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Explicit Magnification Control of Self-Organizing
Maps for “Forbidden” Data

Erzsébet Merényi, Senior Member, |EEE, Abha Jain, and Thomas Villmann

Abstract

We examine the scope of validity of the explicit SOM magni-
fication control scheme of Bauer, Der, and Herrmann [1], on
data for which the theory does not guarantee success, namely
data that are n-dimensional, n > 2 and whose components
in the different dimensions are not statistically independent.
The Bauer et al. agorithm is very attractive for the possibility
of faithful representation of the pdf of a data manifold, or
for discovery of rare events, among other properties. Since
theoretically unsupported data of higher dimensionality and
higher complexity would benefit most from the power of ex-
plicit magnification control, we conduct systematic simulations
on “forbidden” data. For the unsupported n = 2 cases that we
investigate the simulations show that even though the magnifi-
cation exponent aqcnieveqd @hieved by magnification control is
not the same as the desired agesired, Qachieved Systematically
follows agesirea With @ dowly increasing positive offset.
We show that for simple synthetic higher-dimensional data
information theoretically optimum pdf matching (a gchieved =
1) can be achieved, and that negative magnification has the
desired effect of improving the detectability of rare classes. In
addition we further study theoretically unsupported cases with

rea data
Index Terms— Self-Organizing Maps, map magnification, data
mining, high-dimensional data.

|. POTENTIAL BENEFITS, AND KNOWN LIMITS OF SOM
MAGNIFICATION CONTROL

NE theoretically interesting and powerful data analysis
Oaspect of Self-Organizing Maps (SOMs) is the map
magnification, which relates the density ¢ of SOM weights in
the input space, to the pdf P of the input data by the following
power law:

Q(w) = cP(w)" )

Here « is the magnification exponent and ¢ is a constant [1].
Certain values of o have been associated with particular
quantization or information theoretical properties [1], [2]. An
SOM with @ = 1 maximizes information theoretic entropy,
therefore such mapping produces the best approximation to
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the pdf of the data with the given number of codebook
vectors (SOM weights). o = 1/3 for 1-dimensional data
corresponds to minimum mean squared error quantization,
or, in generd, @ = d/(d + p) leads to minimum mean
squared error quantization of d-dimensional data in p-norm
[2]. Thus magnification control enables the realization of
different similarity concepts in the underlying cost function
(description error) based on the respective p-norms. For exam-
ple, near-zero values for o approximate the maximum norm
in the description error. As suggested in [1] on the basis of
biological observations of the ”perceptual magnet” effect that
enlarges the cortical representation areas for rare events (e.g.,
events of particular danger that an organism must be alert
to), alpha < 0 can enable better categorization by allocating
larger-than-proportional areas of the SOM lattice for low-
frequency inputs. Regions of lower data probability become
more accurately represented by prototypes, which can lead to
detection of rare clusters. That, in turn, increases the chance of
discovery. In data mining, this mechanism could aert for very
small, "interesting” or "suspicious’ groupings in data such as
caused by mineralogical deposits of tiny spatial extent that
may be indication of past life in Mars imagery, or by terrorist
activity in data gathered by security agencies. Asis known, the
inherent property of the Kohonen SOM (KSOM) [3] is a map
magnification of o = 2/3 (under certain conditions) [4], [5].
This value of « is optimal in neither minimum distortion nor
maximum entropy sense. A SOM variant called Conscience
algorithm [6] is constructed to achieve o« = 1, but cannot
induce any other value. The Conscience algorithm is based on
heuristics, and athough it works well in practice, theoretical
proof does not exist for the achieved map magnification.

Controlling the magnification of Self-Organizing Neural
Maps is therefore an extremely attractive possibility because
various values of the magnification exponent can effect de-
sirable quantization properties and serve specific data mining
pUrposes.

The explicit SOM magnification control introduced by
Bauer, Der, and Herrmann [1] (referred to as BDH from now
on) provided a powerful principled approach to obtaining a
desired magnification exponent for 1-dimensional data and for
n-dimensional data whose components are statistically inde-
pendent. To briefly quote the method, let V' and A denote the
input data manifold and the SOM grid of Processing Elements
(PEs, nodes, or neurons), respectively, P and @ the pdf of V
and the pdf of the SOM weightsin V', respectively. The SOM
PEs are indexed by their (potentially multi-dimensional) grid



locations r. The weight attached to noder € A isw .. For any
v € V input the Kohonen SOM learning algorithm [7] selects
awinner node s by

s = argmin||v — w|| 2
r

and then updates the weights according to
Aw, = ehps(V — Wy) (©)]

where the neighborhood function h.s defines which weights
get updated. h.,.s istypically a Gaussian function centered over
the winner node, which we will assume here. In genera, the
neighborhood can be defined many different ways. In equation
(3) the learning rate ¢ is globally defined, i.e, it is the same
for al PEs for a given time step and its value is independent
of any local properties of the map. The key idea of the BDH
learning is to make the learning rate dependent on the local
input density so as to effect

€r X €gP(Wy) 4)

This goal is achieved by changing e in equation (3) to

ool e

where m is a free parameter, ¢ is the time step and At is
the time difference since the PE s won last. ¢ is a constant,
and d denotes the effective dimensionality of the receptive
field of ws. Note that es(t) is locally determined but then
applied to all weight updates in the current step. By doing so
the local property of the map is propagated to the neighbors.
With a derivation similar to that of Ritter and Schulten [4] in
which the oo = 2/3 property of the KSOM was proven, Bauer
et al. showed that the learning rate in equation (5) modifies
the power law under equation (1) to

Q(w) = cP(w)* = P(w)30+m) (6)

where the free parameter m can be used for controlling the
value of «'. Therefore, to achieve a desired magnification
exponent o, m = 3/2 % o' — 1 needs to be used in equation
(5). The reader is referred to [1] for further details.

Most real data, of course, do not obey the conditions
stipulated for BDH learning (listed in Section Il below), yet
it is real data scenarios that would benefit the most from
explicit magnification control. Extension of analytical proof
of the BDH scheme for such higher-dimensional cases hinges
on analytical proof of the SOM as seen from, eg., [4], with
which there has not been much luck so far. This, however,
does not necessarily mean that the BDH algorithm should not
work for more complex data than it is proven for.

This work examines and extends the limits of the BDH,
through carefully constructed numerical simulations. It aso
extends and makes more precise our preliminary results pub-
lished in [8], [9].
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Il. THE BEHAVIOR OF THE BDH SCHEME ON 1- AND
2-DIMENSIONAL DATA

The theory put forward by Bauer et al. [1] proves that the
BDH agorithm will successfully induce the intended value of
« for the following cases:

o 1-dimensiona input data

o n-dimensional data, v. = (v1,...v,), if and only if

pv(V) = py, (1) % ...py, (vn) (i€, the pdf factorizes
into the marginals)

We examine the possible validity of the BDH algorithm
beyond these limited cases. We specify various values of
the magnification exponent « as the desired target value to
be induced by the BDH. In each case, a achieved by the
converged SOM is calculated by a histogram based method
as used in [10] and compared to the desired «. Details of the
histogram method are discussed in [11]. We provide a basic
description in the Appendix after the Discussion section.
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Fig. 1. Results of magnification control on 1-dimensional data for Data Set |
(blue open circles) and Data Set |1 (red x-es). The graphs compare the values
of the magnification exponent, «, obtained through the explicit magnification
control scheme of Bauer et al. [1] with the desired values of « (black dots)
that were input to the BDH algorithm. The obtained values were derived by
the evaluation of the converged SOM, similarly as described in [10], using
the known pdfs of Data Sets | and Il. Case No. refers to separate runs of the
BDH algorithm with different desired « values.

First we confirm that the BDH works well for the above,
theoretically supported cases. Simulations with 1-dimensional
data, similar to those in [1], are shown in Figure 1 for
two 1-dimensional data sets. Data Set | is generated by
p(v) = 2v,v € [0,1] and Data Set |l is generated by
p(v) = 3v%,v € [0,1]. As seen from Figure 1 the values
of the magnification exponent to be induced by the BDH
are in tight correspondence with the actual values achieved,
between 0 < agesired < 1. The dight discrepancies can be
attributed to the granularity of the quantization (100 SOM
weights). The discrepancies are appreciable for a gesireq < 0
and for agesirea > 1, however, it is worth noting that the
deviations are not random: the ayenicveq VAUES seEM to be
atracted to 1 or 0 (for agesirea > 1 aNd agesirea < 0),
respectively. The source of the obvious discrepancies outside
of the 0 < agesirea < 1 range could be due to less accuracy in



the calculation of agcpicveq OF instability of the magnification
control. To our knowledge, this has not been investigated
for the BDH. We know, however, from analyses for other
magnification control approaches that instability regions may
exists [12].

Next we investigate the performance of the BDH algorithm
on simple 2-dimensional data. The experiment a) will verify
the BDH under the stipulated theoretical conditions of inde-
pendency. Experiments b) and c) explore theoretically unsup-
ported cases where data in the two dimensions are weskly
and strongly correlated, respectively. The following cases, with
different correlations (p) between the two dimensions of the
data space, are evaluated:

a) Data independent in the two dimensions: p(v) =
Pu, (1), (v2), generated according to the following pdf:

Pvy = 21, v € [0, 1]
Doy = 202, vg € [0,1]
pv(V) = 4’[)1’02, U1,V € [0, ].] (7)

As demonstrated in Figure 2 the BDH magnification control
works as advertised, for this data set.

b) Data weakly correlated in two dimensions: p < 1.
The data consists of two equal size subsets of 2-dimensional
samples, defined by

VvV = (’Ul, 1)2)
vy =wv; +n for one subset
vo = —v1 +n for the second subset (8

wheren = A/(0,0.0625). v; and v, are weakly correlated with
the correlation coefficient p,,,, = 0.0044. From Figure 3 it
can be seen that the « achieved and the desired o are almost
equal a o = 1 and the two values differ increasingly but in
a predictable manner as « decreases. This is a stronger result
than available from the theory, as the theory only guarantees
successful prediction if and only if v, and vy are independent.

c) Data strongly correlated in two dimensions: p ~ 1. This
data set consists of 2-dimensional samples generated by

vV = (Ul,’Ug)
Vg =vV1+MN )

where n = N(0,0.25). The correlation coefficient is p,,,, =
0.9026. In this strongly correlated case, even though o
achieved by the map differs from the desired o value, there
is a clearly observable trend that the achieved values of « are
systematically decreasing, following the desired values with a
shift that increases slowly with decreasing o values (Figure 4).
This is again a stronger result than the theory provides.

Additional 1- and 2-dimensiona cases are analyzed and
more details given on analysis considerations in [11].

I1l. BDH ON HIGHER-DIMENSIONAL DATA

The BDH algorithm has no analytical justification for data
with 2 or more non-separating dimensions. However, the sys-
tematic results from numerical simulations on 2-dimensional
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“forbidden” data in the previous section encourage investiga-
tion of the BDH behavior on higher-dimensional data.

Our methodology to examine the performance of the BDH
algorithm on 1- and 2-dimensional data sets was to induce a
certain value of «, evaluate the o achieved by the converged
SOM, and compare the two. However, evaluation of . isnot an
easy task in general, especially when the input pdf is unknown,
as is most commonly the case. The evaluation of « involves
the estimation of the pdf of the data and that of the SOM
weights. So far, we were using a histogram based method
for « evaluation [10]. This method becomes inapplicable for
high-dimensional data as the number of samples required
for the estimation of the pdf increases exponentialy with
dimensionality. For the 6- and 8-dimensional data in this
study the required number of samples for pdf estimation could
easily be over 10 million, a number that far exceeds the total
number of our data samples in each case. A summary of
requirements of pdf estimation for higher-dimensional data is
given in [11]. Here we have to restrict ourselves to giving a
brief introduction, along with further pointers to related issues
and references in the Appendix.

There exist several neural approaches to estimate the pdf of
the data on the prototype level. Prototype based approaches
are the DeSieno Conscience Learning [6], Frequency-Sensitive
Competitive Learning [13], the magnification controlled neural
gas [14], kernelized variants of the SOM [15] and a Gaussian
mixture approach based on SOM [16], to name just a few.
However, comparison could be difficult. For example, Van-
Hulle reports, based on 1-dimensional experiments on artificial
data, that Conscience Learning could be unstable for precise
pdf estimation because the conscience may be taken up by
only a few prototypes [15]. Also, there is no theoretical proof
for Conscience Learning. Frequency-Sensitive Competitive
Learning is theoretically proven only for the one-dimensional
case and we do not know of numerical verification for higher
dimensions.

So for higher-dimensional cases, we evaluate the perfor-
mance of the algorithm indirectly: by observing the resulting
map and comparing to independently known properties of the
input data. We concentrate on cases where we can evaluate
the magnification results in some meaningful way, from an
application’s point of view. One special case is pdf estimation
(forcing o = 1), another is negative magnification. Both can
be particularly useful for complex, high-dimensional data if
systematic experiments indicate a predictable behavior of the
BDH for such "forbidden data’. For example, if successful
forcing of negative magnification can be shown, the magnifi-
cation effect is useful for data mining regardless of the exact
value of the induced magnification exponent, which we cannot
calculate.

A. BDH-induced negative magnification on 6-dimensional
synthetic data

Finding very small classes in a data set is a challenging
task. Input classes of rare occurrence may have little or no
representation in the output map when KSOM is used. As
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Fig. 2. BDH simulation with the data set defined under &), whose 2-dimensional input samples v = (u, v2) are such that v; and vy are independent. Left:
2-dimensiona input data samples (small green dots) and distribution of SOM weights (larger black dots), resulting from BDH with qyegireq = 0.6 after
2,000, 000 learning steps. Weights adjacent in the SOM lattice are connected. Right: Comparison of the achieved qchicved t0 Qgesireq SHOWS very good
agreement, as expected. The discrepancies are largely due to the fact that the theoretical results are asymptotic and we only have a finite number of PEs (100).
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Fig. 3. BDH simulation with the data set under b), whose 2-dimensional input samples v = (u,v2) are such that v1 and vo are weekly correlated,
Puive K 1. Left: 2-dimensiona input data samples (small green dots) and distribution of SOM weights (larger black dots), resulting from BDH with
Qgesireqd = 1.0 after 2,000,000 steps. Weights adjacent in the SOM are connected. Right: The difference between oycpieveq achieved and agesired
increases in a predictable manner as « decreases from 1.
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Fig. 4 BDH simulation with the data set under c), whose 2-dimensional input samples v = (u,v2) are such that v; and v are strongly correlated,
Puive A 1. Left: 2-dimensional input data samples (small green dots) and distribution of SOM weights (larger black dots), resulting from BDH with
Qgesired = 1.0 after 1,000, 000 steps. Weights adjacent in the SOM are connected. Right: The difference between o, chicveq achieved and agegireq SHOWS
a clear trend of a shift that slowly increases with decreasing ayesired-



shown for 2-dimensional factorizing data in [1], application
of BDH with o« < 0 results in negative magnification: the
areal representation of low-frequency input samples becomes
enlarged in the SOM. This is promising for detection of rare
classes. Does it, however, work for higher dimensions?

We use two synthetic 6-band (spectral) images with known
cluster structure, described in Figure 5, to show that negative
magnification can be induced on this type of “forbidden”
data. A spectra image consists of n co-registered image
bands, each of which is taken at a different wavelength.
Every pixel of the image, therefore, is characterized by an n-
dimensional vector, called the spectrum, similar to the data in
Figure 5. In real spectral images, taken of material surfaces, the
spectrum carries compositional information about the material
in the respective pixel. See, for example, [17] for more detail.
Spectral images are powerful information sources and are used
in many areas of scientific research, business, industry, defense
systems, etc. Detailed and precise exploitation of such data
is of great interest. One especially valuable capability is the
discovery of small, interesting groups of data.

The synthetic data sets used in this section are 128 x 128
pixel images, whith a 6-dimensional vector associated with
each image pixel. These 6-dimensiona vectors are the input
patterns for the SOM. Both images are artificially divided into
rectangular areas within which the spectral signatures are the
same. The spatial distribution of the various classes, along
with their mean spectral signatures are described in Figure 5.
The two images represent two levels of data complexity. The 5-
class dataisillustrated on the left in Figure 5. Class U isarare
class with only 1 data point and with a spectral signature that
is very different from the signatures of the other four classes.
The rest of the classes have 4096 or 4095 data points each.
In this data set, correlation coefficients between the different
dimensions range from 0.004(py,0; ) t0 0.9924(py,0 ), Which
renders it a “forbidden” case for application of BDH. When
a 10 x 10 KSOM is used, the rare class U is represented by
only one Processing Element in the SOM (Figure 6, left). BDH
With agesirea = —0.8 magnifies the rare class in the map: in
Figure 6, right, it is represented by 10 PEs!

The choice of v gesireq = —0.8 comes from an extrapolation
of the curvesin Figure 4, from which we estimated that avalue
of 0 > agesireq > —0.5 Will likely induce agcnieved = 0,
SO in order to ensure a significant negative induced value we
need to specify agesired < —0.5. On the other end, Figure
1 cautions us not to choose too large negative values. This
extrapolation is admittedly only a hypothesis at present, not
only because the simulations in Figure 4 were not conducted
for negative values but also because even if we had values for
2-dimensional data assuming the same behavior for higher-
dimensional data would still remain a hypothesis. Evidence
of successful forcing of negative magnification may motivate
extension of the Figure 4 simulations to the negative range in
future work.

The synthetic image data set with 20 classes is similar to
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the 5-class image data set in concept, but it has 20 classes,
as shown in Figure 5, right. Two of the classes, marked
R and Q are very smal, with only 1 and 16 data points,
respectively. Here, the signatures of the rare classes are very
similar to those of the larger classes, unlike the contrasting
signature of the class U in the previous case. Trying to find
these rare classes among the 20 classes using the same 10
x 10 SOM is a larger data mining challenge than finding
the U class in the 5-class image. Correlation coefficients
between the different dimensions range from 0.0081(p v, )
t0 0.5641(py,w, ), SO this too is a "forbidden” case for BDH
according to the available theory. Clustering this data set using
KSOM is depicted in Figure 7, left. The rare classes are
detectible but each is poorly represented, only by a single
PE. Also, because of the tight quarters (same SOM size for
more classes) the separating fences (the contrasts between
the PE weights) are less pronounced, which makes the small
classes less discernible. Figure 7, right, shows that BDH with
Qgesired = —0.8, magnifies the rare classes in the map: the 1-
pixel class R is now represented by 4 PEs in contrast to 1 PE
in the map formed by KSOM, and class Q is represented by
7 PEs. The detectability of the rare classes has been increased
by magnified areal representation as well as by higher contrast
in the weight differences.

The aim of negative magnification is to enhance the SOM
areal representation of low-density data regions by forcing
the allocation of more prototypes to those regions. This may
improve the detectability of unknown rare classes. Naturally,
the representation of the non-rare classes in such a map will
be somewhat repressed as is apparent from Figure 7, bottom.
The map obtained with aychicved < 0 @nd the one obtained
With agcnievea = 1 together provide a more complete picture
of the structure of a data set.

In order to further chart the behavior of the BDH, we
now present additional controlled experiments with synthetic
as well as real data sets. Beside o« < 0, of special interest
is the case of o = 1 because it effects maximum entropy
quantization, and thus helps faithful mapping of the input data
structure.

B. Inducing o« = 1 magnification on 6-dimensional synthetic
data

After demonstrating that negative magnification can be
achieved on higher-dimensional data, now we show that o = 1
can also be achieved by BDH, fairly accurately, on similar
data. @ = 1 is a specia case in that the heuristic Conscience
algorithm by DeSieno [6] is believed to achieve maximum
entropy quantization, therefore, if we verify that, we can
compare the properties of the SOM obtained by BDH magni-
fication with an SOM obtained by Conscience, to determine
if the BDH realized o = 1. In addition, we can compare the
entropies of the two maps.

The simulations presented in this section serve two pur-
poses. One is to demonstrate that the Conscience algorithm
indeed produces pdf matching, and the second is to show that
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Fig. 5. 6-dimensional synthetic image data sets: the known class structure and spectral signatures of the classes. Each spectral signature is displayed with
an offset for clear viewing. The Data Numbers (DN) on the y axis indicate the values of the first band of each respective spectrum. The spatial area of both
images is 128 x 128 pixels. Left: 5-class image data set with four large square classes (A, C, E, K, with 4095, 4096, 4096 and 4096 pixels, respectively),
and one 1-pixel class, U. The spectral signature of class U is dramaticaly different from the rest. Right: 20-class image data set, with 16 nearly equal area
(32 x 32 pixels) classes A - P, and four additional very small classes: R, Q, S, T contain 1, 16, 64 and 128 pixels, respectively. Classes Q - T take away the
corresponding number of pixels from those of the A - P classes in which they are embedded.
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Fig. 6. Magnification results with the 5-class data set. Left panel: Using KSOM. Top: Weight vectors of the 10 x 10 SOM. Only 1 PE represents the
rare class U in the lower right corner. Bottom Left: Clusters identified in the map by visualizing the weight distances of adjacent PEs (the darker the fence
between two PEs, the smaller the difference between the corresponding weights). Bottom Right: This figure shows which class each weight vector is closest
to, which complements the information on the left. Right panel: Using BDH with oo = —0.8. Top: Weight vectors in the 10 x 10 SOM. The rare class U
is now represented by 10 PEs! Bottom Left: Clusters identified in the SOM. Bottom Right: The map of nearest class for each weight vector.
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Fig. 7. Magnification study with the 20-class image. Left panel: Using KSOM. Top: Weight vectors in the 10 x 10 SOM. Only 1 PE is alocated for each
of the rare classes R and Q. Bottom Left: Clusters identified in the SOM. Fence intensity from black to white is proportional to the distance between the
corresponding weights. Bottom Right: This figure shows which class each weight vector is closest to, which complements the information on the left. Right
panel: Using BDH with agesireq = —0.8. Top: Weight vectors in the 10 x 10 SOM. Now 4 and 7 PEs represent the rare classes R and Q, respectively.

Bottom Left: Clusters identified in the SOM. Bottom Right: Map of closest class for each weight vector.

by forcing o = 1 the BDH can accurately model the pdf, at
least on the level of the cluster structure of the data. We do this
by a direct comparison of the clusters detected by the SOMs
with the known labels of data points (the known clusters) in
the artificially generated data. In many data mining pursuits,
among them remote sensing and medical applications, the
main objective is to find interesting, relevant groupings in the
data, but not necessarily afiner approximation of the pdf. Such
challenges can be met without a very precise evaluation of «.

The data set we use for this purpose is an 8-class syn-
thetic image consisting of 6 image bands, similar to the data
described in Figure 5 except that here 8 spectral types are
distributed over subareas of the 128 x 128 pixel image in the
following manner: Classes A and B each cover 4096 pixels,
classes C and O are each 2048 pixels, and classes D, H, |, M
have 1024 pixels. Gaussian noise, about 10% on average, was
added to create more redlistic variations within the spectral
classes. The Conscience algorithm is expected to map each of
these classes onto areas in the SOM that are proportiona in
size to the areas of the classes, namely classes D, H, |, and
M should each occupy half as many Processing Elements than
either of class C or O, and A and B both should be represented
by twice as many PEs as C or O, and by four times as many
PEs as any of D, H, I, M. Figure 8 shows that indeed, this
is the case within the accuracy alowed by the size of the
15 x 15 square SOM grid, by integer arithmetic, and taking
into account the empty PEs that form dividing gaps between

clusters. The clusters are captured using a somewhat modified
version of the U-matrix [18], in that we compute and visualize
the distances to the neighbor weights on either side of a PE
separately, and do this also for the diagonal neighbors (we use
an 8-neighbor neighborhood). The intensity of the “fences’
between PEs is proportional to the distance between weights,
on the black to white gray scale. White is large difference,
black is great similarity. Clusters are clearly outlined by the
white fences. Fences within the clusters are uniformly very low
(virtually 0). Out of 225 SOM PEs, classes A and B cover 48
and 49 PEs, C and O cover 25 and 21 PEs, and the smallest
four classes occupy 13, 9, 10, and 9 PEs, respectively. 41
PEs belong to inter-cluster gaps. The largest deviation from
the expected values occurs in the smallest classes, which is
understandable considering that just one additional PE in each
of H and M, taken away from D would even out the areas to
10 — 11 PEs each. The SOM was run for 2 million steps to
ensure convergence, but the cluster structure in Figure 8 was
already formed after 2-300,000 steps. It is noteworthy that the
precision of the pdf estimation is better than the level of the
cluster structure: the intensity of the red color in each PE cell
on the left of Figure 8 is proportiona to the relative winning
frequency of the respective PE, and asis evident the red shades
are fairly uniformly distributed within clusters.

Since a maximum Shannon entropy (equiprobabilistic) map-
ping provides the most faithful match of the pdf by the
given number of prototypes, the entropy of the SOM is a
good indicator of the quality of the learned quantization. The



Shannon entropy of the SOM is given by

N
I=Y" P(j)log2P(j) (10)
=1
where j isthe PE index inthe SOM (j = 1,..., N), P(j) = 7=

is the probability that PE j wins an input sample, where [; is
the number of inputs samples mapped to (won by) PE j and I y
is the total number of input samples. The higher the value of
the map entropy, the closer the mapping is to equiprobabilistic.
In an equiprobabilistic map P(j) = & Vj, and in that case
I would have a maximum value of logaN. We compute a
normalized entropy by dividing I by the theoretical maximum,
loga N (thus the maximum possible value of the entropy of any
map is 1), so that entropies can be compared across SOMs of
different sizes. The (normalized) entropy of the Conscience
SOM in Figure 8, is 0.998 for the active PEs, and 0.962 for
al PEs.

After this verification of the expected performance of
the Conscience algorithm we can evaluate the magnification
performance of the BDH on the same data. The pairwise
correlations of the various dimensions of this data set are
typically strong, (most are between 0.3 - 0.8, and only two
are less than 0.05). Based on the 2-d experiments summarized
in Figure 4, and lacking any guidance from theory or other
works, we hypothesize that a similar trend (asin Figure 4) may
apply for higher-dimensional forbidden data, i.e, in order to
produce a certain alphagcpicveq Value one needs to request an
alphagesireq Vaue that is offset according to some observed
function. Since thiswork is the first one to chart such functions
the most reasonabl e assumption we can make is the functional
relationship we charted for 2-dimensiona data with strong di-
mensional correlations, and correct our assumption according
to the outcome of the simulation, if needed. By extrapolation
of Figure 4, we assume that in order to achieve o gchicved = 1
the BDH needs to be run with a choice of o gesireq = 0.7. The
SOM, formed by BDH magnification forcing of o gcnieved = 1
in this way (Figure 9), shows that it has a very similar area
distribution over the 8 classes as the Conscience SOM in
Figure 8 (again, with similar accuracy considerations). This
indicates that the BDH fairly closely achieved the desired
maximum entropy mapping on this “forbidden” data set. The
entropy of this map (relative to the theoretica maximum)
is 0.96 for the active PEs, 0.914 for al PEs. We note that
the entropy of the BDH SOM is lower than that of the
Conscience SOM. Thisis also obvious from the density of the
cells that are close to the cluster boundaries in Figure 9. By
preliminary observation, the entropy of the BDH SOM very
slowly increases over a very long run, however, it does not
reach the entropy of the Conscience SOM in approximately
7 million steps. We think that this discrepancy could be due
to other circumstances that the BDH may be more sensitive
to, such as the combination of the number of clusters and the
size of the SOM lattice, or the learning schedule including the
decay rate of the neighborhood. This needs to be evaluated in
subsequent work.
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One difficulty with the BDH is the estimation of the data and
weight density at the locations of the weights (equation (4))
[19]. The estimation (eguation (5)) uses a rough approximation
of the volume of the receptive field of w, ||[v — wg||? where
d is the effective dimensionality of the receptive field. This
dimensionality may vary from weight to weight and is usually
unknown, therefore any global value of d is a crude estimate.
For that reason we can expect the BDH to work well with
a range of d values (within [1, n]). Therefore we chose d =
2, which is the squared Euclidean distance and thus has the
advantage of saving on computational cost. We add that the
relative insensitivity of the BDH to the value of d agrees with
our experiences with a limited number of trials.

C. Finding rare clusters in a real spectral image

As we mentioned in the introduction, magnification control
can lead to the detection of rare clusters. In particular, for
inverted (negative) magnification prototypes are preferentialy
placed in low density areas of the data space, resulting in more
accurate description of those low probability regions. Low
density regions may contain meaningful, separate clusters,
which are not detectable if there are not enough representing
prototypes but may become “visible” through better repre-
sentation using negative magnification. We will demonstrate
this effect with a real world data example, which is an urban
remote sensing spectral image of Ocean City, Maryland. We
use a 512 x 512 pixel, 8-band subset of the Ocean City image
to study the effect of forced negative magnification. This data
set adso has high pairwise correlations, the magnitudes of
which are mostly between 0.5 and 0.95. We cannot compute
the value of aychicved, DUt We can compare the appearance of
known small classes in the BDH SOM and in an SOM that
learned with the Conscience algorithm to seeif the rare classes
occupy larger areas in the BDH SOM than in the Conscience
SOM. In addition, we look for previously unidentified clusters.
An earlier supervised classification that was independently ver-
ified against ground truth provides the knowledge of existing
clusters in the data. Figure 10 demonstrates the discovery of
one new - very small - cluster. It also shows another small
cluster (pale aqua, class V) that was known at the time of
the earlier supervised classification, but was more definitely
outlined by BDH clustering. Figure 11 compares the two
SOMs. Shown on the left is the 40 x 40 SOM formed by
BDH learning with agesirea = —0.8, using only the upper
right quadrant of the image (framed in Figure 10), i.e., 1/4 of
the data. The newly discovered rare cluster (greenish-yellow)
is indicated by the middle arrow. The spectral signature of
this cluster is distinctively different from all other clusters as
seen in Figure 12. Also indicated are two other small clusters,
that correspond to the previously known V (pale aqua) and C
(white) classes from the supervised class map in Figure 10.
The 40 x 40 SOM produced by Conscience learning, using the
entireimage, isin the middle. The greenish-yellow cluster was
hard to see in this map, and was only “discovered” because we
looked for it based on the BDH discovery. This rare cluster
covers only 3 PEs in the Conscience SOM in contrast to 7
PEs in the BDH SOM where it is also contoured by better
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Fig. 8. The 6-dimensional 8-class data set as represented by an SOM that learned by the Conscience algorithm. Left: The cluster boundaries, visualized as
the distance of weights of adjacent PEs, similarly to that of the U-matrix [18] except we compute and display the distances to al 8 neighbors separately, by
the fences on the edges and corners of the PE grid cells. White is high fence (large dissimilarity), black is low fence (great similarity). The SOM has a 15 x
15 square grid. Each grid cell is shaded by an intensity of red proportiona to the number of data points mapped to the PE in that grid cell. Black grid cells
between the strong fences indicate that the receptive fields of the corresponding PEs are empty. The fairly uniform density over the non-empty PEs indicate a
good approximation of maximum entropy mapping. The entropy of this map (relative to the theoretica maximum) is 0.998 for the active PEs, 0.962 for all
PEs. Right: The known class labels superimposed over the PE grid cells. Both representations show that the PEs (and SOM weights) are divided among the
classes in proportion to the sizes of the classes: A, B (red and white) contain 4096 data points each, C, O (green and grey) 2048, and D, H, |, and M have
1024 points. The corresponding number of designated PEs are A:48, B:49, C:25, O:21, D:13, H:9, 1:10, M:9. The deviations from the exact 4:2:1 proportions
can be due to the small size of the SOM, integer arithmetic, and the formation of inter-cluster gaps.

Fig. 9. The 8 known classes of the same 6-dimensional patterns as in Figure 8, as represented by an SOM that learned via the BDH magnification control,
forcing o« = 1. Since this is a “forbidden” data set with strong inter-dimensional correlations, inducing qges;req = 0.7 €effectively produced oy cnieved = 1,
as suggested by the experiments in Figure 4. Left: The cluster boundaries and data density, visualized the same way as in Figure 8. The entropy of this map
(relative to the theoretical maximum) is 0.96 for the active PEs, 0.914 for all PEs. Note that many of the dark grid cells on either sides of single line fences
have data points mapped to them albeit few. Right: The known class labels superimposed over the PE grid cells. Both representations show that the PEs
(prototype vectors) are divided among the classes in proportion to the sizes of the classes, similarly to the Conscience algorithm results in Figure 8: A, B
(red and white) contain 4096 data points each, C, O (green and grey) 2048, and D, H, |, and M have 1024 points. The corresponding number of designated
PEs are A:47, B:44, C:24, O:19, D:10, H:10, 1:10, M:10. The deviations from the exact 4:2:1 proportions can be due to the small size of the SOM, integer
arithmetic, and the formation of inter-cluster gaps.

developed “fences’. Similarly, the previously known small V
class is represented by 4 PEs in the Conscience SOM vs 6
PEs in the BDH SOM, even though the Conscience SOM
was learned with 4 times as many data points, including more
occurrences of the V class in the large image outside the upper
guadrangle, and as seen from the image on the right in Figure
11. The previously knwon white class occupies 4 PEs in both
SOMs, in spite that within the 1/4 subimage used for BDH
clustering the white class only occursin a small rectangle (not
circled) at the upper right corner, while there are many more
white class pixels in the entire image used for the Conscience
SOM training (most notably the long vertical rectangle in the
lower right image corner). These observations clearly indicate
that, compared to Conscience the SOM, the BDH preformed
negative magnification.

IV. DISCUSSION OF PROBLEMS, AND CONCLUSIONS

We mention here some issues related to this work but not
discussed above.

All of our evaluations assume topologically correct mapping

by the respective SOMs (that the learning does not result
in “twisted” maps.) Ensuring and verification of this is not
easy, especially for high-dimensional, complex data. Although
supporting theories exist (Bauer and Pawelzik [20], Villmann
et al. [21]), those, similarly to the BDH itself, need systematic
evaluation for higher-dimensional data. In these applications
we used data of which we knew the cluster structure from
independent investigations, thus we could verify the validity
of the clusters identified by the SOM.

In our experience, finding “good” learning parameters is
more difficult for the BDH algorithm than for KSOM or for
the Conscience agorithm. One especially important question
seems to be the value of negative «: can one “over-distort”
the rest of the map while discovering rare clusters, by using a
too large negative value? In several cases of real data we saw
that while extremely rare classes were beautifully magnified
and further separated into meaningful subclusters such as in
discovering rare Martian mineral types[22], therest of the data
were mapped onto thin filament-like groups of PES leaving
most of the SOM grid empty.
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Fig. 10. Comparison of supervised classification and BDH clustering with « < 0, on an 8-band spectral image of Ocean City, Maryland. Left: An earlier
supervised classification that satisfactorily mapped 24 known cover types of interest, based on verification against ground truth. Shown centered in the small
black rectangle within the framed upper right quadrant is an unclassified grey spot (the color of the background, 'bg’) apparently of the shape of a building,
to the right of a yellow rectangular patch. He pale agua spots in the black ovals belong to the rare class V, known at the time of the supervised classification.
Right: SOM clustering using BDH magnification control with agesireq = —0.8 on the upper right quadrant of the image. First, notice that the agreement
between the supervised class map and this cluster map is striking, which inspires confidence in the clustering. Secondly, notice that the spot that remained
unclassified in the supervised map is now filled exactly and with a color (greenish-yellow) that is different from all previous class colors: the spectral signature
of this area is distinct. We discovered a new class. Moreover, this cluster only occurs at this location, and nowhere else: we discovered a small rare class!
Figure 11 shows the SOM view of this discovery. Note that the formerly known rare class V (pale agua spots in black ovals) became better defined. Class
spectral signatures are plotted in Figure 12.
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Fig. 11. Comparison of SOMs developed by BDH versus Conscience learning. Left: The SOM learned by BDH, ogesireq = —0.8, using the upper right
quadrant of the 512 x 512 pixel Ocean City image, shown framed in Figure 10. Middle: The SOM learned by the Conscience agorithm (=~ o = 1), using
the entire Ocean City image. Right: The rare classes in the image. The newly fond cluster (indicated in the rectangles) only occurs in one other spot in
the entire image, outside of the BDH-discovered location within the upper right quadrangle. It is apparent, as explained in the text, that the rare clusters are
magnified in the BDH SOM in comparison to the Conscience SOM.
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A related item is that it is hard to estimate what o gesired
value should be used as input to the BDH, in order to achieve
a specific o value. The experiments presented in Figure 4
suggest a trend but we caution against straight extension of
those values to higher-dimensional data. Some preliminary
experiments with the 8-class data seem to indicate that o = 1
may successfully be induced within a range of a gesireq. We
found that to be the case for 0.6 < agesirea < 0.9, with this
particular data set. It may be worth further simulations to get
afirmer grasp on stability regions (that we suspect may exist),
especialy for negative values. The current lack of capability
to evaluate agenicveqd from the SOM of high-dimensional data
makes this problem even harder.

The above considerations suggest that magnification control
may influence other properties of the SOM, namely, the ability
of topographic mapping. Thus, if one is interested in optimiz-
ing both magnification and topographic mapping, one has to
balance between these aspects and to prove the topography by
appropriate tools. Alternatively, the magnification scheme can
be integrated directly into the Growing Self-Organizing Map
(GSOM) approach [23].

The estimation of the data and weight density at the
locations of the weights (eq. 5) is problematic in the BDH
algorithm, as we mentioned in Section I11.B. A more accurate

assessment may be possible by the estimation of the volume
of the Voronoi cells, which may be done through the size of
the respective receptive fields (that the algorithm can record
continuously) and may result in marked improvement of the
algorithm. This is a follow-up task for us, worth pursuing in
our opinion, especially since the BDH approach seems to be
the most convenient method to control the magnification (see
[12]).

Of course, the most interesting and outstanding issue is the
theoretical justification of magnification control for higher-
dimensional cases.

Kohonen proposed a theoretical approach for higher di-
mensions by modeling the local receptive field densities with
simple hyperspheres of constant data density, which enables
local factorization [19]. However, this assumption is generally
not true for real data. In addition, Kohonen's considerations
require that the SOM dimensionality match that of the data.
A modification of the SOM winner determination by Hes-
kes [24] leads to an energy function for the learning of
SOMs, valid aso for higher dimensions, but derivation of
magnification properties seems to be very difficult because
in the Heskes scheme the neighborhood function influences
the winner selection. If we were to follow the derivation
of Ritter and Schulten [4] a recursive eguilibrium eguation
would result for which no solution exists at present. Another



extension of SOMs isthe Neural Gas paradigm whose learning
dynamics aso has an energy function [25]. For the neural
Gas, analytical proofs exist for severa different magnification
control paradigmsincluding the BDH learning. However, since
the energy function is obtained by the modification of the
neighborhood function such that it is evaluated in the data
space, the neighborhood structure among PEs is lost.

The difficulties illuminated by these investigations further
motivate the numerical simulations we described in this work.

In conclusion, we presented systematic experiments with the
map magnification control by Bauer, Der, and Hermann (BDH)
[1], on data for which the BDH scheme is not supported by
existing theory. Based on our observations of the systematic
BDH behavior on 2-dimensional non-separating “forbidden”
data, we were able to induce maximum entropy (o = 1) map-
ping and negative magnification on 6-dimensional synthetic
data. We also showed that negative magnification worked on
8-dimensional real image data and helped enhance the areal
representation, and thereby the discovery of rare clusters.
While the range of our studies is too limited to draw definite
conclusions, the simulations indicate consistent behavior of the
BDH on some set of “forbidden” data. This encourages further
simulations to investigate the predictability of the BDH for
potential analyses of complex, high-dimensional data. That,
in turn, perhaps can inspire more theoretical studies and
algorithm devel opment.

APPENDIX: A HISTOGRAM BASED METHOD FOR
EVALUATION OF «

The following power law relates the density of weights in
the input space Q(w) to the pdf P(w) of the input samples,

Q(w) = P(W)® X const (12)

where Q(w), the density of weights in the input space, is the
number of reference vectors in a small volume dw of the
input space. If both sides of Equation (11) are divided by
Ny, the total number of weight vectors, on the left we get
Q(w)/Nyw, the pdf of the weight vectors and on the right,
const /Ny, can be absorbed into a new constant constant =
const/Nyy. From now on we will use the same power law as
in Equation (11), but with the understanding that Q(w) now
denotes the pdf of the weight vectors.

From Equation (11), it is clear that finding the value of
a (Qgenieveq) requires the estimation of the two pdfs. The
following histogram based method can be used to estimate
the pdfs and evaluate «.

Let p; and ¢; be samples of the two densities P(w) and
Q(w) respectively. p; and ¢; can be obtained from the input
samples and weights by partitioning the input space into N g
bins and constructing frequency histograms in the following
way:

nw, .
i = . Vtia :1725"'5N
a4 (NW )/ ! B
where nyy, is the number of weights in the the i*" bin, Ny,
is the total number of weights and V; is the volume of the ;%"
bin.

(12)

) Vi, =12, Np (13)

_f(”f
ri=\q,
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where ny, is the number of input samples in the the i** bin,
Ny is the total number of input samples and V; is the volume
of the i*" bin.

The value of « that best satisfies

gi = constant x py¥, i=1,2,...,Np (14
in other terms, one that minimizes the error measure,
Np
E(a) = z:(qZ — constant * p$*)* (15)

i=1

is the value of agucnicvea DY the SOM. auchnieveqa CanN be
found by varying « in a range around the value of « gesired,
determine the corresponding value of the error E(«) and then
choose the agehicved S that value of « that minimizes E(«).

The constant for a particular value of « can be determined
by noting that STV ¢; + (Vi) = 1 (where ¢; * (V;) is the
probability that a weight lies in the i*" bin, summing this over
all bins yields 1). So multiplying both sides of Equation (14)
by V; and summing over N hins gives

1

i Py
This histogram based method for determining the value of
Qachieved SEMS simple but there are difficulties in extending
it to higher dimensions. The bin in a d-dimensional space is
a hypercube. In order to have an accurate estimation of the
pdf and hence that of agcpieved, it 1S important to determine
the correct size of the bin. As it turns out, this is not an easy
task! The number of input samples required for estimating
either of the pdfs for high-dimensional data is prohibitive. As
a consequence of this, the evaluation of avycpieveq iN @ general
high-dimensional case is a difficult problem. For reasons of
space constraints, we refer the reader to [26] for discussion of
bin size selection and other issues involved in pdf estimation.

(16)

constant =
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