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Erzsébet Merényi, senior member
Department of Statistics and

Department of Electrical and Computer Engineering
Rice University, Houston, Texas 77005

Email: erzsebet@rice.edu

Joshua Taylor, student member
Department of Statistics

Rice University
Houston, Texas 77005
Email: jtay@rice.edu

Abstract—Many clustering methods, including modern graph
segmentation algorithms, run into limitations when encountering
“Big Data”, data with high feature dimensions, large volume, and
complex structure. SOM-based clustering has been demonstrated
to accurately capture many clusters of widely varying statistical
properties in such data. While a number of automated SOM seg-
mentations have been put forward, the best identifications of com-
plex cluster structures to date are those performed interactively
from informative visualizations of the learned SOM’s knowledge.
This does not scale for Big Data, large archives or near-real time
analyses for fast decision-making. We present a new automated
approach to SOM-segmentation which closely approximates the
precision of the interactive method for complicated data, and
at the same time is very fast and memory-efficient. We achieve
this by infusing SOM knowledge into leading graph segmentation
algorithms which, by themselves, produce extremely poor results
segmenting the SOM prototypes. We use the SOM prototypes as
input vectors and CONN similarity measure, derived from the
SOM’s knowledge of the data connectivity, as edge weighting
to the graph segmentation algorithms. We demonstrate the
effectiveness on synthetic data and on real spectral imagery.

I. INTRODUCTION

A. SOM-clustering for Complex Data

Self-Organizing Maps (SOMs, Kohonen [1]) have been
shown superior to many other methods in clustering highly
structured manifolds (data with complex, irregular and noisy
cluster structure, high feature dimension n, and / or large vol-
ume, Merényi et al. [2]). This makes SOMs prime candidates
for making discoveries in Big Data scenarios.

Finding clusters with SOMs is a two-stage process. First,
an SOM, which consists of a rigid (usually 2-dimensional; 2-
D from hereon) lattice of neurons i, i = 1, · · · , P , each with
a prototype (weight vector) wi 2 Rn attached to it, learns
the structure of a given data manifold M ⇢ Rn comprising
N samples {xk}Nk=1, xk = (xk1, · · · , xkn) 2 M , typically
N � P . This is achieved through iterative adaptation of the
prototypes to follow the data distribution. Simultaneously, the
prototypes are organized on the SOM lattice in a topology-
preserving fashion. Conditional on correct learning, the proto-
types provide faithful approximation of the data distribution
and their topological ordering on the lattice reflects their
similarity relationships in the data space. Tools to assess the
correctness of learning such as topology preservation measures
(Villmann et al. [3], de Bodt et al. [4], Zhang and Merényi

[5]) exist and should be applied before cluster extraction, but
we omit an explanation here for space considerations. See
an overview and references in Merényi et al. [2]. Further
information that can be derived from a learned SOM and
visualized include the number of data points mapped to each
prototype (the size of the receptive field, RFi of prototype wi,
visualized as a “hit map”), the data space distances of lattice-
neighbor prototypes (U-matrix and variants, Ultsch [6], Hamel
and Brown [7], octagonal erosion by Cottrell and de Bodt [8],
mU-matix, Merényi et al. [9]), or more involved quantities like
connectivity of prototypes, CONN by Taşdemir and Merényi
[10]. These can be used for locating contiguous groups of
similar prototypes in the SOM grid where prototypes in each
group collectively represent a cluster of similar data points.

However, while clusters may readily emerge from such
visualizations in relatively simple cases, cluster extraction
from highly structured manifolds is challenging because the
visualizations become much less clear-cut (Merényi et al. [2]).
Yet, it is in such cases where interactive segmentation tends to
produce better quality than automated methods, but it requires
expertese and can be time-consuming. This does not scale
with the demands of near-real time processing, autonomous
situations or large archives, where it is most needed.

B. Objectives of this Work

We present a new automated approach to SOM segmenta-
tion which closely approximates the precision of the interactive
counterpart for complicated data and, at the same time, is very
fast and memory-efficient. We achieve this by infusing SOM
knowledge into leading graph segmentation algorithms which,
by themselves, produce extremely poor results from the SOM
prototypes alone. The break-through comes when, in addition
to using the SOM prototypes, we also provide an SOM-derived
similarity measure for the graph-cutting algorithms. We eval-
uate our approach with five graph segmentation methods on
synthetic and real spectral imagery, by qualitative measures
against known or previously verified clusterings. This extends
our work in Merényi et al. [11] both in breadth and depth, as
further elaborated in the Discussion (Section IV).

C. Previous Work in Automation of SOM-segmentation

Several automated approaches segment the SOM proto-
types via hierarchical agglomerative clustering (HAC). HAC
is favored over parametric or partitive methods because it can978-1-5090-6638-4/17/$31.00 c� 2017 IEEE
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handle high-D inputs and irregularly shaped clusters (with
an appropriate distance metric). Various Euclidean distance-
based linkage metrics between pairs of prototypes such as
centroid linkage (Vesanto and Alhoniemi, [12]), Ward measure
(Cottrell and Rousset [13]) or centroid linkage constrained
by grid neighborhood contiguity (Murtagh [14]) have been
demonstrated to work well in HAC for relatively low-D
data with a small number (3–8) of clusters. Cottrell and
Rousset [13] captures more than 30 clusters from 12-D time
series data but give no evaluation about how these clusters
match relevant groupings as their focus is to illuminate the
power of the SOM representation for interpretation. While
HAC allows detection of variable cluster shapes the use of
centroid linkages imposes a limitation to spherical clusters.
Brugger et al. [15] propose combining the pairwise distances
of lattice neighbor prototypes with the winning frequencies.
This is the same information as contained in the mU-matrix
(Merényi et al. [9]) from which the authors generate a smooth
function called the Clusot surface via mixtures of “modified”
Gaussians whose standard deviations are direction-dependent
and computed from the (normalized) data-space distances to
neighbors in the respective directions in the lattice, weighted
by the winning frequencies. The resulting Clusot surface has
valleys where large prototype distances coincide with low
winning frequencies. The Clusot surface (more precisely, its
graph representation) is then subjected to recursive flooding to
detect mountain peaks above a flood line as clusters. Experi-
mental results are modest, probably owing to parametrization
problems such as edge weights in the graph. Common to the
above examples, the data sets are small (a few thousands
of samples), and in most cases contain few clusters (3–7).
SOMs of larger data sets — but still of low dimensionality
and complexity — are segmented with HAC and restricted
connectivity by Goncalves et al. [16] capturing four to five
clusters of land cover from IKONOS and Landsat5 3-band
imagery with very high (92 – 99%) accuracy. They restrict the
merging to lattice neighbor prototypes and exclude, from the
HAC phase, dead and heterogeneous prototypes from transition
regions between clusters, which are identified by high relative
dispersion of the pixel features in their receptive field.

More complex spectral imagery is segmented by Taşdemir
et al. [17]. Four million 20-D spectral signatures are learned
with a 50 x 50 SOM, which is then clustered with HAC
methods to compare the effects of Ward, centroid, average, and
CONN linkages. The HAC with CONN linkage generally
outperforms the others as well as k-means clustering, in
detecting ten desirable clusters. The CONN linkage is derived
from the CONN similarity measure of prototypes defined in
Taşdemir and Merényi [10]. Since our automated approach also
relies on this measure we review CONN briefly below.

Liao et al. [18] apply HAC to SOMs of fMRI data using a
novel spatio-temporal distance measure composed of pairwise
correlations of prototypes weighted by an exponentially de-
caying function of their lattice distance. While the correlation
measure admits varied cluster shapes, the combined measure
may fail at sharp boundaries where backward topology viola-
tions occur and outline strong cluster separation (e.g., high
“fences” in the mU-matrix). The relatively large weighting
generated by close lattice proximity of two prototypes across
such a cluster boundary may counteract the small correlation
of those prototypes in data space. This could explain why their

cluster identification success is limited to 3–4 brain areas.

As an alternative to HAC, Taşdemir [19] explores Spectral
Clustering (SC) of the graph Laplacian of SOM prototypes.
SC (with scale parameter local to prototypes) outperforms
HAC methods with the above linkages in finding eight true
clusters in a remote sensing spectral image cube with 41 bands
(input features) and 216,000 samples. Since no information is
given on the cluster sizes or their spectral signatures it remains
unknown if these clusters are well-separable, uniform in size,
etc. The average accuracies, computed from 50 repeated runs
with each method, are also close in many cases making the
conclusion unclear without knowing the standard deviations
of the runs. Interestingly, the same SC method performs
significantly poorer on seemingly simple 2-D data sets with
2–3 clusters. The reason may be that these data sets have
specific challenges such as variable cluster shapes and densities
vs. proximities, whereas other data (from the UCI repository)
may have clusters more balanced in size and other properties.

The above also underlines that while clustering difficulties
can be caused by size, dimensionality, the number of inherent
partitions and noise, the complexity of a manifold — and
thus the clustering challenge — ultimately depends on the
variations in cluster sizes, shapes, densities, and the number
and relative positions of clusters. We aim to address the
combination of these challenges illuminated by previous work.

D. The CONN Similarity Measure for SOM Segmentation

For capturing complex cluster structure interactively from
SOMs we have successfully used the CONN similarity
measure, which is derived from the converged SOM and ex-
presses manifold connectivity rather than data space distances
(Taşdemir and Merényi [10], [20]). The connection strength
CONN(i, j) between prototypes attached to neurons i and j is
measured, during a full recall on the data set, as the number of
data vectors which choose one prototype as their SOM winner
and the other as second winner. The CONN matrix can be
visualized over the SOM to guide cluster extraction. This is
illustrated in Fig. 1 through the SOM segmentation of the 6-D
20-class synthetic “spectral” image cube described in Section
III-A. (In spectral images, n-D feature vectors are attached to
(x, y) spatial locations; these are the input vectors to SOM
learning.) In Fig. 1 (a) the SOM lattice of 20 x 20 neurons
(black dots) is shown with the CONN representation of the
learned manifold structure. A cell with no dot has an empty
prototype. In addition to the thickness of the line segments,
which expresses global relations of the relative connection
strengths, colors indicate the relative importance — a local
ranking — of the connections to other prototypes, in the order
of red (most-connected), blue, green, yellow, and grey shades.
Together, the global connection strengths and local rankings
provide rich information about where the manifold is strongly
woven and where it is disconnected or thin.

The CONN representation also reveals topology viola-
tions. Martinetz and Schulten [21] proves that (under mild
conditions) two prototypes get connected if they are Voronoi
neighbors in data space. Thus perfect topology preservation
is achieved when prototypes are connected to their lattice
neighbors, or — in case of a disconnected submanifold —
there is no connection to lattice neighbors at cluster boundaries
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(these signify backward topology violations, which are helpful
in finding clusters). Line segments connecting prototypes with
a lattice distance larger than one indicate forward topol-
ogy violations, and the line length and width, respectively,
express the extent and the severity of the violation. These
can be analyzed to separate serious violations from those
inconsequential for capturing clusters. Intuitively, we see from
Fig. 1 (a) that clusters have many relatively weak violating
intra-cluster connections which do not interfere with cluster
identification, while connections across clusters are weak or
missing. CONN informs about the mapping quality, both
visually (with CONNvis overlay) and through quantitative
CONN -based topology measures (see Merényi et al. [2]).

Cluster boundaries are found between regions that are
strongly connected inside and have thin or no connections
to other regions. For visualization, a non-linear binning of
CONN strengths is applied to aid the human eye. The bin
boundaries are automatically derived from CONN statistics.
Details on this and a cluster extraction procedure are given in
Taşdemir and Merényi [10]. Fig. 1 (b) shows the SOM lattice
with clusters of similar prototypes extracted interactively from
the CONNvis representation. On Fig. 1 (c) each prototype
is marked by the majority class label (of the samples mapped
to it). Slight differences with Fig. 1 (b) are caused by a few
samples mapping to prototypes not in their classes (due to
noise, or imperfect SOM learning at cluster boundaries). More
importantly, a few non-empty prototypes were left unlabeled
by the human analyst. These have only 1–2 samples mapped to
them causing negligible omission or confusion as seen in Fig. 1
(d) which shows the clusters in data space. This clustering is
almost perfect match to the true classes.

II. GRAPH SEGMENTATION METHODS AND THEIR USE
FOR SOM CLUSTERING

Graph-based community detection, also known as graph
segmentation, aims to find communities of graph vertices
connected by edges which represent community membership.
Formally, a graph G is a collection of N vertices V and
a binary N ⇥ N adjacency matrix A whose (i, j)-th entry
represents connectivity between vertices i and j. An extension
of this is a weighted graph, where A is replaced by matrix
E where Eij denotes a graded similarity measure between
vertices i and j. Data clustering can then be achieved through
graph segmentation algorithms, where each vertex represents
an observation and each edge represents some prescribed sim-
ilarity measure between vertices. These algorithms all produce
an optimal partitioning C⇤ = {C1, . . . , CK} of V into K
mutually exclusive sets representing clusters of data points.

A. Background on Algorithm Classes

Graph segmentation algorithms all generally begin with the
same goal: given a partitioning C, define some measure Q(C)
indicating the quality of the partitioning (in some sense) and
optimize it with respect to C. Approaches to this problem
from the fields of computer science, physics and statistics have
resulted in different characterizations of Q and an array of
procedures tailored to its optimization (see Fortunato [22] for
a thorough overview of algorithm classes). We have experi-
mented with several of these methods; the best performers for
our purposes here are highlighted below.

(a) CONNvis of SOM (b) Interactive-CONN SOM

(c) Majority labels on SOM (d) Interactive-CONN image

Fig. 1. (a) Visualization of CONN values (CONNvis) over the 20x20
SOM of the 6-D 20-class data cube described in Section III-A. It is easy to
discern at least 18 of the classes. (b) Interactively extracted clusters labeled (by
different colors) on the SOM. Ovals highlight rare clusters. (c) Majority labels
of samples mapped to each prototype. Letter labels (redundant with colors)
are also indicated. Differences with Fig. 1 (b) occur because a few samples
map to prototypes in other classes (due to noise, or imperfect SOM learning
at cluster boundaries), or the human analyst did not label some prototypes
in (b). The “offending” prototypes have 1–2 samples mapped to them, which
accounts for the negligible confusion in image space. (d) Clusters shown in
the spatial image. This matches the spatial layout of the true data clusters
except for a few stray pixels that resulted from imperfect SOM learning.

The Fast & Greedy algorithm (Clauset et al. [23]) is
an extension of the modularity based algorithm of Newman
[24], fine tuned for computational performance. Modularity
is a popular quality measure of a partitioning which seeks
to capture the relative importance of intra-cluster strength
(i.e., weighted connections) compared to what would be ex-
pected from random partitioning, subject to certain constraints.
Thus, it is concerned not with how strongly (in absolute
terms) components are clustered together, but rather with
how significant such an observed strength is relative to what
could be expected by chance. Given a partitioning of vertices
C = {C1, . . . , CK}, let � = ||vec(E)||1, so � is (double) the
sum of all edge weights in the graph. The observed proportion
of within-cluster edge strengths is then 1

�

P
ij Eij�(c(i), c(j)),

where the sum runs over all pairs of vertices, c(i) is a
membership function yielding the partition to which its vertex
argument belongs, and �(x, y) = 1 if x = y and 0 otherwise.
Now define the degree of vertex i to be deg(i) =

P
j Eij ,

which tabulates the total strengths of all edges connecting i.
A random graph which respects the degree of each vertex
thus has an expected weight between vertices i and j of
Ēij = 1

� deg(i)deg(j) and, consequently, an expected propor-
tion of within-cluster weights of 1

�

P
ij Ēij�(c(i), c(j)). The

modularity function characterizes the difference between the
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observed and expected proportions of intra-cluster strengths:
QMOD(C) = 1

�

P
ij(Eij � Ēij)�(c(i), c(j)). The Fast &

Greedy algorithm is agglomerative, beginning with each vertex
comprising its own partition. Partitions are repeatedly merged
to produce the largest increase (or smallest decrease) in
QMOD(C), with the process repeating a total of N � 1 times
to produce a final single partition. The resulting dendrogram
is then cut at the height which yields the maximal value of Q,
and the leaves of the cut define the optimal partitioning C⇤.

Conversely, the Leading Eigenvector algorithm by Newman
[25] attempts a divisive (or top-down) approach to maximizing
the (same) modularity function QMOD(C) by appealing to
so-called spectral methods of traditional graph segmentation.
To begin, all vertices are placed in the same partition and
the goal is to allow modularity to guide the bisection of this
partition into a new partitioning C = {C1, C2}. Note that
�(c(i), c(j)) = 1

2 (sisj + 1) where s is an N -vector such
that si = 1 if vertex i 2 C1 and si = �1 if i 2 C2. The
modularity function can then be rewritten as QMOD(C) =
1
2�

P
ij(Eij � Ēij)sisj (since

P
ij Eij � Ēij = 0). In matrix

form, defining B = E � Ē we have QMOD(C) = 1
2� s

TBs.
B is known as the modularity matrix; the signs of each com-
ponent of its 2nd (approximate) principal eigenvector indicate
vertex membership in C1 or C2 (B thus takes the place of
the graph Laplacian in traditional spectral graph segmentation
methods; see Fortunato [22] for a more complete overview).
The algorithm proceeds iteratively to compute a partitioning
tree, splitting each node based on the signs of the 2nd principal
eigenvector of the modularity matrix restricted to that node’s
vertex members. A branch terminates when its representative
eigenvector has no differing signs; when all branches terminate
the resulting dendrogram is searched recursively and cut at the
height producing the maximal value of QMOD(C).

The Walktrap algorithm (Pons and Latapy [26]) takes a
completely different approach rooted in Markov chain theory.
Assume a Markov chain with state space = C, and initially
let C = V so that each vertex comprises its own partition.
The transition matrix for this Markov chain is given by
Pij = Eij/

P
k Eik such that, at time t, the probability

of transiting from i ! j is P t
ij . Note that we expect

P t
ij to be relatively large for strongly connected vertices.

From this, a time-dependent distance is defined as dtij =qPN
k=1(P

t
ik � P t

jk)
2/deg(k) where deg(k) is as above (but

calculated from P t instead of E). The number of steps, t is
a required parameter. These distances dtij are then input to
Ward’s algorithm [27] to choose two partitions to merge. Post-
merging, the state space (and transition matrix P ) are adjusted
to reflect the new partition, repeating until a full dendrogram is
produced which is again cut at the height producing maximal
modularity. Unlike the Fast & Greedy and Leading Eigenvector
methods, Walktrap does not use the modularity function to
optimize the partitioning during tree building.

All above algorithms, as well as Infomap by Rosvall and
Bergstrom [28] and Multilevel by Blondel et al. [29] perform
relatively well for our SOM-based modifications (Section II-B)
and are freely available in the igraph package [30]. Where
applicable we use igraph’s default parameterizations (time
steps t = 4 for Walktrap; number of trials = 10 for Infomap;
the rest of the algorithms discussed here have no parameters).

B. Segmenting the SOM as a graph

To utilize the graph segmentation paradigm for clustering
each observation is represented as a vertex and edge weights
between vertices are specified by pairwise point distances
(usually Euclidean). For N observations, this requires storing
and analyzing a graph with N vertices and N(N � 1)/2
edges which can be infeasible for many large, modern data
sets. The relatively simple synthetic data cube described in
III-A has 16,384 observations, requiring a distance structure of
O(108) elements. We instead propose specifying a graph from
learned SOM prototypes, typically requiring

p
N vertices andp

N(
p
N�1)/2 edges. Aside from the obvious computational

and storage gains, prototype representations of the data (if
learned properly) reduce noise inherent in large data sets,
which should benefit algorithmic performance overall. Most
notably, prototype-based graphs permit the specification of
alternative similarity measures such as CONN . CONN is
itself a weighted, sparse adjacency matrix which naturally
promotes its use in graph segmentation.

The following experiments highlight the drastic improve-
ment that CONN similarity can afford these classical graph
segmentation algorithms. For comparison, we also experiment
with inverse Euclidean distance (IED = 1/(1 + ED) where
ED is the usual Euclidean distance) as a similarity measure.
To isolate whether CONN ’s weightings or its sparsity provide
the greatest benefit, we further define a sparse IED (S-IED)
similarity whose sparsity structure is forced to be that found
in CONN . The prototype-based graphs are all processed
in seconds (with CONN -weighted graphs requiring << 1
second in most cases). We assess the quality of results by
comparing to the known cluster structure using: 1) the adjusted
Rand index (ARI) which gives the proportion of data point
pairs assigned to the same cluster in both clusterings; 2)
the Jensen-Shannon divergence between the distributions of
cluster sizes; 3) visual inspection, particularly at regions where
small cluster size or irregular properties (shape, size, density,
proximities) prove difficult for clustering algorithms.

III. DATA ANALYSES

A. Demonstration on a 6-D Synthetic Spectral Image

Our synthetic spectral image cube has 6-D feature vectors
(the synthetic spectra) attached to each pixel location in a
128 x 128 pixel spatial area. This area is divided into 16
quadrants of 32 x 32 pixels, each quadrant representing a
spectrally homogeneous region (a spectral class) as seen in
Fig. 1 (d). In addition, four small classes are embedded in
some quadrants: T (lilac), 16 x 16 = 256 pixels; S (light
green), 8 x 8 = 64 pixels; Q (turquoise), 4 x 4 = 16 pixels;
and R (magenta), a 1-pixel class (at the lower right corner of
the green quadrant (class C), not visible at this resolution).
Complete descriptions, including mean spectral signatures of
the classes, is in Merényi et al. [9]. The feature vectors within
each class were generated by adding ⇡ 5% Gaussian noise
to all 6 dimensions of a representative class signature, so the
resulting classes are spherical. However, the image has a non-
trivial number of classes, the signatures of the different classes
are highly similar in 6-D space (correlation coefficients of
pairwise dimensions range from 0.0081 to 0.5641, Merényi et
al. [9]), and it has rare classes, which are increasingly harder
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(a) LeadEig-CONN SOM (19) (b) LeadEig-CONN image (19)

(c) LeadEig-IED SOM (4) (d) LeadEig-IED image (4)

(e) LeadEig-S-IED SOM (19) (f) LeadEig-S-IED image (19)

Fig. 2. Automated clusterings of SOM prototypes of the 6-D 20-class data
cube by the Leading Eigenvector algorithm using CONN values (row 1), the
inverse Euclidean distance (IED, row 2), and IED with CONN sparsity (row
3) between prototypes as similarity measure. Column 1 shows the segmented
20 x 20 SOM with letter labels (redundant with colors) also overlain, column
2 shows the spatial layout of the data clusters in image space. The numbers
of extracted clusters are shown in parentheses.

to find with decreasing size than the large classes. Interactive
segmentation separated all clusters near-perfectly. This will be
our reference clustering.

Figs 2–4 present the clustering results with the Leading
Eigenvector (LE), Walktrap (WT), and Fast & Greedy (FG)
algorithms, using the SOM prototypes as graph vertices and
three different edge weightings described at the end of Section
II-A. A summary is in Table I, which also includes results from
the Infomap (IM) and Multi-Level (ML) algorithms. When
these methods yield more than 20 clusters we add new labels
/ colors to indicate the extra clusters. First, all three methods
perform generally well with CONN edge weighting as the E
similarity matrix, and with inverse Euclidean distance when
CONN sparsity is imposed on it (S-IED). In contrast, they all
produce extremely poor results with inverse Euclidean distance
(IED), finding only a few of the clusters, and some with
considerable confusion (rather than superclusters). In these
cases LE and FG show less salt-and-pepper type confusion

(a) Walktrap-CONN SOM (29) (b) Walktrap-CONN image (29)

(c) Walktrap-IED SOM (4) (d) Walktrap-IED image (4)

(e) Walktrap-S-IED SOM (20) (f) Walktrap-S-IED image (20)

Fig. 3. Automated clusterings of SOM prototypes of the 6-D 20-class data
cube by the Walktrap algorithm using CONN values (row 1), the inverse
Euclidean distance (IED, row 2), and IED with CONN sparsity (row 3)
between prototypes as similarity measure. Column 1 shows the segmented
20 x 20 SOM with letter labels (redundant with colors) also overlain, column
2 shows the spatial layout of the data clusters in image space. The numbers
of extracted clusters are shown in parentheses.

than WT, but WT with CONN weighting is the only one
that discovers the 16-pixel cluster Q (turquoise). All others
confuse cluster Q with P (orchid), and S (light green) with O
(gray) or P. However, all find the 1-pixel cluster R (magenta, as
seen from the segmented SOM), and T (lilac). The explanation
comes from Fig. 1 (a). Both R and T are completely isolated
(pre-segmented) by CONN, while Q and S have connections
to larger clusters that may make them candidates for merging
in the judgement of the modularity objective function used
by the graph segmentations. While LE and FG miss two of
the small clusters by merging them with SOM-neighbor (thus
similar) clusters, WT seems to have a tendency to oversegment
and produce more salt-and-pepper type confusion. This may
be explained by the bottom-up nature of WT combined with
the fact that WT’s merge decisions are not informed by
modularity; WT only uses modularity to check where to cut
the dendrogram once it has been built. In contrast, LE and FG
use modularity to optimize the partitions. Overall, all methods
perform very well with CONN and S-IED measures.
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(a) Fast&Greedy-CONN SOM
(19)

(b) Fast&Greedy-CONN image
(19)

(c) Fast&Greedy-IED SOM (2) (d) Fast&Greedy-IED image (2)

(e) Fast&Greedy-S-IED SOM
(19)

(f) Fast&Greedy-S-IED image
(19)

Fig. 4. Automated clusterings from the SOM prototypes of the 6-D 20-class
data cube by the Fast & Greedy algorithm using CONN values (row 1), the
inverse Euclidean distance (IED, row 2), and IED with CONN sparsity (row
3) between prototypes as similarity measure. Column 1 shows the segmented
20 x 20 SOM with letter labels (redundant with colors) also overlain, column
2 shows the spatial layout of the data clusters in image space. The numbers
of extracted clusters are shown in parentheses.

B. Results on Real Spectral Data Cube

We use bands 3–10 of a(n originally 12-band) spectral
image of Ocean City, Maryland. The image comprises 512
x 512 pixels with 1.5 m/pixel ground resolution. Details of
data acquisition are given in Csathó et al. [31], pre-processing
and interactive segmentation to 28 verified land-cover classes
are described in Merényi et al. [32]. While this image is
only slightly higher-dimensional in feature space than the 6-
D synthetic image, it has many clusters of variable statistical
properties, shown in Table 1 of Merényi et al. [2], and it is
very noisy. We compare our automatic segmentations with the
interactive clustering from Merényi et al. [32], shown in Fig. 5
along with a partial list of classes. The CONN representation
of this data can be seen in Taşdemir and Merényi [10].

Cluster maps produced by the three top-performing meth-
ods are portrayed in Fig. 6, and discussed in the following. A

TABLE I. CLUSTERING EVALUATION OF SOM-INFUSED GRAPH
SEGMENTATION METHODS FOR THE 6-D SYNTHETIC 20-CLASS IMAGE

COMPARED TO INTERACTIVE SOM-CLUSTERING (20 CLUSTERS)

graph segmentation method

Similarity Leading Walktrap Fast & Infomap Multi-
measure Eigenvector Greedy Level

Comparison by the number of clusters found
CONN 19 29 19 32 19

IED 4 4 2 1 2
S-IED 19 20 19 25 19

Comparison by Adjusted Rand Index
CONN 0.99 0.99 0.99 0.99 0.99

IED 0.29 0.32 0.12 0.0 0.12
S-IED 0.99 0.99 0.98 0.99 0.99

Comparison by Jensen-Shannon Divergence
CONN 0.00 0.00 0.00 0.00 0.00

IED 0.55 0.55 0.72 0.83 0.72
S-IED 0.00 0.00 0.00 0.00 0.00

(a) Interactive-CONN SOM (28)

(b) Interactive-CONN image (28)

Fig. 5. Interactive clustering of the Ocean City data cube using CONNvis
visualization, from Merényi et al. [32]. (a) The segmented 40 x 40 SOM with
letter labels (redundant with colors) also overlain; (b) the spatial layout of 28
data clusters in the image space. This clustering has been verified by field
knowledge. Clusters include ocean, bay, canal, pool water, (medium to dark
blue colors); roofing materials of top of buildings (red, white, light pink, hot
pink, magenta); grass, shrubs around houses (green, yellow), other vegetation
(orange, brown), and several rare clusters (roofs a, m, V, shrub g). Asphalt
(magenta, G) and reflective paint (light blue, E) occur on both roads and roofs.
The number in parentheses indicates the number of extracted clusters.

summary of relative performances by all five algorithms (LE,
WT, FG, IM and ML) is given in Table II.
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(a) LeadEig-CONN SOM (21) (b) Walktrap-CONN SOM (25) (c) Fast&Greedy-CONN SOM (19)

(d) LeadEig-CONN image (21) (e) Walktrap-CONN image (25) (f) Fast&Greedy-CONN image (19)

(g) LeadEig-S-IED SOM (12) (h) Walktrap-S-IED SOM (22) (i) Fast&Greedy-S-IED SOM (7)

(j) LeadEig-S-IED image (12) (k) Walktrap-S-IED image (22) (l) Fast&Greedy-S-IED image(7)

Fig. 6. Automated clusterings of SOM prototypes of the Ocean City data cube by the Leading Eigenvector (column 1), Walktrap (column 2), and Fast & Greedy
(column 3) algorithms; using CONN (rows 1–2) and S-IEDP (rows 3–4) similarity measures. Rows 1 and 3 show the respective segmented 40 x 40 SOMs
with letter labels (redundant with colors) also overlain, rows 2 and 4 show the spatial layout of the data clusters in the image space. Numbers in (parentheses)
indicate the number of clusters identified by each method. 44



TABLE II. CLUSTERING EVALUATION OF SOM-INFUSED GRAPH
SEGMENTATION METHODS FOR THE OCEAN CITY IMAGE CUBE COMPARED

TO INTERACTIVE SOM-CLUSTERING (28 CLUSTERS)

graph segmentation method

Similarity Leading Walktrap Fast & Infomap Multi-
measure Eigenvector Greedy Level

Comparison by the number of clusters found
CONN 21 25 19 84 20

IED 2 3 2 1 2
S-IED 12 22 7 41 10

Comparison by Adjusted Rand Index
CONN 0.51 0.52 0.58 0.23 0.58

IED 0.16 0.30 0.16 0.0 0.16
S-IED 0.44 0.46 0.35 0.34 0.39

Comparison by Jensen-Shannon Divergence
CONN 0.04 0.03 0.05 0.32 0.04

IED 0.47 0.40 0.47 0.62 0.47
S-IED 0.08 0.02 0.26 0.12 0.13

Similarly as with the 6-D 20-class synthetic image cube,
all algorithms do very poorly when using the IED similarity
measure, identifying 2–3 superclusters of the 28 known clus-
ters, i.e., generally no salt-and-pepper confusion, but no useful
detail is returned. This approach does not seem to be able to
utilize the discriminating power of the spectral information.
We omit the IED cases from figures and concentrate on
the performance with the CONN and the S-IED (IED with
CONN sparsity) measures. Among these, LE, FG and WT
produce better clusterings than IM or ML when considering the
quality indicators in Table II as well as the cluster localization
by visual inspection (not shown for IM and ML). For space
considerations we only include LE, WT and FG in Fig. 6.

First, on this real data set, the clusterings using CONN
measure are markedly better than those using S-IED, for all
methods. This is indicated by both the smaller number of
clusters found and the poorer scores by the ARI and JSD
measures, for the latter, in Table II. (The only exception is
the JSD score of WT by a very small margin.) Given this, we
further narrow our discussion to the three CONN -weighted
segmentations (in rows 1–2 of Fig. 6). With the CONN
measure all three methods did remarkably well. Visual in-
spection reveals further characteristics of the performances.
While the general structure of the segmented SOM by FG
looks most similar to the interactively segmented SOM in
Fig. 5 (a), it returns the lowest number of clusters (19). WT
comes closest to the confirmed number (28), with 25 clusters,
but this is mostly the result of splitting some of the large
water and vegetation classes (causing some unfavorable visual
impression). WT, however, is the only one that detects the
difference of the two brown clusters (P, Q). These are spectrally
very similar but with a consistent, real difference. LE seems to
merge the largest number of relevant clusters and, at the same
time, split other (both large and small) clusters. The merges by
all three methods are most often with SOM-neighbor clusters,
thus reasonable in many cases (despite the loss of some details
like, for example, finer distinction among roofing materials).
WT and FG both discover the rare cluster a, but none delineate
m, or V, which are roofing materials of rare occurrence in
the image. Cluster S (dry dirt / grass patches) is completely
overtaken by cluster T in the LE map.

Despite their differences, all methods localize the major
structures of ocean and canal water, bays, shrubs, lawn; and

most manmade objects like houses, roads, center lane of road,
drive-ways, very well. Many of the differences in cluster
delineation occur in areas of the SOM where CONNvis (not
shown here) indicates thinning of the manifold over wide
swaths, therefore the resulting confusions are not entirely
unreasonable. The 1.5 m / pixel ground resolution naturally
mixes material classes in pixels where object boundaries fall
(for example where grass is adjacent to a house). The small
scale on which different materials alternate in this image
generates a large number of such mixed pixels, which cause
unavoidable confusion. Given this and the high level of noise,
the relatively low ARI scores (around 50%) can be considered
quite good for this image. Visual impression confirms this.

In summary, these graph segmentation methods, with the
use of SOM prototypes and CONN similarity measure, show
great potential for high-quality automation of SOM segmenta-
tion in the case of large data cubes with complex structure.

IV. DISCUSSION, CONCLUSION AND OUTLOOK

Common to the five algorithms we evaluate is that they do
best when their input is the CONN graph (SOM prototypes
with CONN similarity as edge weighting). Informing the IED
adjacency matrix with CONN sparsity (S-IED) dramatically
improves the outcome of the IED-based methods, but they
still significantly underperform the CONN edge weighting.
Considering that (under mild conditions, and assuming correct
SOM learning) the CONN graph is the weighted Delaunay
graph of the n-D data space (Martinetz and Schulten [21],
Taşdemir and Merényi [10]) where the weighting senses the
“weak seams” in the manifold in both global and local rela-
tions, this is perhaps not surprising.

We conclude that, SOM prototypes alone as input to graph
segmentation algorithms — while reducing computation time
and storage demands by magnitudes — do not help produce
clusterings with a quality anywhere near that of interactive
cluster extraction, for complicated large data sets. In contrast,
employing the inherently sparse CONN weighted adjacency
matrix produces results that approach the detail and quality of
interactive SOM clustering, and the SOM segmentation takes
negligible time, ⌧ 1 second. A further, distinct benefit is that
the automated approach can utilize more nuanced information
from the CONN matrix than the human operator, which can
result in more complete labeling of the SOM.

In this paper we cluster somewhat complex synthetic data,
and complex, noisy, but relatively low-D real data, whose clus-
ter structures are known or have been verified in previous stud-
ies. Therefore, formal evaluation against known “templates”
can be made. These data sets facilitate experimentation with
a wider set of graph-segmentation algorithms for systematic
and more thorough isolation of the relative advantages than
we can do while using very complex data for the purpose of
new discoveries. In a recent study (Merényi et al. [11]) we
show automatic segmentation of a 200-D hyperspectral radio
astronomy image from ALMA (Atacama Large Millimetre
Array) which identifies intricate physical structure in a pro-
toplanetary disk. In that case, we show that the SOM-powered
graph-segmentation discovers structural features interpretable
for astronomers but not detected by more traditional methods.
There, we do not have a “template” (beyond our interactive
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clustering) to use in formal evaluation, for lack of previous
works that produced comparable clusterings. However, we can
still say that, for ALMA data — with much higher feature
dimension, many clusters but considerably less noise — WT
works best followed by IM. This cautions that, depending
on general data characteristics, which can significantly vary
for different types of Big Data (e.g., terrestrial hyperspectral
imagery, astronomical imagery, fMRI data cubes) different
combinations of segmentation algorithm and similarity mea-
sure may be best. In future work we will attempt systematic
consideration of suitable trade-offs.

Finally, we want to note that SOM learning itself may be
a lengthy iterative process. To alleviate that bottleneck parallel
implementations can be used (see, e.g., Lachmair et al. [33])
to bring the overall processing time of cluster discovery to a
level that scales with Big Data.
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