONN graph representation
of the learned manifold structure of HD142527. Left panel, bottom: SOM lattice with clusters
of similar prototypes extracted interactively from the CONN graph representation. Each color
represents a different similarity group of prototypes. The colors are chosen for contrast and do
not represent relative similarities. The largest and also strongest-connected cluster (dark blue)
comprises the sky background. While visually overwhelming in the CONN graph at left, it does
not affect the extraction of smaller clusters with more subtle differences, by analysis of the
local relations. Right panel, top: Visualization of the spectral clusters — showing coherent
regions of distinct kinematic and compositional properties — in the disk of HD142527, where
each pixel is colored as its prototype in the SOM lattice (at left, bottom); and cluster signatures
indicating NW-SE asymmetry. Red and green lines are as in Figure 2. Right panel, bottom:
The magnified center region surrounded by the mean signatures of three interesting clusters.
Cluster u, and the tiny whisker-like clusters v and t flanking the arch-shaped clusters g (hot
pink, North of the center) and j (turquoise, South of the center), respectively, exhibit double or
widened peaks in the 13CO line. These can indicate deviation from the Keplerian motion.

clusters (u, and t) characterized by a double peak profile, or a widened peak (cluster v)
in the 13CO line. The main peak in cluster u (at channel 153) arises from gas moving at
2.2 km/sec relative to the star in the direction of the observer, and traces gas orbiting the
central star at Keplerian velocity. The second, minor peak (at channel 165) arises from
gas moving at 3.5 km/sec relative to the star in the direction of the observer, and might
arise from gas blown away by a stellar wind. Although low-intensity, the second peak
emerges cleanly in the average cluster signature with very small standard deviations.
Similarly for cluster t (the pair of small downward pointing whisker-like dark green
features marked by arrows at either sides of the arch-shaped turquoise cluster), where
the main and minor peaks (at channels 120 and 148, respectively) are more distinct and
have larger velocity difference (−1.43 km/sec vs 1.7 km/sec) than in cluster u. Here the
two velocities have opposite signs, which may be caused by two gas components moving

, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1743921317000175
Downloaded from https:/www.cambridge.org/core. ISTITUTO NAZIONALE DI ASTROFISCA, on 08 Jun 2017 at 06:36:53, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1743921317000175
https:/www.cambridge.org/core


Discovery from ALMA imagery 287

in opposite directions. While the moment 2 map indicates a widening of the line at the
location of clusters u and v, it does not provide information of the shape of the line.
Furthermore, the moment 2 fails to highlight the location of cluster t. This example
shows how NeuroScope clustering can enlarge the discovery space by fully exploiting the
transformational imaging capabilities provided by current telescopes.

There are important advantages of this clustering analysis compared to the traditional
moment visualization. First, the capability of combining multiple lines at once allows one
to identify correlation and anticorrelation between different gas tracers. Second, cluster-
ing analysis naturally combines signals from similar regions augmenting the capabilities
to see faint structures. Third, this — data-driven — technique does not assume priors for
the line emission and therefore delivers an unbiased interpretation of the observations.
SOM learning is also robust because the summarization of data by the prototypes re-
duces noise, and because the topological ordering of the prototypes facilitates the preser-
vation of subtle differences despite possibly small vector distances between spectra. A
brief discussion of some complementarities and differences with leading clump finder and
dendrogram methods are given in Merényi et al. (2016).

4. Automation approach to SOM segmentation
The first step of clustering, SOM learning, requires little tuning, and it is efficient for

large data sets. By intelligent summarization, it shrinks the data volume by magnitudes
while retaining the manifold characteristics relevant for cluster discovery and preserving
the spectral resolution in the prototypes. As an example, the protoplanetary disk in Fig-
ure 3 comprises approx. 56,000 pixels. These are characterized by 400 SOM prototypes,
a factor of 140 down-sizing. While SOMs are slow on sequential machines, parallel imple-
mentation (e.g., in Field Programmable Gate Arrays) eliminates this problem (Lachmair
et al. 2013). The second step, SOM segmentation, is currently more successful for complex
data structure when done interactively from expressive visualizations such as in Figure 3,
left. However, scalable processing requires automation. Graph segmentation algorithms
have been proposed for automated clustering of “Big Data”, but their use requires huge
computational resources since they process a graph with N vertices (representing data
points) and N 2 edges (representing some pairwise point similarity). To remedy this, we
apply these segmentation algorithms to a graph representing the SOM prototype struc-
ture (where approximately

√
N prototype vectors generate N edges), using the CONN

values as point similarities (edge weights). As we show below, and summarize in Figure
4, this combination significantly enhances the graph segmentation algorithms’ ability to
find relevant clusters in minimal computing time.

Graph segmentation overview. Graph segmentation aims to identify a subgraph struc-
ture such that each subgraph is densely connected within itself and sparsely connected
to other subgraphs. Decades of research in this area have resulted in many different
algorithms (see the review from Fortunato 2010). While we experimented with a num-
ber of leading algorithms, the Walktrap (Pons & Latapy 2005) and Infomap (Rosvall
& Bergstrom 2008) algorithms identified the most meaningful cluster structure of the
ALMA data relative to the interactive clustering in Figure 3. Both methods are freely
distributed in the igraph package (Csardi & Nepusz 2006) and require negligible run-
times (≈ 1 sec on an ordinary MacBook Pro for the SOM-based graphs). Importantly,
both require only one tuning parameter. For algorithm details we refer the reader to the
original papers cited above. A short overview is given in Merényi et al. (2016).

Positing the SOM as a graph is straightforward but a distinction must be made be-
tween the SOM output space, which is traditionally visualized on a two-dimensional
lattice, and the weighted graphs we derive as inputs to graph segmentation algorithms.
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Figure 4. Schematics of three approaches to graph segmentation for clustering the ALMA cube
of HD142527, and their results. The outputs in the last column are from the Walktrap algorithm,
the best-performing of the graph-cutting methods we tested, but the relative differences in
quality are representative of results from other algorithms as well. Top row: Using the graph
segmentation algorithm with the individual 200-D spectra as inputs and Euclidean distance
as similarity measure. No output was generated due to excessive resource demands. However,
we do not expect better results than those shown in the middle row since SOM prototypes (if
learned correctly) reflect the salient discriminative features of the data. Middle row: Using the
learned (200-D) SOM prototypes as input vectors and Euclidean distance for similarity measure.
Bottom row: Using SOM prototypes as input vectors and CONN similarity measure.

In both, vertices represent data prototype vectors but the latter is not a lattice; its
connectivity structure is dictated by the function we choose to represent similarities be-
tween prototypes. For comparison, we consider both the CONN values and the (inverse)
Euclidean distance between prototype vectors (IEDP) as similarity measures.

Graphs based on prototype representations of the data, as opposed to graphs based on
individual data points (in our case, the spectral signatures of the pixels of the HD142527
data cube), offer three benefits for automated segmentation algorithms. From a computa-
tional standpoint, it is intractable to compute and store the similarity measure between
all pixel pairs of a large data cube. For example, the relatively small HD142527 cube
requires on the order of 109 edge weights. Edge sparsity, if available, can lower this de-
mand somewhat but that typically requires some a priori knowledge or preprocessing of
the data.

Prototype-based learning schemes have the added benefit of noise reduction, boosting
the signal-to-noise ratio in their representation of the data distribution. Most importantly,
such schemes permit the introduction of new similarity measures (i.e., CONN) which are
unavailable in the data domain itself. Figure 4 summarizes the combined benefits of
using SOM prototypes and CONN similarity measure over traditional choices, for both
processing time and the quality of the segmentation.

Results. Figure 5 displays the clusterings by Walktrap (5a,5c) and Infomap (5b,5d)
applied to the SOM prototypes using their default parameter. We note first that all algo-
rithms we considered perform extremely poorly when inverse Euclidean distance (IEDP)
is used as a similarity between graph vertices. This is evident for the two algorithms
highlighted here when comparing 5c and 5d to Figure 3, where little more than the gen-
eral shape of the protoplanetary disk is identified. The CONN similarity measure helps
these algorithms discern clusterings (5a,5b) which are much more similar to Figure 3.

Visual comparison of the results in Figure 5 to those in Figure 3 favors the Walktrap
algorithm. Three different kinds of statistical assessments also support this conclusion:
a) the percentage of matching pixels; b)) cluster size distribution (via the Jensen-Shannon
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Figure 5. Automated SOM clusterings of the HD142527 data by the Walktrap (a, c) and
Infomap (b, d) algorithms using CONN values (a, b) and IEDP (b, d) as a similarity measure.

Figure 6. Top row: interactively produced cluster map from Figure 3, and mean spectra and
standard deviations (vertical bars) of two “radial” clusters, labeled S and T. Bottom row:
automatic cluster map by the Walktrap-CONN approach, and spectra of the two clusters, also
labeled S and T, that cover approximately the same area as those from the interactive clustering.

(J-S) divergence); and c) cluster composition (via the Jaccard similarity coefficient (JSC)).
These are described in Merényi et al. (2016). Despite their differences, the Walktrap and
Infomap segmentations generally capture at least the high level structure in Figure 3, and
without parameter tuning. However, this success is wholly dependent on the combination
of a prototype-based representation of the data and the CONN similarity measure.

Focusing on the Walktrap-CONN results, closer examination reveals important dif-
ferences with the interactive clustering. First, from the clusters which exhibit double or
widened peaks in Figure 3 and possibly indicate non-Keplerian motion, the automated
approach correctly captures cluster u. However, it misses v and t which include extremely
small areas, suggesting that the Walktrap graph-cutting may be sensitive to small clus-
ter size. Second, the Walktrap-CONN approach seems more tuned to an intensity drop
at the apparent break line. The resulting clusters in Figure 6, bottom appear to have
very similar mean velocities as their counterparts at top but the standard deviations are
smaller, indicating possibly cleaner segmentation which may reveal interesting structure.
The break line between clusters S and T in the Walktrap-CONN map appears to co-
incide with the transition between the bright yellow ring of 13CO emission and a more
tenuous extended emission (Figure 1). Full understanding of the Walktrap-CONN map
needs more analysis, but these preliminary results increase confidence in the automated
approach and highlight an advantage over the more subjective interactive clustering.
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5. Conclusions and next steps
We demonstrated on a relatively simple astronomical object the advantages of neural

map-based clustering over traditional moment maps for finding structure. NeuroScope
tools can highlight regions of distinct combinations of kinematics and gas densities for
multiple molecular species in a single integrated map, alerting to potential discoveries.
We also provided a mass processing perspective by using NeuroScope products as input
to leading automatic graph segmentation algorithms. While some important details were
missed by the automatic methods using default parameters, we expect to improve that
by parameter tuning. This would allow replacement of the interactive clustering with
automation and enable fast and reliable mapping of the structure of astronomical objects
in large archives or in on-board processing.

Next we will target more complex astronomical objects (such as molecular clouds)
with more chaotic kinematics and superimposed sources. With NeuroScope we can also
naturally combine data from different wavelength regions or from different instruments.
This opens up a path in answering many salient questions in broad astronomical inves-
tigations which will necessarily involve integrated study of physical structures, thermal
conditions, and chemical processes along with kinematics. Clustering methods that can
deal with the complexity and richness of the data involved and are capable of large-scale,
automated processing will play an essential role in uncovering the intricate processes of
the universe. We believe that NeuroScope offers tools toward this goal.
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