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Abstract—We propose a new similarity measure, Combined
Connectivity and Spatial Adjacency (CCSA), to be used in
hierarchical agglomerative clustering (HAC) for automated seg-
mentation of Self-Organizing Maps (SOMs, Kohonen [1]). The
CCSA measure is specifically designed to assist segmentation
of large, complex, functional image data by exploiting general
spatial characteristics of such data. The proposed CCSA measure
is constructed from two strong indicators of cluster structure:
the degree of localization of data points in physical space and
the degree of connectivity of SOM prototypes (as defined by
Taşdemir and Merényi [2]). The new measure is expected to
enhance cluster capture in large functional image data cubes such
as hyperspectral imagery or fMRI brain images, where many
relevant clusters exist with widely varying statistical properties
and in complex relationships both in feature space and in physical
(image) space. We demonstrate the effectiveness of our approach
using the CCSA measure on progressively complex synthetic
spatial data and on real fMRI brain data.

I. BACKGROUND AND MOTIVATION

We propose a new automated SOM clustering algorithm
which is expected to benefit spatial image data in general and
large functional spatial image data (such as spectral image
cubes or fMRI data cubes) in particular. Spatial image cubes
record physical measurements that are made on regular grids
(in 2D pixel footprints for spectral imagery, or in 3D voxels
for fMRI). The (typically) many-dimensional response signals
— such as spectral signatures of surface materials in remote
sensing imagery, or time courses of neuron responses in
fMRI — in each grid cell are the high-dimensional (high-
D) feature vectors input to clustering. The high spatial, and
high spectral or temporal resolution admits the delineation of
many relevant clusters, and the cluster structure in these data
is usually very complex, posing a large challenge in general.
In addition, the measured signals (the feature vectors) are
almost always mixtures of responses from different species
at cluster boundaries (spectral signatures of different materials
in a pixel, or time courses of neurons contained in a voxel but
belonging to different functional brain areas) causing overlaps.
The CCSA measure is designed to address this difficulty in
the context of automated SOM segmentation, by incorporating
cluster localization in the measurement grid.

While the severity of the cluster overlap, in general, de-
pends on the pixel or voxel size over which multiple signals

are integrated, there are particular differences in the mixing
characteristics of different functional image data. In particular,
fMRI data that we use for a demonstration in this paper, has
mixed time courses over relatively large voxels (voxel size is a
trade-off for high temporal resolution), where the similarity of
the individual time courses — on average — is higher than, for
example, the average similarity of signatures in a hyperspectral
image cube. This results in relatively high density at cluster
boundaries, and small distances of SOM prototypes at these
boundaries. This challenge cannot be overcome simply by
using larger SOMs because the inherent cohesion in the data
only causes overfitting by too many prototypes as shown in
O’Driscoll et al. [3]. The CCSA measure offers the possibility
of tuning for the general characteristics of particular types of
functional image data.

A. Related Works on Automated SOM Clustering

Interactive SOM clustering uses a variety of visualizations
to aid the user in extracting clusters. While the results are
generally superior to results of automated clusterings, it takes
considerable time and it is often non-repeatable due to user
subjectivity, the level of expertise, and other biases. This is
further exacerbated by the growing complexity of data such
as in large functional image data sets. The SOM, however, is
outstanding at learning the manifold structure of these data,
therefore automation of the SOM segmentation that matches
the success of interactive SOM clustering is highly desirable
for speed and repeatability of high-quality clustering. Follow-
ing we review automated SOM clustering methods applied to
spatial image data.

Vesanto and Alhoniemi [4] used a hierarchical agglom-
erative clustering (HAC) with single, average, and complete
linkages combined with SOM based distance during the con-
struction phase, and used a gap criterion for pruning the
dendrogram. This method produced clusters of prototypes that
were contiguous in SOM space and similar in feature space.
They produced clusters that represented the majority of the
true clusters well, but often missed outliers and had poor
representation of the edge of the cluster boundaries.

Chuang et al. [5] and Chiu et al. [6] used fuzzy C-means to
group SOM prototypes of fMRI brain images. Both analyzed
only a few brain slices and were able to discover a handful of
clusters. Although the fuzzy C-means method was successful978-1-5090-6638-4/17/$31.00 c� 2017 IEEE
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for their purpose, the approach assumes hyper-elliptical data
structure therefore dramatically limiting the discovery of the
natural data structure.

Peltier et al. [7] relied on a HAC method using the
minimum Euclidean distance between SOM prototypes for
identifying clusters of whole-brain fMRI data. Despite the
increased complexity of the data (compared to using a few
brain slices), this produced more interpretable clusters and a
better alignment with expected functional brain areas than the
fuzzy C-means approaches. However, this method still only
yielded a handful of highly localized clusters.

Liao et al. [8] proposed a spatio-temporal metric to segment
SOMs of whole-brain fMRI data with a HAC method. This
metric folded in information about the SOM lattice distance
between the prototypes, imposing a proximity constraint on
the clusters in SOM space, while using the correlation between
prototypes in feature space to group prototypes. The use of this
similarity measure resulted in at most a minimal improvement
over Peltier et al. [7]. This was most likely a result of the small
(10 x 10) SOM employed, where the contiguity constraint had
a negligible impact on the overall cluster structure.

A HAC method using the nearest neighbor rule for points
in feature space was successfully applied to multiple types of
data, ranging from hyperspectral satellite images by Gonçalves
et al. [9] to EEG data by Sommer and Golz [10]. Gonçalves
et al. [9] is of particular interest because it incorporated
information from feature space to remove prototypes with large
feature space dispersion from clustering at the initialization
of the HAC method. These prototypes represented areas of
transition between two or more clusters, thus, by extension,
implicitly included some information from physical space.

Taşdemir et al. [11] used, in an agglomerative HAC
method, a connectivity measure between and within clus-
ters, which was computed from connectivities of prototypes.
Connectivity between two prototypes (CONN) was defined
in Taşdemir and Merényi [2] as the number of data points
which select that pair of prototypes as their best matching unit
(BMU) and second BMU. This approach was successful on
both synthetic data and real hyperspectral imagery, albeit with
relatively low cluster complexity. The use of connectivity as
a similarity measure in automated clustering appears a natural
extension of its successful application in interactive SOM
segmentation through the CONNvis visualization (proposed
by Taşdemir and Merényi [2]) in previous work, including
interactive clustering of fMRI data (O’Driscoll et al. [3]).

The similarity measures in the above works used infor-
mation from the feature space, from the SOM lattice, or
combinations thereof, to extract clusters. We propose to utilize,
in addition to the above, an as yet untapped resource, the
exploitation of cluster relations in the physical space of spatial
image data. Our novel contribution is the quantification of clus-
ter localization in physical space. This is something that the
interactive analyst (consciously or otherwise) also applies to
spatial data. We show that automated SOM segmentation with
our proposed measure, combining cluster contiguity constraints
in physical, feature, and SOM space, is as good — or better
— than interactive clustering, for large, complex, functional
image data.

II. PROPOSED CLUSTERING METHOD FOR SPATIAL DATA

To cluster data with a SOM, we use the usual two-step
approach. The first step is to obtain a learned SOM, the
second is to group the SOM prototypes into clusters, using
our proposed Connectivity and Spatial Adjacency (CCSA)
similarity measure in hierarchical agglomerative clustering
(HAC).

A. Construction of the CCSA Similarity Measure

The CCSA uses information from three different spaces,
illustrated in Fig. 1. Physical space is the grid of pixels or
voxels where the feature vectors are measured and where they
are indexed by the locations of the measurements. This grid is
2D for hyperspectral and other common image data, and 3D
in the case of fMRI data. Feature space is the space where
the feature vectors (spectral signatures at the grid cells or
time courses in voxels), as well as the SOM prototypes, exist.
SOM space is the SOM lattice of neurons (typically 1D or
2D). CCSA uses physical and SOM space explicitly in its
formulation, whereas it uses feature space implicitly through
a prototype connectivity measure described below.

Fig. 1. Illustration of physical space, feature space, and SOM space.

CCSA is constructed from two terms, as defined below.
The variables used in this formulation are listed in Table I.

The first term of CCSA determines the degree of localiza-
tion (the degree of co-occurrence) between two clusters I and
J in physical (image) space. In spatial images, tight physical
proximity of two clusters often indicates a high probability
that they are similar and can be merged. If instances (patches)
of the same pair of clusters occur in similar proximity to
one another within multiple disconnected spatial areas, this
probability increases. Examples are the occurrence of the
same pair of land-cover clusters in each others’ vicinity (e.g.,
patches of the same crop developed slightly differently) in
different spatial regions in a remote sensing image; or a series
of similarly activated spatially adjacent regions at symmetric
physical locations in a fMRI brain image (e.g., subregions of
the visual cortex). Therefore it is important to appropriately
reward the merging of clusters that show the same close
configuration within multiple disconnected spatial regions as in
the above example. At the same time, we need to appropriately
penalize the potential merge of clusters that appear in multiple
regions but which are already well-distinguished from others
(not systematically co-occurring with another cluster), and
should not be merged.
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TABLE I. DEFINITION OF VARIABLES IN CONSTRUCTION OF CCSA

I , J Cluster labels for clusters I and J

XI, XJ Sets of data points in physical space (i.e., sets of

image locations [x, y] or [x, y, z]) belonging to I and J

ix, jx Index of data points of cluster I and J ,

i.e., ix 2 XI and jx 2 XJ

|.| Cardinality of a given set

dPh Distance in physical space, city-block if physical space is

discrete and Euclidean if physical space is continuous

dSOM Distance in SOM lattice, city-block

A(.) Surface area in physical space at given radius

For discrete physical space the following are used:

2D A(dPh(ix, jx)) = 4 ⇥ dPh(ix, jx)

3D A(dPh(ix, jx)) = 4 ⇥ dPh(ix, jx)
2 + 2

For continuous physical space the following are used:

2D A(dPh(ix, jx)) = 2⇡dPh(ix, jx)

3D A(dPh(ix, jx)) = 4⇡dPh(ix, jx)

CADJ Cumulative adjacency as defined by Taşdemir and Merényi [2]

CI, CJ Sets of prototypes (i.e., sets of SOM grid locations [x, y])

belonging to clusters I and J

ip, jp Index of prototypes of clusters I and J ,

i.e., ip 2 CI and jp 2 CJ

RFip, RFjp Receptive field of prototypes ip and jp

tSOM User specified threshold to limit contribution to CCSA

from SOM neighborhood of radius tSOM

We measure this localization by the adaptation of a radial
distribution function (RDF). RDF, or pair correlation function,
which is traditionally used in statistical mechanics and material
science to describe how the density of particles varies as a
function of distance from a reference particle. The RDF is
the probability of finding a particle at a given distance from a
reference particle and is calculated by computing the density of
particles on a surface area at a given distance. To convert this
function to a single numerical value, we modify the RDF by
integrating the density of consecutive spherical shells around
a given point, giving us a total sum of the surface densities.
Then by averaging over all points in the cluster and scaling this
term we obtain eq. (1) under the hypothesis that two clusters
are merged. Since this is an average over all points in a given
cluster, it allows us to reward multiple localized occurrences
of the same cluster in physical space.

RDF (I, J) =
1

|XI|+ |XJ|
X

ix2XI

X

jx2XJ
ix 6=jx

1

A(dPh(ix, jx))

(1)
where dPh is the city-block distance in case of a discrete
physical space (like the pixel or voxel grid of images), in
contrast to Euclidean distance in the continuous spaces of
physics problems from where we borrow the RDF idea. (We
choose city-block distance in discrete space to help reduce
rounding errors.) In the rare event of |XI| = 1 RDF (I, I)
is undefined, and we set it to a value of 1/A(1), which is
the situation of two neighboring pixels belonging to the same
cluster.

To quantify how the proposed merger of clusters I and J

improves the cluster localization in physical space, we use an
average improvement rate, known as scaled RDF (sRDF ), as
in eq. (2). sRDF is the mean of the normalized improvement
from merging cluster I with cluster J compared to cluster I ,
and vice versa. The normalization is performed by taking the
ratios of an inter-cluster RDF term and an intra-cluster RDF
term. The intra-cluster term, RDF (I, I), is the localization of
the cluster with itself. The inter-cluster term, RDF (I, J), is
the localization from one cluster to another in physical space.
Therefore the ratio of RDF (I, J) to RDF (I, I) gives the
improvement by merging clusters I and J when compared to
the RDF of cluster I . By taking the mean of these ratios,
we determine the favorability of the merger, compared to the
unmerged clusters, in terms of their mutual localization in
physical space.

sRDF (I, J) =
1

2

✓
RDF (I, J)

RDF (I, I)
+

RDF (J, I)

RDF (J, J)

◆
(2)

The Second term of CCSA uses the cumulative adjacency
of the SOM prototypes in feature space to determine the
connectivity between clusters I and J . Cumulative adjacency
between pairs of prototypes, CADJ(ip, jp), is defined by
Taşdemir and Merényi [2] as the number of data points for
which prototype ip is the BMU and prototype jp is the second
BMU. The ratio of the sum of the CADJ(I, J) values from a
given prototype ip to any prototype in CJ over the receptive
field of prototype ip gives the proportion of connections
of prototype ip to prototypes in CJ. Taking the mean of
this ratio yields RCADJ , as in eq. (3). RCADJ quantifies
how connected cluster I is to cluster J in feature space. To
avoid contributions from (possibly) many weakly connected
prototypes (each of which may be connected by only a few
noisy points, but together can unduly distort RCADJ(I, J))
one can exploit the topology-preserving property of the SOM
and constrain the neighborhood radius, tSOM , from within
which prototypes are included in the sum in eq. (3). The
recommended value for tSOM is the SOM radius within which
topology violations are considered local, thus not harmful for
cluster capture. (See Taşdemir and Merényi [12] for more in-
formation.) This is an extension of SOM-contiguity constraints
imposed in Vesanto and Alhoniemi [4], Liao et al. [8], and
Gonçalves et al. [9]. RCADJ combines information contained
in both feature and SOM space.

RCADJ(I, J) =
1

|CI|+ |CJ|
X

jp2CJ

X

ip2CI
ip 6=jp

dCADJ(ip, jp)

|RFip|

(3)

dCADJ(ip, jp) =

⇢
CADJ(ip, jp) dSOM (ip, jp)  tSOM

0 otherwise
(4)

This definition of RCADJ breaks down when I and J
are the same, and cluster I consists of only one prototype.
In this case, we use eq. (5) instead of eq. (3). This is the
ratio of the largest CADJ connection to any SOM prototype,
rp, to the size of the receptive field of prototype ip. In either
case, RCADJ will have a value of 0 only when there are no
connections from any prototype in cluster I to cluster J .
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RCADJ(I, I) =
argmaxrp|CADJ(ip, rp)|

|RFip|
(5)

Since we want to merge clusters with a high degree of
connections, similarly to sRDF , we use the average normal-
ized improvement of intra- and inter-cluster RCADJ terms to
evaluate the merge, as per eq. (6).

sRCADJ(I, J) =
1

2

✓
RCADJ(I, J)

RCADJ(I, I)
+

RCADJ(J, I)

RCADJ(J, J)

◆

(6)
Similarly to sRDF , a larger value of sRCAD(I, J) indicates
stronger connectivity between clusters I and J when compared
to the internal connectivity of either cluster.

Since we only wish to merge clusters that express both
a high degree of localization in physical space and a high
degree of connectivity in feature and SOM space, we use
the product of the sRDF (I, J) and sRCADJ(I, J) terms
yielding our similarity measure CCSA(I, J), as in eq. (7).
Because of its construction CCSA(I, J) is non-negative, and
it reports a value of 0 when no connections exist between the
prototypes of clusters I and J , i.e., the clusters are cleanly
separated and should not be merged. Thus, the larger the value
of CCSA(I, J) the more advantageous it is to merge clusters
I and J .

CCSA(I, J) = sRDF (I, J)⇥ sRCADJ(I, J) (7)

B. Overview of the Clustering Algorithm

We use the standard hierarchical agglomerative clustering
(HAC) framework, with our CCSA similarity measure (eq.
(7)). We initialize the algorithm by excluding empty prototypes
and assuming each prototype is its own cluster. In every step
of the hierarchical procedure, we merge the two clusters for
which CCSA is largest. We continue merging clusters until
there are only a pre-defined number of clusters remaining, or
the maximum value of CCSA is 0. CCSA = 0 indicates a
complete segmentation of the prototypes, and CCSA can no
longer advise further merges of clusters.

C. CONNvis Visualization

CONNvis is a visualization of the CONN similarity
measure and is described in detail in Taşdemir and Merényi
[2]. Since we use CONNvis in all of our SOM overlays,
we review it here briefly to help the reader see the connec-
tivity between prototypes and better understand the CCSA
similarity measure. The connectivity between two prototypes
ip and jp is the symmetric version of CADJ(ip, jp), i.e.,
CONN(ip, jp) = CONN(jp, ip) = CADJ(ip, jp) +
CADJ(jp, ip). The CONNvis visualization shows the con-
nection strength, the CONN(ip, jp) value, for every pair
of prototypes (represented by black dots in Fig. 2 (b), and
other figures of SOM visualizations) by the width of a line
segment connecting prototypes ip and jp. The line width is
proportional to the binned normalized CONN(ip, jp) value.
(Binning is done to aid human visual inspection, but not for

computation of the CCSA measure. For a full description
of the non-linear binning see Taşdemir and Merényi [2].) An
additional, local information is also expressed by CONNvis:
colors of the connections indicate the ranking of a prototype’s
connections by strength, where strength is the CONN(ip, jp)
value. A prototype’s highest-ranking connection indicates its
most important neighbor, thereby revealing the relative local
density of the manifold at prototype ip. Red, blue, green
and yellow code the first-, second-, third-, and fourth-ranking
neighbors in this order. Beyond the fourth rank, gray shades
proportional to the connection strengths are used. This is an
arbitrary coloring scheme (and number of bins) that works well
in practice, but other colors or numbers of bins could be used
to best suit a given visualization purpose.

III. DATA AND RESULTS

We first show how the clustering works on increasingly
complicated synthetic spatial data sets (Lsun, Clown, and 6D
20-class data sets). We also compare the Lsun and Clown
results to previously published clusterings by other authors.

A. 2D Lsun Data

The Lsun data from Ultsch [13], shown in Fig. 2, is
composed of three clusters in 2D feature / physical space: two
rectangular clusters and one spherical cluster, with reasonably
clear separation. To demonstrate how our clustering algorithm
progresses, we show three different stages of clustering of
a 10 x 10 SOM in Fig. 2 (a), (c) and (e). At each of the
stages, the segmentation provides a consistent set of clusters
that are highly connected in SOM space and highly localized in
physical space. Although there is a noticeable misclassification
in the spherical cluster in Fig. 2 (e), this is a direct result
of the lack of connection between the true cluster and the
small subgroup of three light blue prototypes in Fig. 2 (f).
(Notice that the connection from a light blue prototype that
seemingly links it to the yellow cluster is through a dead
prototype indicated by the absence of a black dot at its grid
cell.) In this case, our similarity measure is expected to fail due
to multiplication between the two terms in eq. (7). The HAC
terminates with a maximum CCSA = 0 value after finding
4 clusters. One can confirm this evaluation by examining the
CONNvis representation in Fig. 2 (f).

By comparison, experiments by Taşdemir et al. [11] echo
these results. They cluster the exact same SOM as we did,
using HAC with CONN linkage, average linkage, centroid
linkage, Ward’s measure, and k-means. Ward’s method yields
correct classification; CONN and average linkage perform the
same way as in our case (described above); and all of these
outperform centroid linkage and k-means.

B. 2D Clown Data

The Clown data set and a learned SOM has generously
been provided by Drs. Vesanto and Alhoniemi [4]. This is
a 2D synthetically generated clown face and body composed
of nine true clusters of varying shapes, sizes, densities and
proximities thus representing non-trivial clustering challenges
(Fig. 3 (a)). The left eye (on the right of the figure) comprises
three discrete subunits, the right eye and the nose are large,
dense and regularly shaped, the mouth is thin and U-shaped,
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(a) Feature space, 20 clusters (b) SOM space, 20 clusters

(c) Feature space, 10 clusters (d) SOM space, 10 clusters

(e) Feature space, 4 clusters (f) SOM space, 4 clusters

Fig. 2. Lsun data from Ultsch [13] partitioned into 20, 10, and 4 clusters
at three different stages of our automatic HAC / CCSA segmentation of a
10 x 10 SOM. Colors of data points in a), c) and e), and the same colors
of blocks of SOM cells in b), d) and f) indicate cluster labels. The colors of
CONN connections (red, blue, green and yellow) in the CONNvis overlay
may unavoidably coincide with cluster colors, therefore we stress that the
coloring of connecting line segments between prototypes in the SOM lattice
has no relation to cluster assignments. It is also important to note that the
color assignment to clusters is arbitrary at each of the clustering stages, thus
color consistency across different segmentations is at most coincidental. At
each stage, the clustering produces clusters strongly connected in SOM space
and highly localized in physical space.

and the body has a larger volume and much lower density
than the other parts. In addition, there are three outliers sets.
The learned SOM from Vesanto and Alhoniemi [4] is a 19
x 17 SOM with a hexagonal lattice structure. We visualize
it on a regular square grid. We cluster this SOM with HAC
/ CCSA until we reach 16 clusters. This stopping criterion
is experimentally determined and it is larger than the true
number of clusters (nine), but produces a segmentation that
well represents the true clusters shown in Fig. 3 (a). Two

of the three clusters of the left eye are merged, and one of
the outliers is combined with the left eye. The extra clusters
(beyond the true ones) consist primarily of prototypes that
are not connected to their true clusters or they are weakly
connected, as outlined in Fig. 3 (b), and at the same time
are highly localized in physical space as seen in Fig. 3 (a).
We expect our CCSA similarity measure to preserve these
types of clusters, as they are more connected and localized to
themselves than to the true cluster.

(a) Feature space, 16
clusters

(b) SOM space, 16 clusters

Fig. 3. Clown data from Vesanto and Alhoniemi [4] segmented into 16
clusters using our HAC / CCSA automated clustering. Colors indicate cluster
labels as described in the caption of Fig. (2). (a) Clusters in feature / physical
space; (b) Clusters in the segmented SOM with CONNvis overlay. The right
eye (light blue), and most of the body (medium blue) is perfectly identified.
There are a few clusters weakly connected to the body (circled in red). The
nose (yellow) and mouth (orange) show acceptable separation. The nose has
a few small, poorly connected and highly localized clusters (circled in blue).
The left eye is grouped into 2 subclusters instead of the three true ones. Two
of the three outliers are identified well, the third is grouped with the left eye.

In their original clustering of this same SOM [4], Vesanto
and Alhoniemi present very similar results using HAC with
single, average, and complete linkage, identifying eight clus-
ters. The slight differences are: four subclusters in the left
eye (vs. two in our clustering); one of the three outliers
identified correctly (vs. two in ours); and misclassification
between the body, mouth, and left eye (vs. oversegmentation
at the boundaries of these in ours).

C. 6D 20-class Data Cube

This 6D synthetically generated “spectral” data cube from
Merényi et al. [14] has 20 different spatial areas with different
6-element feature vectors attached to the (x,y) locations within
each of the 20 areas. The spatial layout of the classes in the
physical space can be seen in Fig. 4. (Although this is not the
exact truth label map, which we omit for space considerations,
it is almost a perfect match with only a few stray points in
the fields of a few classes.) Here, some of the class regions
are embedded in others: these are the smaller squares of light
and medium green and lilac colors. A 1-pixel class of hot
pink color is also embedded but hard to see in this image.
In feature space, the 6D signatures have varying degrees of
correlation (thus separation). We cluster the 20 x 20 SOM
of the 6D 20-class data produced in Merényi et al. [14]. We
obtain best results when stopping at 21 clusters, as seen in
Fig. 4. There are only a few areas of confusion resulting from
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prototypes on the fringes of a few clusters in SOM space where
the neighboring clusters are also neighbors in physical space
and are more connected to the incorrect class than to the correct
one in SOM space. This is caused by noise present in this
data set. In most cases, we get clean-cut clusters despite the
appearance of weak connections between clusters adjacent in
both SOM and physical space. This symmetric and binned
representation of the connectivity hides (visually) the more
nuanced relations which are exploited by the HAC / CCSA
algorithm. Examples of the misclassified prototypes are circled
in Fig. 4 (b). The 21st cluster (black, containing just a single
point) is the result of a minor topology violation in the SOM.

In summary, the clustering of the 6D 20-class data cube
is very successful and more successful than the 2D data set
examples. The success can be attributed to the larger number
of connections that exist within the clusters, as each prototype
is connected to a larger number of other prototypes in the
6D 20-class data than in the 2D data sets. Furthermore, areas
of misclassification in the 6D 20-class data sets are attributed
to either topology violations or stronger connections to the
incorrect cluster than to the true one; both cases are rare and
directly caused by noise.

(a) Physical space, 21 clusters (b) SOM space, 21 clusters

Fig. 4. Automated HAC / CCSA clustering of the 6D 20-class data cube. a)
Physical space representation of clusters; b) SOM space representation of the
clustered 20 x 20 SOM with CONNvis overlay. Colors and representations are
the same as described in the caption of Fig. 2. The 21 clusters produced match
the true classes almost perfectly, with minimal cluster confusion. Misclassified
prototypes are circled in black. They all contain only a few data points.

D. fMRI Brain Image

We apply our HAC / CCSA clustering to a whole-brain
fMRI data set collected at the Methodist Hospital (using a
Siemens Vario 3 Tesla scanner with a temporal resolution of
1.3 s and voxel size of 3.3 x 3.3 x 5 mm3). We use the
learned 40 x 40 SOM of this data set from our previous work,
O’Driscoll et al. [3], where we presented interactive clustering
by segmenting the same SOM. Here we compare the results
of the automated clustering to the previous interactive results.

The fMRI data comprises (as feature vectors) the time
courses (of neural activity encoded by blood oxygen level
dependence signals) at each voxel, which is generated in
response to a subject’s brain activity during the genesis of
willed movement. In this case, the movement is prompted by a
visual stimulus of the perception of an unpleasant human face.
The subject squeezes a ball (for approximately 10 seconds)
placed into their right hand if he/she wishes the visual stimulus
(the unpleasant face) to be removed. This produces clear

activation of a number of brain areas (including the visual
cortex, emotional and cognitive areas, the motor cortex, and
others) involved in the decision of making a movement. The
objective of clustering the time courses is to capture these
areas and further investigate the temporal relations of their
activation. The data processing and cluster extraction for the
interactive process is described in O’Driscoll et al. [3].

We extracted 100 clusters using our proposed automated
clustering algorithm. Since our main interest is to trace the
activations from the visual cortex to the motor cortex, we filter,
in a post-processing step, the clusters whose mean time courses
have the highest correlation to the time course of the visual
cortex. We perform this filtering for both the interactively and
automatically identified clusters, using a correlation threshold
of 0.6. (See O’Driscoll et al. [3] for details of the filtering.)
The filtering process passes 26 of the automatically identified
clusters, and 10 of the interactively identified clusters. The
clusters highly correlated to the visual cortex are shown in
SOM space in Fig. 5 (a). The majority of prototypes that
were assigned to the interactively identified clusters Fig. 5
(b), are also contained in the automatically identified clusters.
From the larger number of prototypes labeled (assigned to
clusters) in Fig. 5 (a) it is apparent that the cluster of the
visual cortex is more correlated with a larger portion of the
automatically segmented SOM. This is due to the ability of the
CCSA to use the asymmetric CADJ connections in contrast
to the symmetric CONN values, used in the visualization for
interactive cluster capture.

(a) HAC / CCSA, 26 clusters (b) Interactive, 10 clusters

Fig. 5. SOM space representation of (a) automatically and (b) interactively
identified clusters in the fMRI brain data. The cluster colors are not consistent
between the two maps (reconciliation is extremely difficult). The automated
HAC / CCSA clustering identified more clusters in contiguous regions
from the visual cortex (circled at the lower left hand side). There exists a
large degree of overlap between the two clusterings, and the HAC / CCSA
clustering is able to label more of the SOM clusters that are highly correlated
with the visual cortex.

While the interactively identified clusters are co-located
with many known functional brain regions, the automated clus-
tering discovers more of the relevant clusters and with a more
complete coverage in physical (brain) space, including those
highlighted by the interactive clustering. Part of the reason for
this is that we took a conservative approach with the interactive
clustering in O’Driscoll et al. [3] and avoided labeling of
highly overlapping cluster boundaries which are hard to discern
by visual inspection of the CONNvis overlay. The automated
method is not constrained by such considerations.

The interactively identified clusterings produced a good

58



(a) Axial fMRI slice showing clusters obtained by our proposed method (left) and interactive
method (right).

(b) Sagittal fMRI slice showing clusters obtained by our proposed method (left) and interactive
method (right).

Fig. 6. Comparison of fMRI clusters obtained with our automatic HAC / CCSA method to clusters extracted with interactive method. The color labels between
the two different clusterings are not consistent (irreconcilable).

representation of areas attributed to visual processing (left/right
occipital cortex), to motor and sensory function of the right
hand (left pre- and post-central gyri, and the supplementary
motor area) and limited representation of brain areas connected
to the following: the bilateral activity of the subject in the
motor and sensory areas (right pre- and post-central gyri), areas
thought to be used in processing of human faces (left/right
temporal gyri), decision making (left/right frontal gyri), mem-
ory (left/right cingulate), emotional response (left/right insula),
general motor function (left/right cerebellum), components
of the basal ganglia (left/right caudate nucleus, thalamus,
lentiform nucleus), and the left and right precuneus.

The automatically identified clusters include all of these re-
gions, more clearly and more completely, as well as additional
real clusters. Fig. 6 shows selected fMRI slices placed over an
anatomical underlay, to demonstrate the typical improvement
in the discovery of functional regions. Fig. 6 (a) compares, in

an axial slice, activation regions which were captured by the
two methods. Differences are pointed out by ovals of different
colors over the corresponding brain areas. The improvement is
most notable in the right insula and the pre- and post-central
gyri. Both methods perform equally well on the left insula,
cuneus, and middle occipital gyrus. Fig. 6 (b) shows, in a
sagittal slice, the same improvement compared to interactively
identified clusters. The cerebellum, superior temporal gyrus,
inferior and middle frontal gyrus, and the insula are much
better captured by the automatic method. Both clusterings
represent the pre- and post-central gyrus, the cuneus, and
middle occipital gyrus equally well.

IV. CONCLUSION, DISCUSSION, FUTURE WORK

We propose the CCSA similarity measure, which ad-
vances the state-of-the-art by combining information from
three distinct spaces: physical, feature, and SOM space. We use
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CCSA in a hierarchical clustering algorithm to automatically
cluster spatial image data. The CCSA-based HAC clustering
performs acceptably (but not excellently) on synthetic 2D
data sets, and its performance increases with increasing data
complexity. In particular, CCSA performs significantly better
on (both synthetic and real) data with more complex cluster
relations and higher-D feature space.

For the Lsun and Clown data sets, the feature space
comprises the 2D coordinates of the image points, therefore
the feature and physical spaces coincide in these cases, and are
reflected accordingly in the calculation of the CCSA similarity
measure. This coincidence may result in a certain degree of
degeneracy of the CCSA measure which, in turn, can have
the counterintuitive effect of CCSA being less discriminative
for lower-dimensional data than for more complex, high-D
data. As the data becomes more complex, each prototype, on
average, is connected to more prototypes in the SOM, allowing
the CCSA to inform the HAC about a larger number of
potential cluster merges (as CSSA = 0 only when two clusters
are completely separated), thus providing a more significant
advantage to the HAC than in the case of simple data.

We assess the CCSA-based clustering performance on a
single-subject fMRI data set and compare it to interactively
extracted clusters from the same data in O’Driscoll et al. [3].
This demonstrates increased number and quality of medically
interesting functional regions discovered by our HAC / CCSA
method.

We observe that the vast majority of missclassifications
that occur in the 2D and 6D synthetic data sets are a result
of prototypes with a small receptive field. This can (and does)
occur in more complex, large data sets. Therefore, one future
step is to extend our CCSA measure to better handle such
prototypes. In addition, we can refine the initialization of
the HAC, for example by removing prototypes with small
receptive fields.

In follow-up work, we will examine performance on var-
ious other large and complex functional image data, such
as hyperspectral remote sensing images in terrestrial and
astronomical applications, as these have significantly different
characteristics in both feature and physical space. Another
important aspect is to examine if this method produces as
consistent clustering of fMRI data across multiple subjects as
the interactive approach in O’Driscoll et al. [3].

A future extension to the CCSA for HAC will be to
devise a stopping criterion for the CCSA to “sense” the
correct number of clusters. We surmise that we can achieve
this by infusing information about general data characteristics
into the CCSA.
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