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ABSTRACT

The Airborne Visible InfraRed Imaging Spectrometer (AVIRIS), presently being flown by the Jet
Propulsion Laboratory, acquires images of the earth in the visible and reflected infrared. The wavelengths
of the measured radiation range from about 400 nm to 2400 nm and are divided into 224 contiguous
channels having a nominal spectral bandwidth of 10 nm. This means a high resolution radiance spectrum is
acquired for each 20 m x 20 m ground cell in the AVIRIS scene. Geologic mapping from such data is
possible by classifying each pixel based on the distinctive spectral signatures recorded in the channels.
Artificial neural networks (ANN) have used these spectra successfully to classify an AVIRIS subscene of
the Lunar Craters Volcanic Field (LCVF) in Nye County, Nevada. The size and number of spectra in an
AVIRIS scene makes classifying these images a computationally intensive task. By classifying the data in
a compressed format, savings in computer time may be realized. The wavelet bases have the desirable
property of rendering signals similar to the AVIRIS spectra sparse in the wavelet domain. In this
investigation, the discrete wavelet transform was applied to the spectra. This produced a set of wavelet
coefficients for the spectra that could be made sparse with seemingly little loss of accuracy. Small subsets
of the wavelet coefficients were used to classify the LCVF scene by ANN. The degree to which
information was lost in the wavelet transform and the elimination of wavelet coefficients from the
classification was assessed by making comparisons between the different ANN classifications. The ANN
was chosen over more conventional classifiers because of its proven sensitivity in distinguishing subtle but
geologically relevant features in these spectra.
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1. BACKGROUND

The Jet Propulsion Laboratory’s Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) is an
experimental earth imaging instrument with high spectral resolution. AVIRIS acquires a 224 channel
spectrum of the upwelling radiance as a function of wavelength for each of the 20 m x 20 m ground cells in
its scene. The 224 channels range from about 400 nm to 2500 nm and have a nominal spectral bandwidth
of 10 nm. Figure 1 illustrates the two spatial dimensions and third spectral dimension of an AVIRIS
hyperspectral data set or hypercube. This figure was constructed from an AVIRIS subscene of the Lunar
Craters Volcanic Field (LCVF) in Nye County, Nevada. Thirteen representative spectra from this
hypercube are plotted in figure 2.

Geologic mapping from AVIRIS data is possible by classifying the shape of the spectra recorded at each
pixel. The sometimes subtle spectral differences between geological units along with the high
dimensionality of the spectra presents a challenging pattern recognition task. Artificial neural networks
(ANN) have been found to be powerful tools in separating geological units in the LCVF subscene. Merényi
et al. (1) was successful in separating 13 classes from this subscene by using an ANN (see figure 3). Their
ANN, similar to the one described below in section 3, used 158 channels of the spectra as its input.



A classification of an AVIRIS scene can be computationally intensive because of the size of the
hyperspectral data set. If the number of inputs to the ANN can be reduced without significant loss of
information, then it should be possible to successfully classify a scene based on a reduced or compressed
data set. A smaller data set would mean a smaller ANN and a savings in time and programming complexity
for the classification. The wavelet transform was chosen in this investigation for the compression because
of the property of the wavelet bases to render certain signals sparse in the wavelet domain (2). The
distinctive peaks and valleys of the hypercube spectra suggested that the N=2 orthonormal wavelet basis of
Daubechies (DAUB4) was a reasonable choice for the task (3). We present in this study several
classifications of the LCVF subscene based on wavelet transforms of the spectra. As described below in
section 4, discrete wavelet transforms of the spectra were taken and subsets of the wavelet coefficients were
used to train an ANN and classify the LCVF subscene. These classifications give a good indication of the
information loss in the wavelet transform and compression. The following three sections briefly discuss
the geology of the LCVF, the ANN, and the wavelet transform. Section 5 presents the results of our
investigation. ' '

2. THE GEOLOGY OF THE LUNAR CRATERS VOLCANIC FIELD

In the summer of 1989 NASA sponsored the Geologic Remote Sensing Field Experiment in which the
AVIRIS instrument was used to image the LCVF in northern Nye County, Nevada. The 256 x 256 pixel
subscene of the LCVF used in this study was collected on September 29, 1989 at 11:44 PDT (see figure 1).
Vegetation in LCVF is predominant only within washes and near springs (4). The geological units are
principally Quaternary (< 1 million years) and Tertiary (1 to 70 million years) in age. Quaternary basaltic
pyroclastic and flow deposits lie atop ignimbrites and silicic lava flows of Tertiary age and in turn are
overlain by Quaternary alluvial and playa deposits. The LCVF subscene in this study contains oxidized
basaltic cinder deposits, the southern half of the Lunar Lake Playa, and outcrops of the Rhyolite of Big
Sand Spring Valley (5). The legend to figure 3 lists the geologic types found in the LCVF subscene. This
is based on the classification by Merényi et al. (1) which is reproduced in figure 3.

3. THE ARTIFICIAL NEURAL NETWORK

An ANN is a densely interconnected set of a large number of simple processing units, organized into
different functional groups. The units work parallel in time, receiving and passing processed data among
themselves as their connection paths define the flow of information. There is an input layer where data are
introduced, one or more hidden layers to process the data, and one output layer where class predictions are
represented. The system is a learning machine that derives its knowledge from examples shown to it many
times. In our case the representative spectra for each surface cover type, together with their class
designations, make up the training material. The learning takes place by repetitive adjustment of
connection weights (the analog of the synaptic strength in biological nervous systems) among the
processing units (the nerve cells). The network is trained until it correctly classifies all training samples.
Then it can make class predictions for unknown spectra based on the class properties that it derived from
the training samples. A particularly attractive ability of ANNG is the modeling of complex shapes (such as
spectra) without analytical description. This is due, in great part, to their non—linear processing capabilities
and high connectivity. They have proved to produce equal or higher quality classification results than
conventional classifiers (6), while being more tolerant of noise.

There are numerous ANN paradigms developed for various kinds of problems. The particular ANN
paradigm we applied here is a hybrid architecture. It contains a 2—-D Kohonen Self-Organizing Map (7) in
its hidden layer, connected to an output layer with a Widrow—Hoff learning rule (8), which is similar to
Back—Propagation. The particular implementation is by NeuralWare Inc, (1991) (9). This network scales
up well to handle large number of channels, training convergence is fast and easy relative to
Back—Propagation networks, as demonstrated by previous works for up to 300 channels and well over a
dozen classes (1, 10). ' :



Training difficulties often discourage people from using ANNs. Dimensionality reduction (and with that
the loss of subtle discrimination) often is accepted in order to use a Back—Propagation network. The ANN
described above gave more accurate results than Back—Propagation for underrepresented and unevenly
represented classes in the 158—channel AVIRIS LCVF spectral image (1) and in developing asteroid
taxonomy (10). By first forming a cluster map of the data in an unsupervised learning phase that takes
place exclusively in the 2-D Kohonen layer, it is less likely to learn inconsistent class labels in the
subsequent supervised phase than Back—Propagation. This results in better generalization from even a
small number of samples and in higher classification accuracy (11). This capability is especially valuable
in remote sensing problems in view of costly field sampling for training data and for the verification of
results. ‘

4. THE WAVELET TRANSFORM

The AVIRIS hypercube of the LCVF subscene contains 256 x 256 radiance spectra, one for each pixel in
the scene (see figure 1). The original 224 channels (or bands) in the scene were first reduced to 158 by
removing spectrometer overlap, excessively noisy channels and channels which fell within atmospheric
absorption. Figure 2 shows the 158 channel spectra from 13 representative pixels in the scene. In Merényi
et al. (1), all 158 of these bands were used in their ANN classification. By changing the basis system of the
spectral data, it may be possible to reduce this number of inputs to the classifying ANN. Applying the
DAUB4 wavelet transform to one of the LCVF spectra renders what appears to be a sparse set of wavelet
coefficients (see figure 4a). Much of this is due to zero padding the 158 bands out to 256 for the transform;
however, it’s clear that the spectra are dominated by a relatively few large coefficients. Our objective was
to see whether or not a subset numbering 158 or less of these wavelet coefficients could be used
successfully in a classification by an ANN. The simplest method for choosing the subset was to use only
the largest wavelet coefficients. To determine the amount of information loss in eliminating wavelet
coefficients, comparisons were made between the new classifications and the classification of Merényi et al.
(1) By running classifications on the inverse transformed wavelet coefficients, the amount of loss in the
wavelet transform itself was assessed. '

To see the immediate effects of eliminating (zeroing) the smallest coefficients, three inverse wavelet
transforms are shown in figure 4b. Line A is the original 158 channel spectrum from a pixel in class A of
Merényi et al. (1) All but the largest 158, 118 or 79 wavelet coefficients were zeroed before the inverse
wavelet transform to generate the three spectra A@100%, A@75%, and A@50% respectively. The
percentages correspond to the number of non—zero wavelet coefficients used in the inverse transform
relative to 158. As more coefficients were eliminated, the smallest peaks and valleys in the spectra were
removed, but the spectra retain major features. Treating the spectra as vectors, the Euclidean distance
between A and A@50% is 68 (the length of data vector A is 3046). The angular distance between A and

A@50% is 1.28°. The Euclidean distances between spectra of the 13 classes of Merényi et al. (1) typically

range between 300 to 8000, and their angular distances range between 1.29 and 14.2°, Although this
suggests that little information might be lost by using these subsets of the wavelet coefficients, the
importance of these smaller features are perhaps best assessed by comparing ANN classifications. This is
discussed in the following section.

‘5. RESULTS

Eight ANN classifications are presented in this study. They are listed along with their descriptions and
abbreviations in table 1. They are hereafter referred by their abbreviations. All classifications are of the
LCVF 256x256 pixel subscene. The classifications fall into two categories: classifications based on
spectra in the 158 channel spectral domain, and classifications based on the wavelet coefficients of the
spectra after transformation to the wavelet domain. Classifications REF, S118, S79 fall in the first
category. W158, W118, W79, Wrl4567, and Wrl6 are based on wavelet coefficients and therefore fall into
the second category. Although qualitative comparisons between classifications would require color images,
grayscale renditions of the classifications are presented in figures 5 through 8 (color reprints are available
upon request). Table 2 presents a more quantitative summary of the results.



Table 1. Descriptions of the eight ANN classifications presented in this paper. The classifications are

referred to in the text by their abbreviations. Figures of the classifications are listed at right.

abbreviation

REF

W158

S118

W118

S79

W79

Wrl4567

wrl6

description

This is a classification of Merényi et al. (1) It is based on the
original 158 channel spectra of the LCVF subscene.

In this classification only the largest 158 wavelet coefficients of
the DAUB4 wavelet transform of the LCVF spectra were used.

The spectra are wavelet transformed and all but the largest 118
wavelet coefficients are zeroed. Then, the wavelet coefficients
are inverse transformed back to the spectral domain of 158
channels. This classification is based on this 158 channel
spectra.

Classification using only the largest 118 wavelet coefficients of
the wavelet transform of the LCVF spectra.

As in classification S118, this classification is based on the back
transformation of the largest 79 wavelet coefficients (all other
coefficients were zeroed).

Classification using only the largest 79 wavelet coefficients of
the wavelet transform of the LCVF spectra.

The wavelet transform of a 158 channel spectrum generates a set
of 256 wavelet coefficients. Within this set of coefficients are
wavelet resolution levels -1, 0, 1, ..., 6, and 7 (12). This
classification used only the wavelet coefficients of resolution
levels 4, 5,6 and 7.

Classification using only the wavelet coefficients of resolution
level 6.

figure

3,5a

5b

6a

6b

Ta

7b

8a

8b

In table 2, the Merényi et al. (1) (REF) classification acts as our "ground truth." Geologic maps and
field experiments do in fact confirm that the thirteen classes found in REF correspond to geologic units.
Each "hit" column in this table gives the percentage of pixels which were classified in agreement with REF.
The "miss" columns give the percentage of pixels erroneously placed in another class. The difference
between the hit and miss percentages is the percentage of pixels unclassified. The bottom row lists the
average hit and miss percentages for the classifications. The ANN in each case was trained on exactly the
same pixels as in the REF case. Training accuracy was 100% for most classes, with a minimum of 90%, in
all cases except for the last two, where minimum training accuracy was 60% across classes. More detailed
inspection of the confusion matrices for the training and test cases allow tracking which classes suffer loss
of distinction among themselves as the spectral information decreases.



Table 2. Summary of classification results. The "class" and "pixels" columns list the 13 classes and the
number of pixels in each class from the classification of Merényi et al. (1) (REF). Using the REF
classification as "truth”, the "hit" column for each classification gives the percentage of pixels correctly
classified. The "miss" column gives the percentage of pixels incorrectly classified into one of the other 13
classes. The difference between the hit and miss percentages gives the number of pixels unclassified.

REF W158 S118 w118 . S79 w79 Wrl4567 Wrl6
pixels  hit miss hit miss hit miss hit miss hit miss hit miss hit miss

e,
7
W

A 2076 74 2 78 5 91 3 86 4 92 8 81 12 65 19
B 491 79 20 64 36 89 11 95 3 77 20 81 16 42 33
C 2783 92 8 94 6 86 14 72 17 83 15 72 15 28 38
D 3722 55 0 38 0 31 69 47 0 66 0 94 0 83 2

E 8257 56 0 63 0 50 43 8 0 69 28 16 0 45 14
F 1170 59 41 49 51 49 51 41 59 68 32 31 70 16 72
G 1637 75 17 37 63 83 9 53 19 91 9 19 59 10 44
H 7907 98 2 80 16 8 14 94 1 92 8 79 16 52 36
I 13400 77 23 61 39 79 21 73 27 80 20 61 29 54 23
1] 1064 68 32 77 23 72 29 71 29 59 41 59 41 18 72
K 1694 87 13 78 22 60 40 87 .12 82 6 75 16 25 41
L 8772 60 39 61 36 57 27 96 4 64 32 55 41 22 54
M 467 97 0 771 16 84 12 73 27 77 23 96 4 75 11
avg 75 15 66 24 71 26 75 15 77 19 63 24 41 35

A number of questions can be raised by these classifications. The two broader issues of using datain a
compressed format for an ANN classification and the effect the wavelet transform itself has on the
classification are the primary focus of this study. Inspection of table 2 and figures 5 through 8 suggest that
the ANN classification can be fairly sensitive to lossy compression of the spectra. Comparing
classifications W158, W118 and W79, however, does not indicate any simple trends with respect to the
amount of compression. For example, hit percentages for classes A and I increase from W158 to W79, but
decrease for classes C and M. Other classes show no obvious trends, There is some indication that
information in the spectra is spread throughout the resolution levels. The process of removing the smaller
wavelet coefficients for the W158, W118 and W79 classifications tends to eliminate more coefficients from
the higher resolution levels than the lower. While classes C, H and M were barely affected by this type of
lossy compression, classes D, E, and F were significantly affected. Classifications Wrl4567 and Wrl6
further indicate this information spread throughout the resolution levels.

The classification Wrl4567 used only the wavelet coefficients in resolution levels 4, 5, 6, and 7 (12).
Resolution levels 4 through 7 are the wavelet coefficients for wavelet functions which render the peaks and
valleys in the spectra ranging in width from about 16 channels to 2 channels respectively. Classification
Wrl6 used only the wavelet coefficients in resolution level 6. This resolution level contains the wavelets
that render features in the spectra that are approximately 4 channels in width. Comparison between
Wrld567 and W158 indicates that the distinguishing features of class D are the narrower, lower amplitude
peaks and valleys in the spectra, while the broader, low frequency features set class H spectra apart. All
this suggests that a more complex method of lossy compression is required for a generally successful
classification based on subsets of wavelet coefficients.



Classifications W118 and S118 used data which are essentially wavelet transform pairs, as are the data
used in classifications W79 and S79. Assuming no loss in the wavelet transform, it appears from table 2
and figures 6a and 6b that the ANN perceives W118 and S118 differently. This also appears to be true for
W79 and S79 (see figures 7a and 7b). Taking the hit and miss percentages at face value shows that W118
and W79 performed slightly better on the average than their counterparts S118 and S79 respectively
(although perhaps not significantly better). Closer inspection shows that hit percentages for some classes
were higher in the wavelet domain than in the spectral domain, while for others the opposite was true. The
reason for this is not entirely clear at this time, but probably tells us as much about the ANN as the wavelet
transform. :
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Figure 1. The LCVF hypercube is a deck of 158 perfectly registered images, one for each channel. Itis
also a set of 256 x 256 spectra, one for each pixel. Each spectrum contains 158 spectral channels in the

LCVF subscene.
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Figure 2. Thirteen representative spectra from the LCVF subscene. Each spectrum belongs to one of
the A through M classes ofMerényi et al. (1) (see also figure 3).



A - highly oxidized cinders

B - rhyolite of Big Sand Springs Valley

C - vegetation type 1, probably grass

D - southern playa

E - northern playa (clay-rich)

F - young basalt flows

G - Shingle Pass Tuff

H - Quaternary alluvium derived from silicic volcanics
I- old basalt flow

-J - vegetation type 2, probably scrub brush
K - basalt cobbles on playa surface

L - ferric oxide rich soil

M - poorly oxidized dark cinders

U - unclassified

ABCDEFGHIJKLMU

Figure 3. The Merényi et al. classification. Geologic maps and field experiments confirm
that these 13 classes correspond to known geologic units.
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Figure 4. (a) The DAUB4 wavelet transform of the spectrum located at row 24 and column 32 in the
LCVF hypercube of figure 1. (b) Line "A" is a spectrum from a pixel in class A of Merényi et al. (1). The
DAUB4 wavelet transfrom of this spectrum is shown in (a). Line "A@100%" is the spectrum obtained by
inverse transforming the wavelet coefficients of figure 4a after all but the largest 158 have been zeroed.
Likewise, line "A@75%" is the spectrum obtained by inverse transforming the largest 118 wavelet
coefficients and line "A@50%" is the spectrum obtained by inverse transforming the largest 79
coefficients. The "%" refers to the percentage of non-zeroed wavelet coefficients relative to 158.



Figure 5a. Classification REF Figure 5b. Classification W158
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Figure 7a. Classification S79 Figure 7b. Classification W79




