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Abstract

We study the application of self-organizing maps (SOMs) for the analyses of remote sensing spectral images. Advanced airborne and

satellite-based imaging spectrometers produce very high-dimensional spectral signatures that provide key information to many scientific

investigations about the surface and atmosphere of Earth and other planets. These new, sophisticated data demand new and advanced

approaches to cluster detection, visualization, and supervised classification. In this article we concentrate on the issue of faithful topological

mapping in order to avoid false interpretations of cluster maps created by an SOM. We describe several new extensions of the standard SOM,

developed in the past few years: the growing SOM, magnification control, and generalized relevance learning vector quantization, and

demonstrate their effect on both low-dimensional traditional multi-spectral imagery and ,200-dimensional hyperspectral imagery.

q 2003 Published by Elsevier Science Ltd.
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1. Introduction

In geophysics, geology, astronomy, as well as in many

environmental applications air- and satellite-borne remote

sensing spectral imaging has become one of the most

advanced tools for collecting vital information about the

surface of Earth and other planets. Spectral images consist

of an array of multi-dimensional vectors each of which is

assigned to a particular spatial area, reflecting the response

of a spectral sensor for that area at various wavelengths

(Fig. 1). Classification of intricate, high-dimensional

spectral signatures has turned out to be far from trivial.

Discrimination among many surface cover classes, dis-

covery of spatially small, interesting spectral species proved

to be an insurmountable challenge to many traditional

clustering and classification methods. By customary

measures (such as, for example, principal component

analysis (PCA) the intrinsic spectral dimensionality of

hyperspectral images appears to be surprisingly low, 5–10

at most. Yet dimensionality reduction to such low numbers

has not been successful in terms of preservation of

important class distinctions. The spectral bands, many of

which are highly correlated, may lie on a low-dimensional

but non-linear manifold, which is a scenario that eludes

many classical approaches. In addition, these data comprise

enormous volumes and are frequently noisy. This motivates

research into advanced and novel approaches for remote

sensing image analysis and, in particular, neural networks

(Merényi, 1999). Generally, artificial neural networks

attempt to replicate the computational power of biological

neural networks, with the following important (incomplete

list of) features:

† adaptivity—the ability to change the internal represen-

tation (connection weights, network structure) if new

data or information are available;

† robustness—handling of missing, noisy ore otherwise

confused data;

† power/speed—handling of large data volumes in accep-

table time due to inherent parallelism;

† non-linearity—the ability to represent non-linear func-

tions or mappings.

Exactly these properties make the application of neural

networks interesting in remote sensing image analysis. In

the present contribution, we will concentrate on a special

neural network type, neural maps. Neural maps constitute an

important neural network paradigm. In brains, neural maps

occur in all sensory modalities as well as in motor areas. In

technical contexts, neural maps are utilized in the fashion of

neighborhood preserving vector quantizers. In both cases
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ROOFthese networks project data from some possibly high-

dimensional input space onto a position in some output

space. In the area of spectral image analysis we apply neural

maps for clustering, data dimensionality reduction, learning

of relevant data dimensions and visualization. For this

purpose we highlight several useful extensions of the basic

neural map approaches.

This paper is structured as follows. In Section 2 we

briefly introduce the problems in remote sensing spectral

image analysis. In Section 3 we give the basics of neural

maps and vector quantization together with a short review of

new extensions: structure adaptation and magnification

control (Section 3.2), and learning of proper metrics or

relevance learning (Section 3.3). In Section 4 we present

applications of the reviewed methods to multi-spectral

LANDSAT TM imagery as well as very high-dimensional

hyperspectral AVIRIS imagery.

2. Remote sensing spectral imaging

As mentioned earlier air- and satellite-borne remote

sensing spectral images consist of an array of multi-

dimensional vectors assigned to particular spatial regions

(pixel locations) reflecting the response of a spectral sensor

at various wavelengths. These vectors are called spectra. A

spectrum is a characteristic pattern that provides a clue to

the surface material within the respective surface element.

The utilization of these spectra includes areas such as

mineral exploration, land use, forestry, ecosystem manage-

ment, assessment of natural hazards, water resources,

environmental contamination, biomass and productivity;

and many other activities of economic significance, as well

as prime scientific pursuits such as looking for possible

sources of past or present life on other planets. The number

of applications has dramatically increased in the past 10

years with the advent of imaging spectrometers such as

AVIRIS of NASA/JPL, that greatly surpass the traditional

multi-spectral sensors (e.g. LANDSAT thematic mapper

(TM).

Imaging spectrometers can resolve the known, unique,

discriminating spectral features of minerals, soils, rocks,

and vegetation. While a multi-spectral sensor samples a

given wavelength window (typically the 0.4 2 2.5 mm

range in the case of visible and near-infrared imaging)

with several broad bandpasses, leaving large gaps

between the bands, imaging spectrometers sample a

spectral window contiguously with very narrow,

10 2 20 nm badpasses (Fig. 1) (Richards & Jia, 1999).

Hyperspectral technology is in great demand because

direct identification of surface compounds is possible

Fig. 1. Comparison of the spectral resolution of the AVIRIS hyperspectral

imager and the LANDSAT TM imager in the visible and near-infrared

spectral range. AVIRIS represents a quasi-continuous spectral sampling

whereas LANDSAT TM has coarse spectral resolution with large gaps

between the band passes. Additionally, spectral reflectance charateristics of

common earth surface materials is shown: 1, water; 2, vegetation; 3, soil

(from Richards and Jia (1999)).

Fig. 2. Left: The concept of hyperspectral imaging. Figure from Campbell (1996). Right: The spectral signature of the mineral alunite as seen through the six

broad bands of Landsat TM, as seen by the moderate spectral resolution sensor MODIS (20 bands in this region), and as measured in laboratory. Figure from

Clark (1999). Hyperspectral sensors such as AVIRIS of NASA/JPL (Green, 1996) produce spectral details comparable to laboratory measurements.
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without prior field work, for materials with

known spectral signatures. Depending on the wavelength

resolution and the width of the wavelength window used

by a particular sensor, the dimensionality of the spectra

can be as low as 5–6 (such as in LANDSAT TM), or as

high as several hundred for hyperspectral imagers

(Green, 1996).

Spectral images can formally be described as a matrix

S ¼ vðx;yÞ; where vðx;yÞ [ RDV is the vector of spectral

information associated with pixel location ðx; yÞ: The

elements v
ðx;yÞ
i ; i ¼ 1…DV of spectrum vðx;yÞ reflect the

responses of a spectral sensor at a suite of wavelengths

(Fig. 2; Campbell, 1996; Clark, 1999). The spectrum is a

characteristic fingerprint pattern that identifies the surface

material within the area defined by pixel ðx; yÞ: The

individual two-dimensional image Si ¼ v
ðx;yÞ
i at wave-

length i is called the ith image band. The data space V

spanned by visible–near infrared reflectance spectra is

½0 2 noise;U þ noise�DV # RDV where U . 0 represents

an upper limit of the measured scaled reflectivity and

noise is the maximum value of noise across all spectral

channels and image pixels. The data density PðVÞ may

vary strongly within this space. Sections of the data space

can be very densely populated while other parts may be

extremely sparse, depending on the materials in the scene

and on the spectral bandpasses of the sensor. According to

this model traditional multi-spectral imagery has a low

DV value while DV can be several hundred for

hyperspectral images. The latter case is of particular

interest because the great spectral detail, complexity, and

very large data volume pose new challenges in clustering,

cluster visualization, and classification of images with

such high spectral dimensionality (Merényi, 1998).

In addition to dimensionality and volume, other factors,

specific to remote sensing, can make the analyses of

hyperspectral images even harder. For example, given the

richness of data, the goal is to separate many cover classes,

however, surface materials that are significantly different for

an application may be distinguished by very subtle

differences in their spectral patterns. The pixels can be

mixed, which means that several different materials may

contribute to the spectral signature associated with one

pixel. Training data may be scarce for some classes, and

classes may be represented very unevenly. All these

difficulties motivate research into advanced and novel

approaches (Merényi, 1999).

Noise is far less problematic than the intricacy of the

spectral patterns, because of the high signal-to-noise ratios

(500–1500) that present-day hyperspectral imagers provide.

For this discussion, we will omit noise issues, and additional

effects such as atmospheric distortions, illumination geo-

metry and albedo variations in the scene, because these can

be addressed through well-established procedures prior to

clustering or classification.

3. Neural maps and vector quantization

3.1. Basic concepts and notations

Neural maps as tools for (unsupervised) topographic

vector quantization algorithms map data vectors v sampled

from a data manifold V # RDV onto a set A of neurons r

CV!A : V!A: ð3:1Þ

Associated with each neuron is a pointer (weight vector)

wr [ RDV specifying the configuration of the neural map

W ¼ {wr}r[A: The task of vector quantization is realized

by the map C as a winner-take-all rule, i.e. a stimulus

vector v [ V is mapped onto that neuron s [ A the

pointer ws of which is closest to the presented stimulus

vector v;

CV!A : v 7! sðvÞ ¼ argmin
r[A

dðv;wrÞ: ð3:2Þ

where dðv;wrÞ is the Euclidean distance. The neuron s is

referred to as the winner or best-matching unit. The

reverse mapping is defined as CA!V : r 7! wr: These two

mappings together determine the neural map

M ¼ ðCV!A;CA!VÞ; ð3:3Þ

realized by the network. The subset of the input space

Vr ¼ {v [ V : r ¼ CV!AðvÞ}; ð3:4Þ

which is mapped to a particular neuron r according to Eq.

(3.2), forms the (masked) V receptive field of that neuron.

If the intersection of two masked receptive fields Vr; Vr0

is non-vanishing we call Vr and Vr0 neighbored. The

neighborhood relations form a corresponding graph

structure GV in A : two neurons are connected in GV

if and only if their masked receptive fields are neighbored.

The graph GV is called the induced Delaunay-graph (See,

for example, Martinetz and Schulten (1994) for detailed

definitions). Due to the bijective relation between neurons

and weight vectors, GV also represents the Delaunay

graph of the weights (Martinetz & Schulten, 1994).

In the most widely used neural map algorithm, the self-

organizing map (SOM) (Kohonen, 1995), the neurons are

arranged a priori on a fixed grid A.1 Other algorithms such

as the topology representing network (TRN), which is based

on the neural gas algorithm (NG) (Martinetz, Berkovich, &

Schulten, 1993), do not specify the topological relations

among neurons, but construct a neighborhood structure in

the output space during learning (Martinetz & Schulten,

1994).

In any of these algorithms the pointers are adapted

such that the input data are matched appropriately. For

this purpose a random sequence of data points v [ V
from the stimuli distribution PðvÞ is presented to the

1 Usually the grid A is chosen as a dA-dimensional hypercube and then

one has i ¼ ði1;…; idA
Þ: Yet, other ordered arrangements are also

admissible.
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map, the winning neuron s is determined according to

Eq. (3.2), and the pointer ws is shifted toward v:

Interactions among the neurons are included via a

neighborhood function determining to what extent the

units that are close to the winner in the output space

participate in the learning step

Dwr ¼ ehlðr; s; vÞðv 2 wrÞ: ð3:5Þ

hlðr; s; vÞ is usually chosen to be of Gaussian shape

hlðr; s; vÞ ¼ exp 2
ðdAðr; sðvÞÞÞ2

l

 !
; ð3:6Þ

where dAðr; sðvÞÞ is a distance measure on the set A.

We emphasize that hlðr; s; vÞ implicitly depends on the

whole set W of weight vectors via the winner

determination of s according to Eq. (3.2). In SOMs it

is evaluated in the output space A : dSOM
A ðr; sðvÞÞ ¼ kr 2

sðvÞkA whereas for the NG we have dNG
A ðr; sðvÞÞ ¼ krðv;

WÞ: krðv;WÞ gives the number of pointers wr0 for which

the relation dðv;wr0 Þ # dðv;wrÞ is valid (Martinetz et al.,

1993), i.e. dNG
A is evaluated in the input space (Here, dð; Þ

is the Euclidean distance.). In the SOM usually l ¼ 2s2

is used.

The particular definitions of the distance measures in

the two models cause further differences. In Martinetz

et al. (1993) the convergence rate of the neural gas

network was shown to be faster than that of the SOM.

Furthermore, it was proven that the adaptation rule for

the weight vectors follows, on average, a potential

dynamic. In contrast, a global energy function does not

exist in the SOM algorithm (Erwin, Obermayer, &

Schulten, 1992).

One important extension of the basic concepts of neural

maps concerns the so-called magnification. The standard

SOM distributes the pointers according to the input

distribution

PðWÞ , PðVÞa; ð3:7Þ

with the magnification factor aSOM ¼ 2
3

(Ritter &

Schulten, 1986; Kohonen, 1999).2,3 For the NG one

finds, by analytical considerations, that for small l the

magnification factor aNG ¼ d=ðd þ 2Þ which only depends

on the dimensionality of the input space embedded in

RDV ; i.e. the result is valid for all dimensions (Martinetz

et al., 1993).

Topology preservation or topographic mapping in

neural maps is defined as the preservation of the

continuity of the mapping from the input space onto

the output space, more precisely it is equivalent to the

continuity of M between the topological spaces with

properly chosen metric in both A and V: For lack of

space we refer to Villmann, Der, and Herrmann (1997) for

detailed considerations. For the TRN the metric in A is

defined according to the given data structure whereas in

case of the SOM violations of topology preservation may

occur if the structure of the output space does not match

the topological structure of V In SOMs the topology

preserving property can be used for immediate evaluations

of the resulting map, for instance by interpretation as a

color space, as demonstrated in Section 4.2.2. Topology

preservation also allows the applications of interpolating

schemes such as the parametrized SOM (PSOM) (Ritter,

1993) or interpolating SOM (I-SOM) (Goppert &

Rosenstiel, 1997). A higher degree of topology preser-

vation, in general, improves the accuracy of the map

(Bauer & Pawelzik, 1992).

As pointed out in Villmann et al. (1997) violations of

topographic mapping in SOMs can result in false

interpretations. Several approaches were developed to

judge the degree of topology preservation for a given

map. Here we briefly describe a variant ~P of the well

known topographic product P (Bauer & Pawelzik, 1992).

Instead of the Euclidean distances between the

weight vectors, ~P uses the respective distances dGVðwr;

wr0 Þ of minimal path lengths in the induced Delaunay-

graph GV of the wr: During the computation of ~P for

each node r the sequences nA
j ðrÞ of jth neighbors of r in

A; and nV
j ðrÞ describing the jth neighbor of wr in V;

have to be determined. These sequences and further

averaging over neighborhood orders j and nodes r finally

lead to

~P ¼
1

NðN 2 1Þ

X
r

XN21

j¼1

1

2j
logðQÞ; ð3:8Þ

with

Q ¼ P
j
l¼1

dGV ðwr;wnA
l
ðrÞÞ

dGV ðwr;wnV
l
ðrÞÞ

dAðr; nA
l ðrÞÞ

dAðr; nV
l ðrÞÞ

; ð3:9Þ

and dAðr; r0Þ is the distance between the neuron positions

r and r0 in the lattice A: ~P can take on positive or

negative values with similar meaning as for the original

topographic product P : if ~P , 0 holds the output space

is too low-dimensional, and for ~P . 0 the output space is

too high-dimensional. In both cases neighborhood

relations are violated. Only for ~P < 0 does the output

space approximately match the topology of the input

data. The present variant ~P overcomes the problem of

strongly curved maps which may be judged neighbor-

hood violating by the original P even though the shape

of the map might be perfectly justified (Villmann et al.,

1997).

2 This result is valid for the one-dimensional case and higher-dimensional

ones which separate.
3 The notation ‘magnification factor’ is, strictly speaking, not correct.

Some times it is called (mathematically exact) magnification exponent.

However, the notation ‘magnification factor’ is commonly used (van Hulle,

2000). Therefore we use this notation here.
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3.2. Magnification control and structure adaptation

3.2.1. Magnification control

The first approach to influence the magnification of a

vector quantizer, proposed in DeSieno (1988), is called

the mechanism of conscience yielding approximately the

same winning probability for each neuron. Hence, the

approach yields density matching between input and

output space which corresponds to a magnification factor

of 1. Bauer, Der, and Herrmann (1996) suggested a more

general scheme for the SOM to achieve an arbitrary

magnification. They introduced a local learning parameter

e s for each neuron r with ke sl/PðwrÞ
m in Eq. (3.5),

where m is an additional control parameter. Eq. (3.5) now

reads as

Dwr ¼ e shlðr; s; vÞðv 2 wrÞ: ð3:10Þ

Note that the learning factor e s of the winning neuron s is

applied to all updates. This local learning leads to a

similar relation as in Eq. (3.7)

PðWÞ , PðVÞa
0

; ð3:11Þ

with a0 ¼ aðm þ 1Þ and allows a magnification control

through the choice of m: In particular, one can achieve a

resolution of a0 ¼ 1; which maximizes mutual information

(Linsker, 1989; Villmann & Herrmann, 1998). Application

of this approach to the derivation of the dynamic of TRN

yields exactly the same result (Villmann, 2000).

3.2.2. Structure adaptation

For both neural map types, the SOM and the TRN,

growing variants for structure adaptation are known.

In the growing SOM (GSOM) approach the output A
is a hypercube in which both the dimension and the

respective length ratios are adapted during the learning

procedure in addition to the weight vector learning, i.e.

the overall dimensionality and the dimensions along the

individual directions change in the hypercube. The GSOM

starts from an initial 2-neuron chain, learns according the

regular SOM-algorithm, adds neurons to the output space

according to a certain criterion to be described later,

learns again, adds again, etc. until a prespecified

maximum number Nmax of neurons is distributed. During

this procedure, the output space topology remains of the

form n1 £ n2 £ · · ·; with nj ¼ 1 for j . DA; where DA is

the current dimensionality of A:
4 From there it can grow

either by adding nodes in one of the directions which are

already spanned by the output space or by initialising a

new dimension. This decision is made on the basis of the

receptive fields Vr: When reconstructing v [ V from

neuron r; an error u ¼ v 2 wr remains decomposed along

the different directions, which results from projecting back

the output grid A into the input space V

u ¼ v 2 wr ¼
XDA

i¼1

aiðvÞ
wrþei

2 wr2ei

kwrþei
2 wr2ei

k
þ v0

: ð3:12Þ

Here, ei denotes the unit vector in direction i of A; wrþei

and wr2ei
are the weight vectors of the neighbors of the

neuron r in the ith direction of the lattice A:
5 Considering

a receptive field Vr and determining the first principle

component vPCA of Vr allows a further decomposition of

v
0

: Projection of v
0

onto the direction of vPCA then yields

aDAþ1ðvÞ;

v
0

¼ aDAþ1ðvÞ
vPCA

kvPCAk
þ v

00

: ð3:13Þ

The criterion for the growing now is to add nodes in that

direction which has, on average, the largest of the

expected (normalized) error amplitudes ~ai

~ai ¼

ffiffiffiffiffiffiffiffiffi
ni

ni þ 1

r X
v[Vr

laiðvÞlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPDAþ1
j¼1 a2

j ðvÞ
q ;

i ¼ 1;…;DA þ 1:

ð3:14Þ

After each growth step, a new learning phase has to take

place, in order to readjust the map. For a detailed study of

the algorithm we refer to Bauer and Villmann (1997).

The growing TRN adapts the number of neurons in TRN

whereby the structure between them is re-arranged accord-

ing to the TRN definition (Fritzke, 1995). Hence, it is

capable of representing the data space in a topologically

faithful manner with increasing accuracy and it also realizes

a structure adaptation.

3.3. Relevance learning

As mentioned earlier neural maps are unsupervised

learning algorithms. In case of labeled data one can apply

supervised classification schemes for vector quantization

(VQ). Assuming that the data are labeled, an automatic

clustering can be learned via attaching maps to the SOM or

adding a supervised component to VQ to achieve learning

vector quantization (LVQ) (Kohonen, Lappalainen, &

Saljärvi, 1997; Meyering & Ritter, 1992). Various modifi-

cations of LVQ exist which ensure faster convergence, a

better adaptation of the receptive fields to optimum

Bayesian decision, or an adaptation for complex data

4 Hence, the initial configuration is 2 £ 1 £ 1 £ · · ·;DA ¼ 1:

5 At the border of the output space grid, where not two, but just one

neighboring neuron is available, we use

wr 2 wr2ei

kwr 2 wr2ei
k

or

wrþei
2 wr

kwr2ei
2 wrk

to compute the backprojection of the output space direction ei into the input

space.
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structures, to mention just a few (Kohonen et al., 1997; Sato

& Yamada, 1995; Somervuo & Kohonen, 1999).

A common feature of unsupervised algorithms and LVQ

is the information provided by the distance structure in V;

which is determined by the chosen metric. Learning heavily

relies on this feature and therefore crucially depends on how

appropriate the chosen metric is for the respective learning

task. Several methods have been proposed which adapt the

metric during training (Kaski, 1998; Kaski & Sinkkonen,

1999; Pregenzer, Pfurtscheller, & Flotzinger, 1996).

Here we focus on metric adaptation for LVQ since the

LVQ combines the elegance of simple and intuitive updates

in unsupervised algorithms with the accuracy of supervised

methods. Let cv [ L be the label of input v; L a set of

labels (classes) with #L ¼ NL: LVQ uses a fixed number

of codebook vectors (weight vectors) for each class. Let

W ¼ {wr} be the set of all codebook vectors and cr be the

class label of wr: Furthermore, let Wc ¼ {wrlcr ¼ c} be the

subset of weights assigned to class c [ L:

The training algorithm adapts the codebook vectors

such that for each class c [ L; the corresponding

codebook vectors Wc represent the class as accurately as

possible. This means that the set of points in any given class

Vc ¼ {v [ Vlcv ¼ c}; and the union Uc ¼
S

rlwr[Wc
Vr of

receptive fields of the corresponding codebook vectors

should differ as little as possible. For a given data point v

with class label cv let mðvÞ denote some function which is

negative if v is classified correctly, i.e. it belongs to a

receptive field Vr with cr ¼ cv; and which is positive if v is

classified incorrectly, i.e. it belongs to a receptive field Vr

with cr – cv: Let f : R! R be some monotonically

increasing function. The general scheme of GLVQ aims to

minimize the cost function

Cost ¼
X

v

f ðmðvÞÞ; ð3:15Þ

via stochastic gradient descent. Different choices of f and

mðvÞ yield LVQ or LVQ2.1 as introduced in Kohonen et al.

(1997), respectively, as shown in Sato and Yamada (1995).

Denote by d the squared Euclidean distance of v to the

nearest codebook vector. The choice of f as the sigmoidal

function and

mðvÞ ¼
drþ

2 dr2

drþ
þ dr2

; ð3:16Þ

where drþ
is the squared Euclidean distance of the input

vector v to the nearest codebook vector labeled with crþ
¼

cv; say wrþ
; and dr2

is the squared Euclidean distance to the

best matching codebook vector but labeled with cr2
– crþ

;

say wr2
; yields a powerful and noise tolerant behavior since

it combines adaptation near the optimum Bayesian borders

similarly as in LVQ2.1, with prohibiting the possible

divergence of LVQ2.1 (as reported in Sato and Yamada

(1995)). We refer to this modification as the GLVQ. The

respective learning dynamic is obtained by differentiation of

the cost function (3.15) (Sato & Yamada, 1995)

Dwrþ
¼ e

4f 0lmðvÞ·dr2

ðdrþ
þ dr2

Þ2
ðv 2 wrþ

Þ and

Dwr2
¼ 2e

4f 0lmðvÞ·drþ

ðdrþ
þ dr2

Þ2
ðv 2 wr2

Þ:

ð3:17Þ

To result a metric adaptation we now introduce input

weights l ¼ ðl1;…;lDV
Þ; li $ 0; klk ¼ 1 in order to allow

a different scaling of the input dimensions: substituting the

squared Euclidean metric by its scaled variant

dlðx; yÞ ¼
XDV

i¼1

liðxi 2 yiÞ
2
; ð3:18Þ

the receptive field of codebook vector wr becomes

Vl
r ¼ {v [ V : r ¼ Cl

V!AðvÞ}; ð3:19Þ

with

Cl
V!A : v 7! sðvÞ ¼ argmin

r[A
dlðv;wrÞ; ð3:20Þ

as mapping rule. Replacing Vr by Vl
r and d by dl in the cost

function ‘Cost’ in Eq. (3.15) yields a variable weighting of

the input dimensions and hence an adaptive metric. Now

Eq. (3.17) reads as

Dwrþ
¼ e

4·f 0lmðvÞ·dl
r2

ðdl
rþ

þ dl
r2
Þ2
Lðv 2 wrþ

Þ and

Dwr2
¼ 2e

4·f 0lmðvÞ·dl
rþ

ðdl
rþ

þ dl
r2
Þ2
Lðv 2 wr2

Þ;

ð3:21Þ

with L being the diagonal matrix with entries l1;…; lDV
:

Appropriate weighting factors l can also be determined

automatically via a stochastic gradient descent. In this way

the GLVQ-learning rule (3.17) is augmented as follows

Dlk ¼2 e1·2·f 0lmðvÞ
dl

r2

ðdl
rþ

þ dl
r2
Þ2
ðv 2 wrþ

Þ2k

 

2
dl

rþ

ðdl
rþ

þ dl
r2
Þ2
ðv 2 wr2

Þ2k

!
; ð3:22Þ

with e1 [ ð0; 1Þ and k ¼ 1…DV; followed by normalization

to obtain klk ¼ 1: We term this generalization of the

relevance learning vector quantization (RLVQ) (Bojer,

Hammer, Schunk, & von Toschanowitz, 2001) and GLVQ

generalized relevance learning vector quantization

(GRLVQ) as introduced in Hammer and Villmann (2001a,

2002).

Obviously, the same idea could be applied to any

gradient dynamics. We could, for example, minimize a

different error function such as the Kullback–Leibler

divergence of the distribution which is to be learned and

the distribution which is implemented by the vector

quantizer. This approach is not limited to supervised

tasks. Unsupervised methods such as the NG (Martinetz
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et al., 1993), which obey a gradient dynamics, could be

improved by application of weighting factors in order to

obtain an adaptive metric. Furthermore, in unsupervised

topographic mapping models like the SOM or NG one

can try to learn the relevance of input dimensions subject to

the requirement of topology preservation (Hammer &

Villmann, 2001a,b).

3.4. Further approaches

Beside the above introduced methods further approaches

of neural inspired algorithms are well known. In this context

we have to refer to the family of fuzzy-clustering algorithms

as for instance Fuzzy-SOM (Bezdek & Pal, 1993; Graepel,

Burger, & Obermayer, 1998; Hasenjäger, Ritter, &

Obermayer, 1999), Fuzzy-c-means (Bezdek, Pal, Hathaway,

& Karayiannis, 1995; Gath & Geva, 1989) or other (neural)

vector quantizers based on minimization of an energy

function (Bishop, Svensén, & Williams, 1998; Buhmann &

Kühnel, 1993; Linsker, 1989). For an overview of respective

approaches we refer to Haykin (1994) (neural network

approaches), Duda and Hart, (1973), and Schürmann (1996)

(pattern classification).

4. Application in remote sensing image analysis

4.1. Low-dimensional data: LANDSAT TM multi-spectral

images

4.1.1. Image description

LANDSAT TM satellite-based sensors produce images

of the Earth in seven different spectral bands. The ground

resolution is 30 £ 30 m2 for bands 1–5 and band 7. Band 6

(thermal band) is often dropped from analyses because of

the lower spatial resolution. The LANDSAT TM bands

were strategically determined for optimal detection and

discrimination of vegetation, water, rock formations and

cultural features within the limits of broad band multi-

spectral imaging. The spectral information, associated with

each pixel of a LANDSAT scene is represented by a vector

v [ V # RDV with DV ¼ 6: The aim of any classification

algorithm is to subdivide this data space into subsets of data

points, with each subset corresponding to specific surface

covers such as forest, industrial region, etc. The feature

categories are specified by prototype data vectors (training

spectra).

In the present contribution we consider a LANDSAT TM

image from the Colorado area, USA.6 In addition we have a

manually generated label map (ground truth image) for the

assessment of classification accuracy. All pixels of the

Colorado image have associated ground truth labels,

categorized into 14 classes. The classes include several

regions of different vegetation and soil, and can be used for

supervised learning schemes like the GRLVQ (Table 1).

4.1.2. Analyses of LANDSAT TM imagery

A initial Grassberger–Procaccia analysis (Grassberger &

Procaccia, 1983) yields DGP < 3:1414 for the intrinsic

dimensionality (ID) of the Colorado image.

SOM analysis. The GSOM generates a 12 £ 7 £ 3 lattice

(Nmax ¼ 256) in agreement with the Grassberger–Procaccia

analysis (DGP < 3:1414), which corresponds to a ~P-value

of 0.0095 indicating good topology preservation (Fig. 3).

One way to visualize the GSOM clusters of LANDSAT

TM data is to use a SOM dimension DA ¼ 3 (Gross &

Seibert, 1993) and interpret the positions of the neurons r in

the lattice A as vectors cðrÞ ¼ ðr; g; bÞ in the RGB color

space, where r; g; b are the intensities of the colors red,

green and blue, respectively, computed as clðrÞ ¼ ½ðrl 2

1Þ=ðnl 2 1Þ�255; for l ¼ 1; 2; 3 (Gross & Seibert, 1993).

Table 1

Table of labels and classes occurring in the LANDSAT TM Colorado

image

Class label Ground cover type

a Scotch pine

b Douglas fir

c Pine/fir

d Mixed pine forest

e Supple/prickle pine

f Aspen/mixed pine forest

g Without vegetation

h Aspen

i Water

j Moist meadow

k Bush land

l Grass/pastureland

m Dry meadow

n Alpine vegetation

o Misclassification

Fig. 3. Left: the reference classification for the Landsat TM Colorado

image, provided by M. Augusteijn. Classed are keyed as shown on the color

wedge on the left, and the corresponding surface units are described in

Table 1. Right: cluster map of the Colorado image derived from all six

bands by the 12 £ 7 £ 3 GSOM-solution. Note that, due to the visualization

scheme, which uses a continuous scale of RGB colors described in the text,

this map does not show hard cluster boundaries. More similar colors

indicate more similar spectral classes.

6 Thanks to M. Augusteijn (Univerity of Colorado) for providing this

image.
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Such assignment of colors to winner neurons immediately

yields a pseudo-color cluster map of the original image for

visual interpretation. Since we are mapping the data clouds

from a six-dimensional input space onto a three-dimen-

sional color space dimensional conflicts may arise and the

visual interpretation may fail. However, in the case of

topologically faithful mapping this color representation,

prepared using all six LANDSAT TM image bands,

contains considerably more information than a customary

color composite combining three TM bands (frequently

bands 2, 3, and 3). (Gross & Seibert, 1993).

Application of GRLVQ. We trained the GRLVQ with 42

codebook vectors (three for each class) on 5% of the data set

until convergence. The algorithm converged in , 10 cycles

for e ¼ 0:1 and e1 ¼ 0:01: The GRLVQ produced a

classification accuracy of about 90% on the training set as

well as on the entire data set. The weighting factors resulting

from GRLVQ analysis provide a ranking of the data

dimensions

l5 ð0:1; 0:17; 0:27; 0:21; 0:26; 0:0Þ: ð4:1Þ

Clearly, dimension 6 is ranked as least important with

weighting factor close to 0. Dimension 1 is the second least

important followed by dimensions 2 and 4. Dimensions 3

and 5 are of similarly high importance according to this

ranking. If we prune dimensions 6, 1, and 2, an accuracy of

84% can still be achieved. Pruning dimension 4 brings the

classification accuracy down to 50%, which is a very

significant loss of information. This indicates that the

intrinsic data dimension may not be as low as 2. These

classification results are shown in Fig. 4 with misclassified

pixels colored black and classes keyed by the color wedge.

Use of the scaled metric (3.18) during training (which is

equivalent to having a new input space Vl) of a GSOM

results in a two-dimensional lattice structure the size of

which is 11 £ 10. This is in agreement with a corresponding

Grassberger–Procaccia estimate of the intrinsic data

dimension as DGP
l < 2:261 when this metric is applied.

However, as we saw above and in Fig. 4, reducing the

dimensionality of this Landsat TM image to 2 is not as

simple as discarding the four input image planes that

received the lowest weightings from the GRLVQ. Both the

Grassberger–Procaccia estimate and the GSOM suggest the

intrinsic dimension of 2 for Vl whereas the dimension

suggested by GRLVQ is at least 4. Hence, the (scaled) data

lie on a two-dimensional submanifold in Vl: The

distribution of weights for the two-dimensional lattice

structure is visualized in Fig. 5 for each original (but scaled)

input dimension. All input dimensions, except the fourth,

seem to be correlated. The fourth dimension shows a clearly

different distribution which causes a two-dimensional

representation. The corresponding clustering, visualized in

the two-dimensional ðr; g; 0Þ color space is depicted in Fig.

4. Based on visual inspection this cluster structure compares

better with the reference classification in Fig. 4, upper left,

than the GSOM clustering in Fig. 4. The scaling information

provided to the GSOM by GRLVQ based on training labels

seems to have improved the quality of the clustering.

4.2. Hyperspectral data: the lunar crater volcanic field

AVIRIS image

4.2.1. Image description

A visible – near infrared (0.4 – 2.5 mm), 224-band,

20 m/pixel AVIRIS image of the lunar crater volcanic

Fig. 4. GRLVQ results for the Landsat TM Colorado image. Upper left:

GRLVQ without pruning. Upper right: GRLVQ with pruning of dimensions

1, 2, and 6. Lower left: GRLVQ with pruning dimensions 1, 2, 6, and 4.

Lower right: Clustering of the Colorado image using GSOM with GRLVQ

scaling. For the three supervised classifications, the same color wedge and

class labels apply as in Fig. 3, left.

Fig. 5. The distribution of weight values in the two-dimensional 11 £ 10

GSOM lattice for the non-vanishing input dimensions 1–5 as a result of

GRLVQ-scaling of the Colorado image during GSOM training. Dimension

4 has significantly different weight distribution from all others, while in the

rest of the dimensions the variations are less dramatic. (Please note that the

scaling is different for each dimension.) For visualization the SOM-

Toolbox provided by the Neural Network Group at Helsinki University of

Technology was used.
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field (LCVF), Nevada, USA, was analyzed in order to study

SOM performance for high-dimensional remote sensing

spectral imagery. (AVIRIS is the airborne visible-near

infrared imaging spectrometer, developed at NASA/Jet

Propulsion Laboratory. See http://makalu.jpl.nasa.gov for

details on this sensor and on imaging spectroscopy). The

LCVF is one of NASA’s remote sensing test sites, where

images are obtained regularly. A great amount of accumu-

lated ground truth from comprehensive field studies

(Arvidson et al., 1991) and research results from indepen-

dent earlier work such as Farrand (1991) provide a detailed

basis for the evaluation of the results presented here.

Fig. 6 shows a natural color composite of the LCVF with

labels marking the locations of 23 different surface cover

types of interest. This 10 £ 12 km2 area contains, among

other materials, volcanic cinder cones (class A, reddest

peaks) and weathered derivatives thereof such as ferric

oxide rich soils (L, M, W), basalt flows of various ages (F,

G, I), a dry lake divided into two halves of sandy (D) and

clayey composition (E); a small rhyolitic outcrop (B); and

some vegetation at the lower left corner (J), and along

washes (C). Alluvial material (H), dry (N,O,P,U) and wet

(Q,R,S,T) playa outwash with sediments of various clay

contents as well as other sediments (V) in depressions of the

mountain slopes, and basalt cobble stones strewn around the

playa (K) form a challenging series of spectral signatures for

pattern recognition (Merényi, 1998). A long, NW–SE

trending scarp, straddled by the label G, borders the

vegetated area. Since this color composite only contains

information from three selected image bands (one red, one

green, and one blue), many of the cover type variations

remain undistinguished. They will become evident in the

cluster and class maps below.

After atmospheric correction and removal of excessively

noisy bands (saturated water bands and overlapping detector

channels), 194 image bands remained from the original 224.

These 194-dimensional spectra are the input patterns in the

following analyses.

The spectral dimensionality of hyperspectral images is

not well understood and it is an area of active research.

While many believe that hyperspectral images are highly

redundant because of band correlations, others maintain an

opposite view. Few investigations exist into the ID of

hyperspectral images. Linear methods such as PCA or

determination of mixture model endmembers (Adams,

Smith, & Gillespie, 1993; R.S. Inc, 1997) usually yield

3–8 ‘endmembers’. Optimally topology preserving maps, a

TRN approach (Bruske & Merényi, 1999), finds the spectral

ID of the LCVF AVIRIS image to be between 3 and 7

whereas the Grassberger–Procaccia estimate (Grassberger

& Procaccia, 1983) for the same image is DGP < 3:06:

These surprisingly low numbers, that increase with

improved sensor performance (Green & Boardman, 2000),

result from using statistical thresholds for the determination

of what is ‘relevant’, regardless of application dependent

meaning of the data.

The number of relevant components increases dramati-

cally when specific goals are considered such as what cover

classes should be separated. With an associative neural

network, Pendock (1999) extracted 20 linear mixing

Fig. 6. The Lunar Crater Volcanic Field. RGB natural color composite from an AVIRIS, 1994 image. The full hyperspectral image comprises 224 image bands

over the 0.4–2.5 mm wavelength range, 512 £ 614 pixels, altogether 140 MB of data. Labels indicate 23 different cover types described in the text. The ground

resolution is 20 m/pixel.
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endmembers from a 50-band (2.0–2.5 mm) segment of an

AVIRIS image of Cuprite, Nevada (another well known

remote sensing test site), setting only a rather general

surface texture criterium. Benediktsson et al. (1994)

performed feature extraction on an AVIRIS geologic

scene of Iceland, which resulted in 35 bands. They used

an ANN (the same network that performed the classification

itself) for decision boundary feature extraction (DBFE). The

DBFE is claimed to preserve all features that are necessary

to achieve the same accuracy by using all the original data

dimensions, by the same classifier for predetermined

classes. However, no comparison of classification accuracy

was made using the full spectral dimension to support the

DBFE claim. In their study a relatively low number of

classes, 9, were of interest, and the goal was to find the

number of features that describe those classes. Separation of

a higher number of classes may require more features.

It is not clear how feature extraction should be done in

order to preserve relevant information in hyperspectral

images. Selection of 30 bands from our LCVF image by any

of several methods leads to a loss of a number of the

originally determined 23 cover classes. One example is

shown in Fig. 8. Wavelet compression studies on an earlier

image of the the same AVIRIS scene (Moon & Merényi,

1995) conclude that various schemes and compression rates

affect different spectral classes differently, and none was

found overall better than another, within 25–50% com-

pressions (retaining 75–50% of the wavelet coefficients). In

a study on simulated, 201-band spectral data, (Benediktsson

et al., 1990) show slight accuracy increase across classifi-

cations on 20-, 40-, and 60-band subsets. However, that

study is based on only two vegetation classes, the feature

extraction is a progressive hierarchical subsampling of the

spectral bands, and there is no comparison with using the

full, 201-band case. Comparative studies using full spectral

resolution and many classes are lacking, in general, because

few methods can cope with such high-dimensional data

technically, and the ones that are capable (such as minimum

distance, parallel piped) often perform too poorly to merit

consideration.

Undesirable loss of relevant information can result using

any of these feature extraction approaches. In any case,

finding an optimal feature extraction requires great

preprocessing efforts just to tailor the data to available

tools. An alternative is to develop capabilities to handle the

full spectral information. Analysis of unreduced data is

important for the establishment of benchmarks, exploration

and novelty detection; as well as to allow for the distinction

of significantly greater number of cover types than from

traditional multi-spectral imagery (such as LANDSAT TM),

according to the purpose of modern imaging spectrometers.

4.2.2. SOM analyses of hyperspectral imagery

A systematic supervised classification study was con-

ducted on the LCVF image (Fig. 6), to simultaneously

assess loss of information due to reduction of spectral

dimensionality, and to compare performances of several

traditional and an SOM-based hybrid ANN classifier. The

23 geologically relevant classes indicated in Fig. 6 represent

a great variety of surface covers in terms of spatial extent,

the similarity of spectral signatures (Merényi, 1998), and the

number of available training samples. The full study,

complete with evaluations of classification accuracies, is

described in Merényi et al. (2001). Average spectral shapes

of these 23 classes are also shown in Merényi (1998).

Fig. 7, top panel, shows the best classification, with

92% overall accuracy, produced by an SOM-hybrid ANN

using all 194 spectral bands for input. This ANN first

learns in an unsupervised mode, during which the input

data are clustered in the hidden SOM layer. In this version

the SOM uses the conscience mechanism of DeSieno

(1988), which forces density matching (i.e. a magnifi-

cation factor of 1) as pointed out in Section 3.2 and

illustrated for this particular LCVF image and SOM

mapping in Merenyi (2000). After the convergence of the

SOM, the output layer is allowed to learn class labels via

a Widrow–Hoff learning rule. The preformed clusters in

the SOM greatly aid in accurate and sensitive classifi-

cation, by helping prevent the learning of inconsistent

class labels. Detailed description of this classifier is given

in several previous scientific studies, which produced

improved interpretation of high-dimensional spectral data

compared to earlier analyses (Howell, Merényi, &

Lebofsky, 1994; Merényi, Singer, & Miller, 1996;

Merényi et al., 1997). Training samples for the supervised

classifications were selected based on field knowledge.

The SOM hidden layer was not evaluated and used for

identification of spectral types (SOM clusters) prior to

training sample determination. Fig. 7 reflects the geolo-

gist’s view of the desirable segmentation.

In order to apply maximum likelihood and other

covariance based classifiers, the number of spectral

channels needed to be reduced to 30, since the maximum

number of training spectra that could be identified for shape

all classes was 31. Dimensionality reduction was performed

in several ways, including PCA, equidistant subsampling,

and band selection by a domain expert. Band selection by

domain expert proved most favorable. Fig. 7, bottom panel,

shows the maximum likelihood classification with 30 bands,

which produced 51% accuracy. A number of classes

(notably the ones with subtle spectral differences, such as

N, Q, R, S, T, V, W) were entirely lost. Class K (basalt

cobbles) disappeared from most of the edge of the playa,

and only traces of B (rhyolitic outcrop) remained. Class G

and F were greatly overestimated. Although the ANN

classifier produced better results (not shown here) on the

same 30-band reduced data set than the maximum like-

lihood, a marked drop in accuracy (to 75% from 92%)

occurred compared to classification on the full data set. This

emphasizes that accurate mapping of ‘interesting’, spatially

small geologic units is possible from full hyperspectral

information and with appropriate tools.

NN 1720—1/3/2003—13:58—SUREKHA—64643— MODEL 5

T. Villmann et al. / Neural Networks xx (0000) 1–1510

ARTICLE IN PRESS

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120



UNCORRECTED P
ROOF

Fig. 7. Top: SOM-hybrid supervised ANN classification of the LCVF scene, using 194 image bands. The overall classification accuracy is 92% (Merényi et al.,

2001). Bottom: maximum likelihood classification of the LCVF scene. 30, strategically selected bands were used due to the limited number of training samples

for a number of classes. Considerable loss of class distinction occurred compared to the ANN classification, resulting in an overall accuracy of 51%. ‘bg’ stands

for background (unclassified pixels).
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Discovery in Hyperspectral Images with a SOM. The

previous section demonstrated the power of the SOM in

helping to discriminate among a large number of pre-

determined surface cover classes with subtle differences in

the spectral patterns, using the full spectral resolution. It is

even more interesting to examine the SOM’s performance

for the detection of clusters in high-dimensional data. Fig. 8

displays a 40 £ 40 SOM trained with the conscience

algorithm (DeSieno, 1988). The input data space was the

entire 194-band LCVF image. Groups of neurons, altogether

32, that were found to be sensitized to groups of similar

spectra in the 194-dimensional input data, are indicated by

various colors. The boundaries of these clusters were

determined by a somewhat modified version of the U-

matrix method (Ultsch, 1992). The density matching

property of this variant of the SOM facilitates proper

mapping of spatially small clusters and therefore increases

the possibility of discovery. Examples of discoveries are

discussed later. Areas where no data points (spectra) were

mapped are the grey corners with uniformly high fences,

and are relatively small. The black background in the SOM

lattice shows areas that have not been evaluated for cluster

detection. The spatial locations of the image pixels mapped

onto the groups of neurons in Fig. 8, are shown in the same

colors in Fig. 9. Color coding for clusters that correspond to

classes or subclasses of those in Fig. 7, top, is the same as in

Fig. 7, to show similarities. Colors for additional groups

were added.

The first observation is the striking correspondence

between the supervised ANN class map in Fig. 7, top panel,

and this clustering: the SOM detected all classes that were

known as meaningful geological units. The ‘discovery’ of

classes B (rhyolitic outcrop, white), F (young basalt flows,

dark grey and black, some shown in the black ovals), G (a

different basalt, exposed along the scarp, dark blue, one

segment outlined in the white rectangle), K (basalt cobbles,

light blue, one segment shown in the black rectangle), and

other spatially small classes such as the series of playa

deposits (N, O, P, Q, R, S, T) is significant. This is the

capability we need for sifting through high-volume, high-

information-content data to alert for interesting, novel, or

hard-to-find units. The second observation is that the SOM

detected more, spatially coherent, clusters than the number

of classes that we trained for in Fig. 7. The SOM’s view of

the data is more refined and more precise than that of the

geologist’s. For example, class A (in Fig. 7) is split here into

a red (peak of cinder cones) and a dark orange (flanks of

cinder cones) cluster that make geologic sense. The maroon

cluster to the right of the red and dark orange clusters at the

bottom of the SOM fills in some areas that remained

unclassified (bg) in the ANN class map, in Fig. 7. An

example is the arcuate feature at the base of the cinder cone

in the white oval that apparently contains a material

different enough to merit a separate spectral cluster. This

material fills other areas, also unclassified in Fig. 7,

consistently at the foot of cinder cones (another example

is seen in the large black oval). Evaluation of further

refinements are left to the reader. Evidence that the SOM

mapping in Fig. 9 approximates an equiprobabilistic

mapping (that the magnification factor for the SOM in

Fig. 9 is close to 1), using DeSieno’s algorithm, is presented

in Merenyi (2000).

GSOM analysis of the LCVF hyperspectral image. As

mentioned earlier, earlier investigations yielded an intrinsic

spectral dimensionality of 3–7 for the LCVF data set

Fig. 9. The clusters from Fig. 8 remapped to the original spatial image, to

show where the different spectral types originated from. The relatively

large, light grey areas correspond to the black, unevaluated parts of the

SOM in Fig. 8. Ovals and rectangles highlight examples of small classes

with subtle spectral differences, discussed in the text. 32 clusters were

detected, and found geologically meaningful, adding to the geologist’s view

reflected in Fig. 7, top panel.

Fig. 8. Clusters identified in a 40 £ 40 SOM. The SOM was trained on the

entire 194-band LCVF image, using the DeSieno algorithm (DeSieno,

1988).

NN 1720—1/3/2003—14:05—SUREKHA—64643— MODEL 5

T. Villmann et al. / Neural Networks xx (0000) 1–1512

ARTICLE IN PRESS

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344



UNCORRECTED P
ROOF

(Bruske & Merényi, 1999). The Grassberger–Procaccia

estimate (Grassberger & Procaccia, 1983) DGP
A < 3:06

corroborates the lower end of the above range, suggesting

that the data are highly correlated, and therefore a drastic

dimensionality reduction may be possible. However, a

faithful topographic mapping is necessary to preserve the

information contained in the hyperspectral image. In

addition to the conscience algorithm explicit magnification

control (Bauer et al., 1996) according to Eq. (3.10) and the

growing SOM (GSOM) procedure, as extensions of

the standard SOM, are suitable tools (Villmann, 2002).

The GSOM produced a lattice of dimensions 8 £ 6 £ 6 for

the LCVF image, which represents a radical dimension

reduction, and it is in agreement with the Grassberger–

Procaccia analysis earlier. The resulting false color

visualization of the spectral clusters is depicted in Fig. 10.

It shows a segmentation similar to that in the supervised

classification in Fig. 7, top panel. Closer examination

reveals, however, that a number of the small classes with

subtle spectral differences from others were lost (B, G, K, Q,

R, S, T classes in Fig. 7, top panel). In addition, some

confusion of classes can be observed. For example, the

bright yellow cluster appears at locations of known young

basalt outcrops (class F, black, in Fig. 7, and it also appears

at locations of alluvial deposits (class H, orange in Fig. 7,

top panel). This may inspire further investigation into the

use of magnification control, and perhaps the growth criteria

in the GSOM.

5. Conclusion

SOMs have been showing great promise for the

analyses of remote sensing spectral images. With recent

advances in remote sensor technology, very high-dimen-

sional spectral data emerged and demand new and

advanced approaches to cluster detection, visualization,

and supervised classification. While standard SOMs

produce good results, the high dimensionality and large

amount of hyperspectral data call for very careful

evaluation and control of the faithfulness of topological

mapping performed by SOMs. Faithful topological map-

ping is required in order to avoid false interpretations of

cluster maps created by an SOM. We summarized several

new approaches developed in the past few years.

Extensions to the standard Kohonen SOM, the growing

SOM, magnification control, and GRLVQ were discussed

along with the modified topographic product ~P: These

ensure topology preservation through mathematical con-

siderations. Their performance, and relationship to a

former powerful SOM extension, the DeSieno conscience

mechanism was discussed in the framework of case

studies for both low-dimensional traditional multi-spectral,

and very high-dimensional (hyperspectral) imagery. The

Grassberger–Procaccia analysis served for an independent

estimate of the determination of ID to benchmark ID

estimation by GSOM and GRLVQ. While we show some

excellent data clustering and classification, there remains

certain discrepancy between theoretical considerations and

application results, notably with regard to ID measures

and the consequences of dimensionality reduction to

classification accuracy. This will be targeted in future

work. Finally, since it is outside the scope of this

contribution, we want to point out that full scale

investigations such the LCVF study also have to make

heavy use of advanced image processing tools and user

interfaces, to handle great volumes of data efficiently, and

for effective graphics/visualization. References to such

tools are made in the cited literature on data analyses.

Acknowledgements

E.M. has been supported by the Applied Information

Systems Research Program of NASA, Office of Space

Science, NAG59045 and NAG5-10432. Contributions by

Dr William H. Farrand, providing field knowledge and data

for the evaluation of the LCVF results, are gratefully

acknowledged. Khoros (Khoral Research, Inc.) and Neural-

Works Professional (NeuralWare) packages were utilized in

research software development.

References

Adams, J. B., Smith, M. O., & Gillespie, A. R. (1993). Imaging

spectroscopy: Interpretation based on spectral mixture analysis. In C.

Peters, & P. Englert (Eds.), Remote geochemical analysis: Elemental

and mineralogical composition (pp. 145–166). New York: Cambridge

University Press.

Fig. 10. GSOM-generated cluster map of the same 194 band hyperspectral

image of the Lunar Crater Volcanic Field, Nevada, USA, as in Fig. 7. It

shows groups similar to those in the supervised classification map in Fig. 7,

top panel. Subtle spectral units such as B, G, K, Q, R, S, T were not

separated, however, and for example, the yellow unit appears at both the

locations of known young basalt deposits (class F, black, in Fig. 7, top

panel) and at locations of alluvial deposits (class H, orange, in Fig. 7).

NN 1720—1/3/2003—14:06—SUREKHA—64643— MODEL 5

T. Villmann et al. / Neural Networks xx (0000) 1–15 13

ARTICLE IN PRESS

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456



UNCORRECTED P
ROOF

Arvidson, R. E., M.D.-B,, et al. (1991). Archiving and distribution of

geologic remote sensing field experiment data. EOS, Transactions of

the American Geophysical Union, 72(17), 176.

Bauer, H.-U., Der, R., & Herrmann, M. (1996). Controlling the

magnification factor of self-organizing feature maps. Neural Compu-

tation, 8(4), 757–771.

Bauer, H.-U., & Pawelzik, K. R. (1992). Quantifying the neighborhood

preservation of self-organizing feature maps. IEEE Transactions on

Neural Networks, 3(4), 570–579.

Bauer, H.-U., & Villmann, T. (1997). Growing a hypercubical output space

in a self-organizing feature map. IEEE Transactions on Neural

Networks, 8(2), 218–226.

Benediktsson J. A., Sveinsson, J. R., et al (1994). Classification of very-

high-dimensional data with geological applications. Proceedings of

MAC Europe 91 (pp. 13–18), Germany: Lenggries.

Benediktsson, J. A., Swain, P. H., et al (1990). Classification of very high

dimensional data using neural networks. IGARSS’90 10th Annual

International Geoscience and Remote Sensing Symposium (Vol. 2, p.

1269).

Bezdek, J., & Pal, N. R (1993). Fuzzification of the self-organizing feature

map: Will it work? Proceedings of the SPIE—The International Society

for Optical Engineering, 2061 (p. 142–162).

Bezdek, J. C., Pal, N. R., Hathaway, R. J., & Karayiannis, N. B (1995).

Some new competitive learning schemes. Proceedings of the SPIE—

The International Society for Optical Engineering 2492 (pt. 1) (pp.

538–549) (Applications and Science of Artificial Neural Networks

Conference, 17–21 April 1995, Orlando, FL, SPIE).

Bishop, C. M., Svensén, M., & Williams, C. K. I. (1998). GTM:

the generative topographic mapping. Neural Computation, 10,

215–234.

Bojer, T., Hammer, B., Schunk, D., & von Toschanowitz, K. T (2001).

Relevance determination in learning vector quantization. Proceedings

of European Symposium on Artificial Neural Networks (ESANN’2001)

(pp. 271–276). Brussels, Belgium: D facto publications.
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