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Abstract— Recent advances in analysis of fMRI have estab-
lished the existence of functional sub-networks in the human
brain that are active during the performance of visual, motor,
language, and other tasks. We describe two computational
methods of delineating functional sub-networks that are active
when an individual performs an approach-avoidance paradigm.
The paradigm consisted of presentation of images of pleasant
and unpleasant faces that were shown to nine volunteers for
10 seconds after a preceding rest period of 50 seconds during
which a green computer screen was displayed. The subjects
were instructed to squeeze a ball with their right hand if they
judged the face to be unpleasant, in which case the unpleasant
face would disappear. An fMRI BOLD activation was created
and used as input for two different kinds of clustering method:
The MCODE algorithm based on graph-theoretical analysis and
a Conscious Self-Organizing Map (CSOM). Clustering obtained
with both methods was based on the temporal variations of the
fMRI BOLD signal activity. Both methods identified distinct
regions in the brain which were separated by long-range
connections. The MCODE algorithm was supplied with time-
courses for activated voxels when performing the paradigm,
while the CSOM clustering used all voxels in the brain. Both
yielded similar clusters for activated voxels. The combination
of MCODE and CSOM presents a new approach in identifying
functional subunits in the human brain and warrants further
investigation into the subject.

I. BACKGROUND

Functional magnetic resonance imaging (fMRI), which
makes use of the blood-oxygenation-level-dependent
(BOLD) signal, is an accepted method to indirectly infer
neural activation. Activation maps of the brain can be
constructed displaying the level of engagement of brain
regions during a goal-directed task or in response to a
stimulus.

Research in recent years has focused on revealing the or-
ganization and interrelationship of spatially distinct brain re-
gions, i.e., their functional connectivity, by a variety of com-
putational methods including statistical, neural, and graph-
based approaches. Clustering, in particular, has emerged as
a viable analytical method.
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We compare two clustering techniques. One, MCODE, is
based on theoretical graph-network analysis [1], the other
involves Conscious Self-Organizing Maps (CSOMs) [2] to
extract functional sub-networks or clusters based on the
temporal evolution of the BOLD signal intensity of voxels
in the brain of subjects when executing the above approach-
avoidance paradigm. Both are semi-automated methods and
are entirely data driven, i.e., no a-priori assumptions are
made about the data statistics prior to the analysis. Identified
subnetworks are projected back into the anatomical space
of the subject to help identify their function based on their
anatomical location. MCODE has been used to identify
clusters in protein-protein interaction networks [3]. A variety
of SOMs have been widely applied for clustering problems.
Previous work on fMRI has been reported with Kohonen
SOMs [4], [5], [6], [7], [8], [9], [10], [11], but we do not
know of fMRI clustering with CSOM.

II. DATA ANALYSIS APPROACH

A. The Experimental Paradigm

The paradigm used in this work to study the two com-
putational methods consisted of presentation of images of
pleasant and unpleasant faces (5 each) that were shown to
nine subjects for 10 seconds after a preceding rest period of
50 seconds during which time a green computer screen was
displayed. The subjects were instructed to squeeze a ball with
their right hand if they judged the face to be unpleasant, in
which case the unpleasant face would disappear. The visual
stimulus and the clenching of the subject’s right hand evoked
prominent increases in the BOLD signal bilaterally in the
visual cortex and in the left sensory – motor cortex as well as
in the frontal lobes, Wernickes area, cingulate cortex, insula,
basal ganglia and thalamus. The resulting time variations of
the BOLD activation, recorded in fMRI data cubes, are the
target of our analyses.

B. Conscience SOM for Clustering fMRI Time Courses

SOMs are competitive unsupervised neural map archi-
tectures which, in general, simultaneously accomplish two
things by learning. a) Adaptive vector quantization (VQ) of
an n-dimensional data manifold M ⊂ Rn to approximate the
data distribution as well as possible, with a given number of
N n-dimensional VQ prototypes wi, i = 1, · · ·N . The VQ
prototype vectors are the weight vectors of the SOM neurons
assigned to locations in a rigid grid, the SOM lattice. b)
The other aspect is a topological ordering (indexing) of the
VQ prototypes wi by their similarities on the SOM lattice.
This ordering of the prototypes produces an expression of
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the topology of the data manifold M on the SOM lattice
(which is usually 2-dimensional). The ordered VQ prototype
vectors thus express both the statistical distribution and the
topology of the data manifold. The learning procedure that
achieves this was proposed by Kohonen in the early 80’s and
is found in standard texts, e.g., [12]. We use a subsequently
developed version, the CSOM [2] because of its ability to
enforce equiprobabilistic (maximum entropy) mapping of the
data points x ∈ M to the VQ prototypes. This facilitates
optimal information transfer about the data distribution (with
the given N prototypes). For brevity, we give the CSOM
learning algorithm and indicate where it differs from the
Kohonen SOM.

After initialization of the prototypes wi, learning consists
of many cycles (indexed by t) through the following steps.
Competition: For a random x ∈ M find the closest (winner)
prototype wc:

c(x) = argmini(||x−wi|| − biasi), i = 1, · · · , N (1)

where the scalar quantity biasi is computed from the winning
frequency Fi of wi as biasi = γ(1/N−Fi), and the winning
frequencies of all prototypes are updated after winner selec-
tion (see details in [2]). (γ is a user-controlled parameter.)
The biasi is the conscience, inducing infrequent winners to
win more, frequent winners to win less data points. γ = 0
reduces eq. (1) to the winner selection of the Kohonen SOM.
Weight adaptation: the winner wc and its neighbors in the
SOM lattice are moved closer to x.

wi(t + 1) = wi(t) + α(t)hc,i(t)(x−wi) (2)

The SOM lattice region influenced by the update is defined
by the (typically) radially decreasing neighborhood function
hc,i(t) centered over the winner. For the Kohonen SOM, it
is often a Gaussian, and initially must cover most of the
SOM lattice. Both hc,i(t) and the learning rate α(t) must
decrease with time t in order to achieve topologically correct
ordering of the prototypes in the SOM grid (or, equivalently,
topology preserving mapping of the data points). The CSOM
has another advantage: it only needs to update the immediate
neighbors in eq. (2) because cooperation across the lattice is
ensured by the conscience mechanism. This leads to substan-
tial savings in computation. The CSOM’s equiprobabilistic
behavior was shown in [2] only for 1-dimensional data.
For higher-dimensional data [13], [14] provided experimental
verification.

Our use of SOMs, in general, differs from most fMRI
applications in several ways: We use relatively large SOM
lattices, which allows proper representation of many clusters
with widely varying sizes, shapes, densities, proximities.
Small SOM lattices, especially those where the number of
prototypes is very close to the extracted clusters, cannot
delineate clusters with irregular properties. We can afford
to apply larger lattices because the CSOM mitigates the
computational impact of a larger SOM lattice by performing
well with small neighborhood. We have developed tools to
determine if a learned SOM has topology violations that
interfere with correct cluster extraction [13]. While SOMs

most likely will have topology violations for fMRI data
as pointed out by [9], after sufficient and correct learning
most violations are inconsequential for clustering [13] or (the
usually small number of severe violations) can be understood
and the affected areas excluded from cluster extraction or
“hand-repaired”. Identification of clusters from a learned
SOM is done by identifying groups of similar prototypes in
contiguous lattice areas (a.k.a. “clustering the SOM”). This is
still mostly achieved by visual inspection of relatively small
SOMs in published fMRI analyses. Good examples to the
contrary are, e.g., the “node merging” by [15] or [11]. To
cluster the SOM prototypes we use interactive visualizations
that provide, based on various metrics of the data-space
distances of the SOM prototypes, sharper delineation of
cluster boundaries than more customarily used visualizations.
In this work we relied on the modified U-matrix (mU-
matrix) [16] for its easy interpretation and low computational
cost. The mU-matrix improves on the popular U-matrix [17]
when the number of data points is much larger than the
number of SOM prototypes, as in the case of fMRI data.
However, its simplicity forces conservative cluster extraction,
leaving prototypes unlabeled at boundaries and consequently
a number of data points unclustered. To remedy this we will
also apply our more advanced tools [13] following this proof
of concept study.

C. Clustering fMRI Time Courses With MCODE

To identify functional sub-networks, the Molecular
Complex Detection (MCODE) algorithm as implemented
in the Cytoscape ClusterViz plugin was employed
(http://code.google.com/p/clusterviz-cytoscape/). This
algorithm identifies locally dense regions in a network graph
with a node-weighting scheme. The algorithm uses the
concept of k-cores of the network graphs, which are parts
of the graph where every node is connected to other nodes
by at least k edges. From this definition, it is apparent that
the highest k-core is the most densely connected region of
a graph. MCODE consists of three stages:

1) Network Weighting
The highest k-core for a node is identified for all its
neighbors. For this k-core, its density is calculated as
the number of edges divided by the number of possible
edges. A score for this node is then calculated as the
product of k times the density.

2) Complex Detection
Starting with the node with the highest score (seed
node), the algorithm moves outward including con-
nected nodes until a threshold score (as percentage of
score of the seed node) is reached.

3) Optional Post-processing
Optionally, 2-core nodes can be removed or additional
nodes can be included in the cluster if their neighbor-
hood density is larger than a certain (“fluff”) parameter.
None of these post-processing options were used.

The MCODE algorithm was chosen to identify functional
brain sub-networks because compared to other clustering
techniques only nodes with a high connectivity (i.e., high
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synchronicity ) are segmented into clusters and nodes with
low connectivity (i.e., low synchronicity) are discarded. An-
other advantage is the unique allocation of certain voxels
to a certain brain sub-network. The clusters obtained with
MCODE can therefore be considered to each consist of the
most highly synchronized voxels thereby emphasizing the
separation of the fMRI activation into functionally distinct
units.

III. RESULTS

We applied CSOM clustering in a pilot study using data
from a single subject who was shown only three unpleas-
ant faces. Clustering in all nine subjects was studied with
MCODE. With CSOM clustering we used all available
voxels from the entire brain (i.e., we did not pre-select
voxels with activation levels that exceeded some threshold).
For the image data available for our subject, this yielded
approximately 133,000 time courses to process, in 82 brain
slices. The time courses are the n-dimensional input vectors
for clustering, where n = 62. We subjected the fMRI data
cube to preprocessing consisting of several customary steps
that proved beneficial for these data: geometric rectification,
motion correction, and temporal smoothing. The effects of
these procedures versus some others not included in the
preprocessing were experimentally determined and described
by [18]. As an important aspect, the original voxel size of
3.3 x 3.3 x 5.0 mm3 was transformed to 2 x 2 x 2 mm3

voxels by the geometric rectification. The time courses that
are input to the CSOM come from these transformed voxels.

Since SOM learning is a summarizing and noise mitigating
process, it is not limited by the number of data points (time
courses) as severely as, for example, graph-based algorithms
which operate on matrices of pair-wise distances of points.
The ability of SOMs’ to explore all data points for simi-
larity groups holds the potential of discovering previously
unknown activation / deactivation patterns. We used a 40
x 40 SOM, a size sufficient for expressing the relevant
properties of the 50 or so clusters we found [18]. It provided
an approximately 100-fold volume reduction for this data
set while preserving the noise-reduced representation of the
time-courses in the VQ prototypes. As a next step, the
average time courses of the identified clusters may be further
analyzed to study correlations between functional areas of
the brain.

A representative image showing several SOM clusters that
cover known functional areas, is displayed in Fig. 1. Only
a few selected clusters are shown here in order to facilitate
comparison with the MCODE results. AFNI [19] was used to
display the clustering results superimposed on the anatomical
background.

The MCODE clustering algorithm succeeded in identify-
ing functional subnetworks within the fMRI BOLD activa-
tion map in all nine subjects. A typical example is shown
in Fig. 2. Two different kinds of subnetworks could be
distinguished, focal subunits, which were limited to specific
anatomical regions, in this case, visual cortex–(red and bright
green) and motor cortex–(orange) and distributed subunits

Fig. 1. Selected SOM clusters in sagittal slice 31: Clusters are super-
imposed on the anatomical gray-scale background, and shown in AFNI.
The striping noise, present in this data set, has been suppressed for clarity.
The clusters, keyed by the color wedge, coincide with functional areas as
follows. A: Wernickes area J: pre- and postcentral gyri E, r: visual cortex

Fig. 2. Clusters identified by the MCODE method in another subject (lateral
sagittal slice). Focal subnetworks: visual cortex (red and bright green) and
motor cortex (orange). Distributed subnetworks spanning several anatomical
regions (yellow and dark green).

(yellow and dark green) which spanned several anatomical
regions. These findings are in agreement with the small
world behavior postulated for the functional connectivity of
the human brain, i.e., highly connected focal regions that
communicate with each other via long range connections.

Computation time for graph models, including MCODE,
are more dependent on the number of data vectors than vector
quantization processes (such as the SOM). The size of the
initial graph, which is segmented to obtain clusters, scales
quadratically with the number of fMRI time courses, and can
create challenges for memory use and computing time.

To probe the interaction of brain regions when performing
the paradigm introduced above, MCODE analysis was lim-
ited to activated voxels (resized to 5 x 5 x 5 mm3) identified
by a Student t-test group analysis of the fMRI BOLD
activation maps from the nine subjects after transformation
into a standard space (Talairach atlas).
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Both SOM and MCODE identified synchronized regions
in the brain based on the time course of the BOLD signal
intensity. While the CSOM analyzed voxel signal intensities
of the entire brain, MCODE as applied here focused on
voxels which were activated when performing the paradigm
of interest. For activated voxels both approaches appear
to have found very similar functional units. These two
independent complementary methods may provide a valuable
tool set to study brain activation in fMRI data.
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