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Abstract—Fast identification of critical information in a chang-
ing environment is difficult yet it is key to dynamical decision
support, in general. Finding critical information in large and
complex data volumes is a challenge real systems, and systems of
systems, pose increasingly. Moreover, many of these real systems
are desired to operate highly autonomously, using extracted
critical information and discovered and distilled knowledge
directly, for decisions. Spacecraft or rover navigation based on
scientific findings from continuously collected data by onboard
computation, is one example. This highlights the importance of
the quality of information extraction. The knowledge discovery
process must be intelligent enough to produce useful details;
reliable; robust; and fast. This paper focuses on the first three
of these quality aspects through precision manifold learning, in
an onboard decision making scenario of a space mission.

Index Terms—Onboard decision support; Embedded learning;
Intelligent data understanding; Self-Organizing Maps; Data min-
ing; High-dimensional data.

I. BACKGROUND AND OBJECTIVES

Finding critical information in a dynamically changing
environment (changing input data) is imperative for a sys-
tem’s decision making and subsequent response. Finding the
critical information fast (real, or near-real time) is essential
for dynamical decision support. Identification of key informa-
tion in large and complex data sets is a challenge we face
increasingly in systems that are designed to solve complicated
tasks. Many of these real systems are desired to operate in a
highly autonomous fashion, using extracted information and
discovered, distilled knowledge directly for decision making.
Unmanned spacecraft operations, or rover navigation, seeking
to return data of high scientific value from planetary missions,
are examples of such scenarios.

In a recent book “Intelligence for Space Robotics”, dis-
cussing requirements of successful space missions, Tunstel
et al. [1] state: “... challenges [in space robotics] may be over-
come by increased intelligent sensing, perception, reasoning
and autonomous control engineering”; and “... software based
navigation intelligence on-board [such] vehicles plays a major

role in their safety and success.” Many excellent articles in
this book emphasize the importance of autonomous navigation,
and discuss engineering aspects of it such as hazard avoidance,
pointing precision, high performance, reliable onboard com-
putation, fault tolerance, etc. Some, however, adds [2]: “...
the most exciting mission opportunities will not be realized
without onboard intelligence ...”, “... robotic explorers may
pass by innumerable scientifically interesting sites, but without
the requisite intelligence to recognize them as such, they are
simply bypassed and never seen by planetary scientists.” The
MER missions are quoted as the state-of-the-art for planetary
surface robotics [3] for their spectacular success in mobility
intelligence. However, while the MERs were highly capable
of hazard avoidance and safe navigation based on perceived
terrain properties, their general path was pre-designed and
commanded by scientists from Earth, in order to accomplish
science goals. The rovers did not have onboard processing
of science data with sufficient intelligent understanding, to
recognize a rare mineralogy or other scientifically relevant
surface features, thus could not have made an autonomous
decision to stop and examine it. Today’s orbiters do not have
this capability either, or even just the capability to alert to an
interesting event and send the related data (or data product)
to Earth with high priority, for preferential human evaluation
and intervention.

Autonomous science driven navigation of orbiters or rovers
must include (in addition to data acquisition) intelligent on-
board understanding of scientific data, and knowledge dis-
covery. The fact that this capability is not yet present in
space missions has, at least, two reasons. One is that the
era of high-performance, reliable, miniaturized and radiation
hardened computing facilities, suitable for autonomous on-
board operations, has just recently begun [2]. The other is
that data from which interesting, new scientific knowledge
can be expected is usually very complex, high dimensional,
and voluminous. Sifting through such data to discover events



worthy of changing the course of a rover or an orbiter is
a formidable task requiring intelligent algorithms that are
capable of extracting information from data to the extent the
sensing device makes it possible.

Several systems are under development, within the NASA
community, with the goal of onboard processing of scientific
data. ADaM (Algorithm Development and Mining system,
http://datamining.itsc.uah.edu/adam/index.html) and EVE (En-
VironMent for onboard processing, http://eve.itsc.uah.edu) at
the University of Alabama in Huntsville, are primarily de-
signed for mining terrestrial atmospheric and weather data,
and data from Earth’s magnetosphere. Both of these systems
are characterized by very strong and complex architectures
for integrating and pushing huge amounts of data through
processing pipelines in a well organized fashion, using fairly
standard, conventional clustering and classification algorithms
for pattern recognition and data mining [4], [5]. Gilmore
et al. developed a Back Propagation (BP) neural network
system for pattern recognition, trained with a large number
of laboratory spectra of carbonate and non-carbonate minerals.
The trained BP network can successfully alert for the presence
of carbonate minerals under a variety of simulated Martian
circumstances, in an autonomous regime, thus can be a candi-
date for onboard decision support [6]. This system, in contrast
to ADaM and EVE, is very focused, and constrained to the
detection of carbonates from the 2.0 to 2.4 um wavelength
region of remotely sensed spectral data. Gazis and Roush at
NASA Ames proposed a rule based Artificial Intelligence (AI)
approach for autonomous identification of carbonates (also
focusing on the spectral absorption bands near 2.33 and 2.5
pm). This system has been implemented and field tested with
reasonable success [7]. Ramsey ef al. presented a Bayesian
system for carbonate identification from Near-Infrared spectra,
which is suitable for onboard application, and claims a higher
recognition rate than human experts can produce [8].

These examples illustrate the serious interest in onboard
processing of scientific data, but they also indicate that the
difficulties of the pattern recognition tasks involved are great
and can force limited applications. Systems developed to
recognize one specific surface feature from a limited subset
of the available data (for lack of capabilities to deal with
multiple features from all available data), will not recognize
other important species. Systems using conventional algo-
rithms may not be able to extract detailed enough knowledge
from complex, high-dimensional data such as collected in
space missions, and may miss important events.

II. A CANDIDATE KNOWLEDGE DISCOVERY SYSTEM:
HYPEREYE

The above underline the extreme importance of the capa-
bility to fully exploit a given data set, and the quality of the
extracted information or discovered knowledge. To enable the
widest possible variety of discoveries, and to provide effective
decision support, an onboard data understanding subsystem
must have the following properties:

1) It must be intelligent enough to deliver high quality
information / knowledge, characterized by

a) high level and precision of useful detail;

b) repeatability and reliability;

c) self-assessment of quality, and feedback to the
knowledge extraction engines.

This requires precise learning of the structure of the
acquired, often very high-dimensional, data manifold,
finding all (often a large number of) natural clusters
including rare ones, and categorizing them into known
and unknown classes. In other words, it is desirable that
the system can perform both unsupervised clustering
for novelty detection, and supervised classification for
known classes of interest, simultaneously. For cluster-
ing, the ability of faithful delineation of all clusters,
regardless of the distribution of their size, density, shape,
etc., capturing of fine intricate structure in the data,
is critical. For supervised classification, precise dis-
crimination among many classes with potentially subtle
differences between their feature vectors, is imperative.
Methods that can take up these challenges are scarce. Di-
mensionality, for example, is frequently reduced before
clustering or classification to accomodate very rich data
to algorithms that cannot handle high dimensionality
and complexity. This, however, often results in losing
discovery or discrimination potential ([9], [10], [11]).

2) A data understanding subsystem must also be capable
of continuous learning and adaptation to new situations,
since in a space exploration scenario data are acquired
continuously;

3) It must be fast (real or near-real time).

These concepts are represented by HyperEye, our manifold
learning environment, which we discuss next.

A. HyperEye as an embedded learning subsystem

HyperEye is a collection of neural and other related al-
gorithms for coordinated “precision” mining of complicated
and high-dimensional data spaces. It is envisioned to sup-
port onboard decision making as depicted in Figure 1. It
is specifically designed for the discovery of rare or novel,
surprising surface features from data collected by multi-
and hyperspectral imagers, as well as for general surface
cover mapping of all detected spectral species. This focus is
highly motivated because spectral imagers are present now
in virtually every planetary mission. The extremely rich data
imaging spectrometers provide enable discrimination among a
large number of surface materials. Hyperspectral imagers, in
particular, provide the spectral resolution that is sufficient to
discriminate any surface mineralogy or mixtures of those.

This paper is concerned with the detail and quality of the
extracted information or discovered knowledge, as in points
1) and 2) above. Near real-time speed, as in point 3), will be
achieved by massively parallel hardware implementation of the
neural processors, including on-chip learning capability. This
is a non-trivial task for the types and sizes of neural networks
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Fig. 1. Left: The HyperEye precision manifold learning susbsystem embedded in a spacecraft system, generating scientific knowledge for decision making

and navigation control. Knowledge can be extracted using all available data, for maximum discovery potential. Both unsupervised and supervised learning and
prediction can go on simultaneously and continuously. Alerts can be generated by either modality, and passed on to the decision and control system. Right:

The algorithmic components of HyperEye, data products, and their connection to onboard and ground decision making and control.

we use, outside the scope and beyond the current resources
of the work involving HyperEye, and will not be discussed
here. However, the advances in nanotechnology and interest
in real-time neural processing (e.g., [12]) project a hopeful
perspective for the not too distant future.

In Figure 1, left, the HyperEye Intelligent Data Under-
standing (IDU) subsytem, embedded in the spacecraft or
rover system, digests and processes data acquired by sensor
subsystem(s) from the environment. In this example scenario,
the sensor subsystem is a hyperspectral imager, and the
environment is a planetary surface. HyperEye has simulta-
neous unsupervised clustering and supervised classification
capabilities as stipulated in point 1) in the previous section. At
the heart of these capabilities are sophisticated non-standard
neural learning processes that will be discussed below. On
this level of operation, the important point is that the IDU
subsystem can generate alerts from both unsupervised cluster-
ing (upon detection of novel signatures) and from supervised
classification (upon finding known interesting species). How
the alerts are handled should be defined within the navigation
control system.

Figure 1, right, shows details of the HyperEye IDU sub-
system: the Artificial Neural Network (ANN) algorithmic
core, the main types of data products, and communication of
extracted knowledge, in various forms and on various levels
of detail, to onboard decision making and/or to humans on
ground for feedback. All acquired data can be digested for
continuous unsupervised learning of the manifold structure.
This is done by a Self-Organizing Map (SOM) and related
cluster extractor modules, which have non-standard features
and which are central to the sophistication we achieve with

HyperEye. We will discuss key details of it below. The learned
structure of the data, seen up to the present, is summarized
and passed on to a supervised classifier, which utilizes the
knowledge of the natural cluster structure of the data for its
own learning of labeled data. For example, the underlying
known cluster structure helps avoid learning of inconsistent
labels, and also helps learning of class boundaries with greater
precision than from sparse supervised labels alone. We call this
classifier an SOM-hybrid ANN because the SOM is essentially
used as a hidden layer in it. Another advantage of the support
by the unsupervised clustering is that the supervised classifier
can be trained with a much smaller number of training samples
than a BP network, and it is much easier to train (does not
get easily trapped in local minima). Examples follow below.
This help from using unlabeled data is very different from
the approach taken by Langrebe et al. (see, e.g., [13]), where
unlabeled data are gradually folded into the training set of the
supervised classifier by labeling them according to the class
predictions of the same supervised classifier. While this idea
is interesting and has some (idealized) statistical justification
it has not been demonstrated for high-dimensional data, and it
is unclear how well it would work for data containing many
classes with subtle differences.

Labeled data can be provided in advance or during space-
craft operation from known libraries, or generated through
on-ground human evaluation of cluster summaries returned
by HyperEye. New classes can be added to the supervised
classifier as deemed useful. Retraining for new classes is a
much lighter load than with a BP network as it does not need
to be done from scratch. The neural classifiers in HyperEye,
similarly to a BP network, learn a model of the data from



training samples, which provides for more flexible predictions
than a fixed rule based Al system can implement and, in
general, results in a better success rate. This is especially true
for high-dimensional data.

In the rest of this paper we describe some of the key custom
features of the SOM(s) we use, as these are the main enablers
of the sophistication of HyperEye. We highlight data analysis
capabilities through a few examples and in some comparison
to other data mining methods.

B. Manifold learning with HyperEye

The core of precision data mining in HyperEye, as stated
above, is self-organized manifold learning. Self-Organizing
Maps (SOMs), invented by Teuvo Kohonen [14], are intended
to mimic the information processing of the cerebral cortex. The
algorithm can be briefly described as follows: Let V' denote
the d-dimensional input data manifold, and A be the rigid,
usually 1- or 2-dimensional, SOM grid of Processing Elements
(PEs, or neurons), where PEs are indexed by their (potentially
multi-dimensional) grid locations r. The weight attached to
PE r € A is wy, and is considered a quantization prototype,
initially having random values. The SOM learning performs
an adaptive vector quantization (VQ) in an iterative process:
for any v € V input it selects a winner PE s by

s = argmin||v — wy|| (1)
r

and then updates the weights according to
Awy = ehps(V — Wy) 2)

where the neighborhood function h,s defines the weights to
be updated, as a function of the grid distance of PE r from s.
hys is typically a Gaussian function centered over the winner,
but the neighborhood can be defined many different ways.

This quantization differs from other VQ algorithms in
two ways. If the learning goes correctly, it finds an optimal
placement of the prototypes in data space such that they best
approximate the density distribution of the data. In addition,
the prototypes will be ordered on the SOM grid according to
their similarity relationships. In other words, this is a topo-
logical mapping where the neighborhood relationships of the
data vectors are preserved on the SOM grid provided that no
topology violations occur during learning. (Because of space
limitations we refer the reader to basic literature [14] as well as
to new research [15], [16] for recognition and remediation of
topology violations in SOM learning.) This is a very powerful
feature, allowing the detection of contiguous groups of similar
prototypes in the SOM grid, which collectively represent
clusters of similar data. Cluster boundaries can be identified
based on the (dis)similarities (typically Euclidean distances) of
the prototypes (not the distances of their SOM grid locations!).
SOM clustering does not require an initial guess of the number
of clusters (unlike many clustering algorithms), nor does it
require any particular initial definition of the quantization
prototypes.

SOMs have been popular in the last 20 years and many
success stories have been reported. The original Kohonen
SOM (KSOM), however, was found suboptimal for high-
dimensional data spaces with complex structures. We mention
two issues here.

Given an SOM with a fixed size, and K natural clusters
in the data (where K is unknown prior to SOM learning),
the “real estate” (the number of SOM prototypes) that can be
dedicated to the representation of each data cluster is limited.
In principle, if the SOM places the prototypes optimally, the
pdf of the data should be reproduced most faithfully and all
clusters (small or large) should have an areal representation
proportional to their size. This, however, is not quite so with
the KSOM. Theoretical analyses revealed that the KSOM
inherently “warps” the grid representation: instead of a linear
relationship between the pdf of the data, P, and the distribution
of the SOM prototypes in data space, (), which would be
characterized by

Q(w) = cP(w)* €)

where o = 1, it realizes a functional relationship where
a = 2/3 in eq (3) [17]. This can lose some clusters when
the real estate is tight. For high-volume, complicated data this
is always a concern, since the computational cost increases
nonlinearly with the size of a 2- (or higher-)dimensional SOM
grid. We use a newer variant of the SOM, called conscience
algorithm [18], which implicitly realizes the o = 1 relation-
ship [19]. In addition, as a consequence of the “conscience”,
one needs only to use an SOM grid neighborhood of a
radius of 1 for weight updates in eq (2), which lightens the
computational load and accelerates the learning. We also apply
other theories to effect a magnification of SOM representation
areas for rare events, withoung having to know that rare
clusters exist in a data set and what they might be. This is done
by forcing an o < 0 value in eq (3), and thereby enhance the
detectability of low-frequency data [19]. An example of this
capability is the detection of very rare materials at the Mars
Pathfinder landing site, as explained in Figure 2. Full details
can be found in [20] and in [21].

The Pathfinder images present a moderate challenge with 8-
dimensional spectra (although the complexity is quite high due
to calibration differences across the image segments within the
SuperPan octants). HyperEye can effectively deal with data of
much higher dimensionality. Figure 3 highlights several very
(some extremely) small spatial clusters that were discovered
from an AVIRIS hyperspectral image of an urban area, using
~200 spectral channels. (This Figure shows approximately
half of the spatial area that was clustered.) All discovered
features were verified from aerial photographs or by other
inquiry. Additional details are given in [11]. This study also
contrasts the power of our SOM processing with ISODATA
clustering. From Figure 3 one can see that ISODATA confuses
cluster assignments in many cases where the SOM cleanly
delineates homogeneous surface areas (buildings, golf course,
different types of roofs, roads). The mean spectra of all the 35



Fig. 2. Rare surface materials on Mars mapped with HyperEye precision
manifold learning from SuperPan data collected by the Imager for Mars
Pathfinder. The indicated tiny areas contain a relatively pristine, undiffer-
entiated material termed “black rock™ by scientists. This material has a
deep 1-pm absorption (olivine or pyroxene) and has been found in very low
abundance at the Pathfinder landing site. Our clustering not only found the
black rock, but split it into the two subspecies shown in the insets by pale
green and hot pink colors. (Please note that both of these colors are unique
but to see that among 28 different colors clearly one needs to display the
original cluster maps on a high-quality computer screen.) This distinction is
justified by the mean spectral shapes of these subclusters (shown in [20]):
one has a deeper band centered at 1 pm, the other seems to have its band
center beyond 1 pm thus indicating different (undifferentiated) mineralogies.
Details can be found in [20]. Note also that many other surface materials have
been simultaneously delineated (more than 20 species). Such comprehensive
mapping from the Mars Pathfinder data was not done before our work because
of the challenges posed by the data.

clusters the SOM discovered, and of the 21 clusters ISODATA
produced (shown in [11]) underline significant difference
between the two methods. ISODATA not only finds a smaller
number of clusters, it does not discover the clusters with the
most interesting and unique signatures!

Another important issue we discuss is the extraction of
clusters from a learned SOM. From the principle we outlined
above, it seems fairly straightforward to delineate cluster
boundaries, and in many cases it is so. For high-dimensional
data with many natural clusters, especially with widely varying
cluster statistics (variable size, density, shapes) and non-
linear separability, the detection of cluster boundaries becomes
more complicated (e.g., [22]). The representation of clus-
ter (dis)similarities based solely on the weight (prototype)
distances in data space (such as in e.g., [23], [24]) is no
longer sufficient for confident detection. This problem gen-
erated considerable research in recent years, partly because
the challenge is intriguing from a manifold learning point
of view, but just as importantly because full automation of
cluster extraction from SOMs can only be done (in general,
for data of high complexity) by overcoming this problem. The
problem is worth the effort because the SOM, as shown in the
above examples (where we used semi-automated visualization
based approaches to extract clusters) does acquire detailed and
accurate knowledge about a complicated manifold, in contrast
to many other clustering methods including ISODATA. Our

challenge is to decipher the SOM’s knowledge, and to auto-
mate the cluster extraction for autonomous applications.

The structure of a manifold, once quantization prototypes
are determined and Voronoi tessellation performed can be
described (on the prototype level) by the so-called Delaunay
triangulation, which is a graph obtained by connecting the
centroids of neighboring Voronoi cells [25]. (This underlines
the importance of the optimal placement of the prototypes.)
The Delaunay graph has been utilized by many to discover
connected and unconnected parts of a manifold (i.e., clusters).
With simple data structures this works well. With increased
data complexity and noise it becomes very important to portray
how strongly various parts of the data space are connected. The
binary Delaunay graph can show connections caused by a few
outliers or by noise between otherwise well separated clusters!
Some research started to target this issue recently, to represent
(visualize) the connectivity relations of a manifold in order
to more precisely delineate clusters. These works, however,
are either limited to situations where the SOM prototypes
outnumber the data vectors [26], or to data spaces with low
dimensions [27], [28]. Clearly, neither solution is sufficient for
our goals. We are developing a novel knowledge representation
that expresses the manifold connectivities for any data dimen-
sion, by showing local data densities overlain on the SOM
grid [29]. This has shown promising advantages over existing
schemes, for moderate dimensional data sets, and is under
further testing and development for high-dimensional data.
Our main interest in it is that this knowledge representation
will lend itself for automation once we developed it to a
satisfactory level of performance. This is in contrast to our
current way of extracting clusters semi-automatically from
visualizations of prototype distances, which — as the examples
show — is successful and detailed, but it would be very hard
to capture the human procedure in an algorithm.

We stipulated reliability and self-assessment of quality as
essential characteristics of an Inteligent Data Understanding
system. While it is fairly straighforward to set quality measures
for supervised classifications, such measures are harder to
define, but just as important, for unsupervised clustering. To
assess the goodness of a clustering without external knowl-
edge (ground truth) is especially important in autonomous
environments. The quality of a clustering can be measured,
in principle, by assessing how well it matches the natural par-
titions of a data set. This can provide feedback for an iterative
clustering method, to keep improving the clustering until the
quality indicator no longer increases. For this purpose, many
cluster validity indices have been proposed (see, e.g., [30],
[31] and references therein), to express to what extent it is true
that all data vectors within any cluster are closer to each other
than to any data vector in any other cluster. These require no
prior knwoledge. In our experience, however, existing indices
often misjudge complicated clusterings. This is caused by the
metrics they use for within-cluster scatter and for between-
clusters separation, which are the main components commonly
combined in all validity indices. For example, the popular



Fig. 3. Details of cluster maps, for a subsection of Ocean City, Maryland, produced from an AVIRIS image using all remaining, ~190, bands after removal
of irrecoverably corrupted bands due to atmospheric attenuation. The spatial resolution is approximately 4 m/pixel. Left: SOM clusters. The image contains
part of Ocean City, surrounded by sea water (light grey) with board walks extending into the water, small harbors, roads and paved plazas (dark blue and dark
grey hues), a large open parking lot at the right (dark grey and mauve colors), beach sand (ocher), vegetation (green colors), and buildings with various roof
materials (red, hot pink, light blue, yellow-green). Right: ISODATA clusters. Clusters and their colors are different from the SOM map. (ISODATA produced
a maximum of 21 clusters even when it was allowed a considerably larger number of clusters. The SOM clustering discovered 35 meaningful clusters.) In
both figures, labels and arrows point to the exact same locations. The labels in each figure are given according to the color and label scheme of the respective
clustering, and the arrows point to colors that correspond to the labels in the respective circles. The full clustering, complete with corresponding color wedges,
can be seen in [11] (downloadable from http://www.ece.rice.edu/~erzsebet/publist-Merenyi.pdf). Here we point out two things, for comparison. One is that
ISODATA confuses clusters where the SOM assigns homogeneous labels. One examples of this is the class D in the SOM map, pointing to a building with a
roof that has prominent iron oxide absorptions. ISODATA assigns this building into three different clusters, none of which have signatures with resemblance
to iron oxides. (Signatures are not shown here but the full sets are displayed in [11].) The label “a” in the SOM map shows a semi-U shaped building with
a very distinct spectral signature. Yet ISODATA fails to delineate it, confusing four different clusters in this building. None of the signatures of those four
clusters (I,S,J,H in the ISODATA map) has any similarity to the true spectra at this location. Finally, we point out two tiny spatial clusters: “j” (cherry color),
and U (lilac) in the SOM map. “j” is a 6-pixel feature, only occurring here, and at one location within the other image segment we analyzed (not shown
here). In both cases, this turned out to be a water tower, as identified from aerial photographs. U points to a sharply delineated 3-pixel feature, with spectral
signatures very different from surrounding pixels. This feature was identified as a coast guard lookout tower, from a local map. ISODATA did not discover
any of these, or other interesting rare spatial features in spite of their distinctive spectral signatures. The selected features are discussed in detail in [11].

Davies-Bouldin index [30] employs centroid distances for sep-
aration measure, which results in favoring spherical clusters.
Some indices [32] use data densities, alone or in addition to
distances, to better assess clusters of various sizes and shapes.
We found a number of widely accepted indices inadequate for
assessing our cluster maps, and we are developing new indices
designed to provide more faithful measures by taking into
account the complicated connectivity relations among high-
dimensional clusters of widely variable statistics [31].

Lastly, we give an example of a precise, many-class su-
pervised classification from ~200-band AVIRIS imagery. The
geologic area is Cataract Canyon (in the Grand Canyon),
where a landslide hazard study was undertaken as part of a
NASA Solid Earth and Natural Hazards Program grant project
(PI Victor Baker, U Arizona). The primary purpose of our
classification was to map layers in canyon walls with various
clay mineralogies as it had been hypothesized that different
clays contribute differently to the debris-flooding potential of
hill slopes. We show, in Figure 4, half of the resulting class
map, and spectral signatures of 15 of the 28 surface cover
classes that were mapped. (Readers interested in more specifics
including relevant geologic details are referred to [33].) The
fine discrimination and sharp delineation of these classes were
possible because of the predetermined cluster structure by the
SOM in the hidden layer of the supervised classifier.

Theoretical and algorithmic details of the above, with many
illustrations, are given in [34], [19] and references therein.

III. DISCUSSION AND FUTURE WORK

We presented a concept of onboard decision support with
HyperEye, as an intelligent data understanding subsytem that
extracts critical scientific information from data collected
onboard by scientific instruments. By communicating distilled
relevant knowledge to onboard (autonomous) and/or on ground
(human) decision making systems it is envisioned to contribute
to science driven navigation control. In this situation the scope
and the quality of the extracted information and knowledge
is of paramount importance. We demonstrated some of the
current capabilities of HyperEye that we believe can provide
smart novelty detection as well as precise detection of a wide
variety of known interesting targets, from high-dimensional
and complicated data.

While the core functionalities (clustering and classification)
of HyperEye produce demonstratedly high quality results,
there are outstanding issues to be addressed in order to
minimize the need for humans in the decision loop. We
discussed two important components of this envisioned on-
board IDU subsystem that are incomplete at present: the full
automation of cluster extraction from a learned SOM, and the
self-assessment of the quality of clustering. With the current
readiness, SOM knowledge (including the prototypes and data
density counts for each prototype - which is a small amount
of data) would be sent to Earth from time to time (or on
demand), cluster boundaries extracted semi-automatically by
a human analyst, and cluster statistics computed from the
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Fig. 4. Left: Supervised class map of 28 surface cover types in Cataract Canyon (part of Grand Canyon), Utah, from a 196-band AVIRIS hyperspectral
image, using all bands remaining after removing bands with irrecoverable signals due to atmospheric attenuation. Of special interest are a series of layered
geologic formations of the Grand Canyon, shown in various colors (blue, turquise, yellow, yellow-green, orange, and others to the right of the blue classes),
running down verticaly in the middle, and then continuing with displacements. Right: Mean spectra of training sets (blue), and of the predicted classes (red)
for 15 of the classes seen on the map at left. The graphs are vertically offset for viewing convenience. The standard deviation of the training classes are shown
by vertical bars for each spectral channel. The red mean spectra of the predicted classes are virtually indistinguishable from the training means, indicating
tight classification. These spectra represent a situation where precise discrimination of many species was needed, with subtle but meaningful differences in

their signatures. Details of this geologic mapping (including the names of the layers, illegible here) are described in [33].

clustered prototypes. This allows novelty detection (since the
prototypes of a cluster of data are very similar to the actual
data), and decision about appropriate actions. Self-assessment
of clustering quality is easy to do at present in an algorithmic
sense, but the judgement of available cluster validity indices
is unsatisfactory. We are working on remedying this situation.

Interpretation and labeling of newly discovered clusters will
need the above human interaction even when cluster extraction
will be fully automated. In the long term, this would also be
desirable to automate as much as possible, since it can be an
extremely time consuming task given the increasing amount
of data and knowledge obtained from space missions. One
approach would be to create semantic models for planetary
data, populate with available data (such as spectral libraries,
instrument characteristics, previous analysis results of the
same areas) and capture their known relationships. This can
help identify the material represented by a “novel” cluster, or
ascertain true novelty of it. While a system like this does not
exist at present, there are at least partial examples to build on.

One of several related important aspects that we have not
discussed in this paper is feature extraction or dimensionality
reduction. While we advocate the use of full dimensionality
for retention of discovery potential, in situations such as
supervised classification, where we know excatly what we

are looking for, intelligent feature extraction that takes into
account the classification goals, can be extremely beneficial.
For this purpose HyperEye has a recently developed neural
relevance learning module, which performs non-linear fea-
ture extraction and has shown significant promise for high-
dimensional complex data spaces [35], [36].

We want to emphasize that neural network processing is
very slow with sequential computers. Implementation in mas-
sively parallel hardware that matches the natural granularity of
ANN:Z, is key to the acceleration of this processing by several
orders of magnitude. This is essential for onboard operations,
but it is also important for processing large data sets on Earth
such as terrestrial archives of remote sensing data. It would,
in addition, speed up algorithm development considerably by
enabling faster turnaround and testing. High quality clustering
of a hyperspectral AVIRIS image can take a couple of days
on a regular Sun/Spark workstation. The same could be done
under one minute with a massively parallel designated board
with currently existing technology [12]. Near-future chips
using nanotechnology will be even faster, truly enabling real-
time onboard application.

In closing, we add that the methods presented here can be
applied directly to similar data such as stacked time series
of gene microarrays or spectral images of biological tissues.



They can also be applied to other data with appropriate
modifications to ingestion, summarization and housekeeping
functions.
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