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The Effect of SOM Size and Similarity
Measure on Identification of Functional
and Anatomical Regions in fMRI Data
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and Robert Grossman

Abstract We demonstrate the advantage of larger SOMs than those typically used1

in the literature for clustering functional magnetic resonance images (fMRI). We also2

show the advantage of a connectivity similarity measure over distance measures for3

cluster discovery and extraction. We illustrate these points through maps generated4

from a multiple-subject investigation of the genesis of willed movement, where5

clusters of the fMRI time-courses signify functional (or anatomical) regions, and6

where accurate delineation of many clusters is critical for tracking the relationships7

of neural activities across space and time. While we do not provide an automated8

optimization of the SOM size it is clear that for this study increasing it up to 40 ×9

40 facilitates clearer discovery of more relevant clusters than from a 10 × 10 SOM10

(a size frequently used in the literature), and further increase has no benefits in our11

case despite using large data sets (all data from whole-brain scans). We offer insight12

through data characteristics and some objective justification.13
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Keywords Conscience self-organizing map · CONNvis · Cluster extraction ·14

Functional magnetic resonance imaging ·Willed movement · Data-driven model15

1 Background and Motivation16

In this paper we aim to demonstrate that SOM size significantly influences cluster17

identification. We also aim to demonstrate the benefits of a connectivity based (rather18

than distance based) measure for cluster extraction from a converged SOM. To do19

this we analyze full brain functional magnetic resonance imaging (fMRI) data of20

humans generating willed movement initiated from a visual stimulus. fMRI is an21

accepted method to non-invasively infer real-time neural activity from a hemody-22

namic response known as the blood oxygen level dependence (BOLD) signal. fMRI23

data comprises time-courses, or time-series, of the BOLD signal at each voxel in a24

regular three-dimensional grid over a brain volume. Traditionally, a map reflecting25

neural activity level is constructed by computing the statistical likelihood of each26

voxel’s fit to a given model of the BOLD signal. Activity maps, however, only pro-27

vide a comparison of the activation strengths of various regions, but do not reveal28

the functional relationships of the activation patterns (time-courses).29

Voxels clustered based on the similarity of their time-courses can be used to iden-30

tify functional regions of the brain, in a model-free (data-driven) approach. Various31

techniques including graph based, statistical, and artificial neural network methods32

have been applied for this purpose. Kohonen SOMs [1] in particular, have been suc-33

cessful in either outperforming other methods or providing deeper insights (e.g.,34

[2–6]). While it is widely known that too small SOMs can be suboptimal for clus-35

ter extraction, fMRI studies tend to use small SOMs ranging from 3 × 3 to 12 ×36

12 neurons, often trained only on selected subsets of the available data. Such small37

SOMs can work for specific goals as in the examples we review below. We will38

argue, however, that larger SOMs could allow more detailed discoveries or more39

comprehensive analyses of the whole brain.40

Authors of [2–4] use the whole brain (or substantial portion) but constrain their41

focus to relatively few functional regions. The interest in [2] is to capture 4–5 func-42

tional regions from each of the resting and a goal directed state. After experimenting43

with SOM sizes ranging from 4 × 4 to 12 × 12 neurons the authors conclude that a44

10 × 10 SOM suffices for finding the targeted functional regions. A 10 × 10 SOM45

is used by [3] to examine the effects of age on autism, by capturing 16 clusters that46

represent a handful of expected active areas of the rest state and the default mode47

network (DMN). Similarly, 10–20 clusters are extracted from a 11 × 11 SOM in48

[4], delineating expected regions mainly in the motor cortex. Other studies limit the49

amount (and complexity) of the data by processing only selected parts. Both [5, 6]50

take the widely used approach of excluding voxels that fall below some activation51

level. [5] uses unsupervised SOM, [6] uses supervised SOMs to obtain a small num-52

ber of clusters/classes (3–8) of very small numbers of voxels (few hundred to a few53

thousands), and evaluate clustering quality or classification accuracy as a function54

of the number of voxels processed. The SOMs are small (6 × 4 in [5], undeclared55
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The Effect of SOM Size and Similarity Measure … 253

size in [6] but look no larger than∼10× 10.) [5] concludes that keeping only active56

voxels with increasing ROI specificity (smaller and smaller sets of voxels) improves57

results. [6] shows that increasing the ratio of active voxels to inactive ones improves58

classification, albeit the accuracies are rather low (� 0.5 for real data). However,59

neither paper investigates how a larger SOM would facilitate better results by coping60

with more voxels or providing more resolution for cluster separation. For clustering61

the SOM, typically �2-distance based measures are applied although some works62

use more sophisticated clustering methods than others. Visualization, where used, is63

most often the plotting of prototype vectors into their SOM grid locations.64

In this work we show the benefits of using larger SOMs than those typically found65

in fMRI literature, and we also show the advantage of using a non-distance-based66

metric to extract clusters from converged SOMs. We demonstrate these points on67

whole brain fMRI data.68

2 Data Collection, Acquisition, and Pre-processing69

Here we describe the experiment performed for our data collection, the acquisition70

parameters and resulting dataset, and the pre-processing of that data.71

Experiment A series of ten human faces (five pleasant and five unpleasant) are72

presented to subjects in a random order, generally with a 50s rest period. Each face73

is shown for 10s, and judged by the subject to be pleasant or unpleasant. The subject74

is instructed to squeeze a ball placed in his/her right hand if the face is judged to75

be unpleasant, until the face goes away. If the subject finds the face pleasant, he/she76

does nothing. Figure 1 shows part of the experiment with expected BOLD signals,77

generated in the left motor cortex, as a result of the subject’s reaction to unpleasant78

faces. When the subject sees an unpleasant face, he/she makes a willed movement,79

thereby generating a series of neural activities that travel through both time and space80

in the brain. The activity originates in the visual cortex upon perceiving the face, then81

travels to other parts of the brain, and finally reaches the left sensory-motor cortex82

when the subject squeezes the ball. We are investigating the spatial and temporal83

relationships between the areas of the brain that participate in this process. In this84

paper we concentrate on describing the methods used to extract this information by85

clustering.86

Data Acquisition and Pre-processing The data of six subjects from a larger study87

under an IRB approved protocol are analyzed. The fMRI data is collected using a88

Siemens Vario 3 Tesla scanner. Each subject sees each face for 10s. The duration of89

the rest period is generally 50s, long enough to allow the expected BOLD signal to90

completely subside before the next face presentation. The voxel size ranges between91

2.750 × 2.750 × 5.000 mm3 and 3.594 × 3.594 × 5.000 mm3, the temporal reso-92

lution varies from 1.0 to 1.5s per brain scan across subjects, yielding data cubes of93

∼64 × 64 × 24 × 460 (i.e. approx. 100 k time-courses each with approx. 460 sam-94

ples). Pre-processing follows that in [7], which performed well in our experiments:95

motion correction, high- and low-pass filtering (which removes signal outside the96

340050_1_En_22_Chapter � TYPESET DISK LE � CP Disp.:18/12/2015 Pages: 264 Layout: T1-Standard

E
d

it
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

254 P. O’Driscoll et al.

C D 

Rest  
E A B 

Rest  

10 s 10 s 10 s 
F

Rest  
G 

BOLD BOLD 

unpleasant  unpleasant  pleasant  

Fig. 1 Sample experiment consisting of showing three faces (one pleasant, and two unpleasant).
Time windows A to B, C to D, and E to F are rest periods, B to C is a pleasant face presentation,
and D to E and F to G are unpleasant face presentations. The expected BOLD signal (in the left
motor cortex) is shown for the two unpleasant face presentations, our windows of interest

0.008–100.0 Hz frequency range), and each time-course is scaled by its �2-norm.97

Areas outside the brain are masked (excluded) from processing. All these steps are98

carried out using AFNI [8], an open source data visualization and processing soft-99

ware. To concentrate on relevant information in the time-courses, the windows of100

interests—such as the windows of face showing—may be extracted and concatenated101

to form the input vectors for clustering. We follow another approach using a single102

window. Since data from the first unpleasant face presentation is most likely to be103

free of irrecoverable artifacts in all subjects we use an interval of 36 points (40–50s)104

encompassing the entire ramp up and down of the BOLD signal generated by this105

event.106

3 Analysis Methods107

We use a SOM with conscience learning, or Conscience SOM (CSOM) [9], for max-108

imum entropy (equiprobabilistic) mapping, thus potentially more faithful matching109

of the pdf of the data by the SOM prototypes. Compared to the Kohonen SOM algo-110

rithm, this is achieved by the use of a bias at winner selection, thereby discouraging111

frequently winning nodes from winning and encouraging infrequent winners to win112

more:113

c(x) = argmini (||x − wi || − biasi ), i = 1, ..., N (1)114

Here N is the number of SOM prototypes wi ∈ Rn , x is a point in the data manifold115

M ⊂ Rn , and c indices the winning prototype wc. The bias for prototype wi is116

computed as in Eq. (2) where γ is a user-controlled parameter, and Fi is the winning117

frequency of wi , updated after each learning step. The weight update rule remains118

the same as for the KSOM (Eq. 3).119

biasi = γ (1/N − Fi ) (2)120

121
wi (t + 1) = wi (t)+ α(t)hc,i (t)(x − wi (t)) (3)122
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The Effect of SOM Size and Similarity Measure … 255

The CSOM neighborhood function hc,i can have a constant small radius r (of 1 or 2)123

throughout the learning process because the “conscience” ensures the propagation124

of collaboration among prototypes. We use r = 1 or r = √2, (updating the 4 or 8125

immediate neighbors in diamond-shaped or square neighborhoods, respectively), in126

a rectangular lattice. This significantly reduces computational cost. The equiprob-127

abilistic mapping property of the CSOM was shown in [9] for 1-dimensional data,128

and demonstrated for higher-dimensional data in [10, 11].129

Cluster Extraction For capturing clusters of fMRI time-courses from converged130

SOMs we compare the relative merits of two frequently used inexpensive visualiza-131

tions, mU-matrix [10] and the plot of prototype vectors at their SOM grid locations,132

with CONNvis [12] (Fig. 2). We note that visualizations such as the U, P, AU*, AP133

matrices [13] (and references therein) — which are attractive, and effective when134

used on an emergent SOM. However this requires the number of prototypes to be135

close to the number of data points which is not practical in our case due to the large136

data size. Just as importantly, large number of prototypes does not help clustering of137

our fMRI data, as we will see.138

The mU-matrix [10] is a refinement of the classic U-matrix [14]. It represents the139

Euclidean distance of a prototype to each of its eight lattice neighbors. The distances140

are visualized as thin gray-scale “fences” between adjacent SOM grid cells (instead of141

shading each grid cell to the average value of the distances). Dark fence means small142

distance, bright fence means strong separation and therefore may indicate cluster143

boundary. The mU-matrix also encodes the mapping density by the brightness of144

a monochrome cell color (red in Fig. 2a) which is proportional to the number of145

data points mapped to the cell. An example can be seen in Fig. 2a. We also plot the146

prototypes at their lattice locations as it is a customary way to show the learned SOM147

in fMRI studies, and it provides a direct visual assessment of the pattern differences148

(Fig. 2c).149

The CONNvis is a visualization of the CONN similarity measure, which expresses150

connectivity rather than distances. The connectivity, C O N N (i, j), of two prototypes151

wi , w j , is the number of times wi and w j are selected as a pair of best matching unit152

(BMU) and second BMU for any data point. C O N N (i, j) > 0 means that wi , w j153

are Voronoi neighbors in M . The visualization shows the connectivity for every pair154

of prototypes (black points in Fig. 2b) by a connecting line where the line width is155

proportional to the (normalized) C O N N value. For visualization purposes the line156

widths are also binned to help the human eye. The binning, described in detail in157

[12], is non-linear and governed by the data statistics. Discontinuities or weakly con-158

nected regions of the manifold emerge where no or very thin connections are drawn.159

The connections of a prototype to its Voronoi neighbors are ranked by their relative160

strengths and the ranking is indicated by colors: red line connects to the most impor-161

tant Voronoi neighbor, followed by blue, green, yellow, and gray shades. The ranking162

expresses local manifold relations and provides finer details for the identification of163

cluster boundaries. As an additional benefit CONNvis shows topology violations:164

prototypes connected with line segments longer that one lattice unit violate topology165

preservation. The line width indicates the severity of the violation. A procedure for166
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256 P. O’Driscoll et al.

Fig. 2 Example of extracting two clusters belonging to the visual cortex from three different
visualizations of a 10 x 10 CSOM. These two clusters are indicated by the light green and dark green
outlines, highlights and lines. a mU-matrix, b CONNvis, c prototypes plotted at their SOM grid
cells, and d top: average time-courses of the two green clusters vertically exaggerated and overlain
for comparison, with standard deviations (vertical bars), and ranges shown; bottom: the same two
average time-courses shown separately. Other clusters found in the boxed SOM area (some also
related to the visual cortex) are outlined in orange. The mU-matrix representation, which expresses
clusters well for many other types of data, seems insensitive to the small differences in prototype
distances that appear to characterize fMRI data. Owing to the connectivity measure, the CONNvis
shows clearer clusters despite their high degree of similarity. The shapes of the prototypes are
consistent with the extracted clusters

cluster extraction based on CONNvis is also outlined in [12]. Figure 2 shows an167

example of extracting two clusters, indicated in green boxes, from a 10× 10 CSOM.168

In Fig. 2b these are defined by groups of prototypes with strong connections to each169

other (thick red lines) while each group’s connection to another group of prototypes170

is less strong (blue lines). The two clusters highlighted in green primarily make up171

the visual cortex. Their close relationship is expressed by the strong ranking (blue) of172

their interconnections in the CONNvis representation. Figure 2c provides evidence173

for this grouping. Other clusters in this inset are indicated in orange boxes but not174

discussed here.175

Data Post-Processing For the purpose of tracking the generation of the willed move-176

ment, we filter the extracted SOM clusters for displays of brain maps showing associ-177

ations with the visual stimulus and the clenching of the right fist. The filtered clusters178

are those whose average time-courses correlate relatively strongly with the mean of179

the cluster identified as the visual cortex. Other clusters are assumed to represent180

the rest state or other involvement. The correlation threshold, in this case 0.5, is181

empirically determined and can vary for different data and tasks. Our discussion of182

the clustering quality as a function of SOM size, however, includes all clusters we183

delineate, not only the filtered ones.184
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The Effect of SOM Size and Similarity Measure … 257

4 Effects and Evaluation of SOM Size185

All clusters extracted from the 10 × 10 SOM in Fig. 2, and from a 40 × 40 SOM186

(18 and 29, respectively) can be seen in Fig. 3. Filtered clusters mapped back to two187

selected brain slices are shown in Fig. 4. The quality of the extracted clusters can188

greatly differ depending on the SOM size. By allocating more prototypes to high-189

density areas, the 40 × 40 SOM facilitates separation of groups of similar fMRI190

time-courses with small but consistent differences. This translates to finer spatial191

resolution and delineation of more, functionally distinct, areas in the brain than from192

the 10 × 10 SOM. An example can be seen by the comparisons made in Fig. 4.193

While clusters belonging to the superior frontal and medial frontal gyri (the magenta194

clusters) are detected from both the 10 × 10 and 40 × 40 SOMs, the 40 × 40 SOM195

also allows to fully resolve the sensory-motor area (dark red cluster), and the detection196

of the cerebellum (dark blue cluster). These regions cannot be mapped from the 10197

× 10 SOM without including large swaths of other brain areas. The visual cortex is198

Fig. 3 CONNvis of a 10× 10 and b 40 × 40 CSOM, overlain with extracted clusters (colored
groups of prototypes). The color coding of clusters belonging to the same functional regions in the
brain is as similar as possible in the two SOMs, but cannot be made identical due to more resolved
clusters in the 40× 40 SOM. Unclustered areas of the 40× 40 SOM contain prototype groups that
map to spatially incoherent sets of voxels or unimportant features in the brain (such as spinal fluid).
Data: Subject 2

340050_1_En_22_Chapter � TYPESET DISK LE � CP Disp.:18/12/2015 Pages: 264 Layout: T1-Standard

E
d

it
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

258 P. O’Driscoll et al.

Fig. 4 Comparison of clusters extracted from the 10 × 10 and 40 × 40 CSOMs in Fig. 3, filtered
and mapped to the brain. The two selected axial slices display clusters associated with the visual,
motor, and cognitive functions. a, b: Clusters identified from the SOM in Fig. 3a. c, d: Clusters
identified from the SOM in Fig. 3b

resolved in both SOMs (Figs. 4a and d). Both these clusterings as well as one from199

a 20× 20 SOM were validated and compared by neuroscientist experts, judging the200

40 × 40 clustering as significantly better than the others.201

The advantage of the larger SOM size can also be measured objectively using202

cluster validity indices. There exist many indices, and some are better suited for203

high-dimensional data with complex cluster structure than others. We give here mea-204

surements by four indices, listed in columns 3–6 of Table 1. Two of them, the classic205

Davies-Bouldin Index (DB I , [15]), and the newer Pakhira-Bandyopadhyay-Maulik-206

index (P B M) favors spherical clusters when �2 distances are used. P B M strongly207

favors a small number of clusters (penalizes the number of clusters quadratically).208

Composed density between and within clusters (C Dbw) rewards clusters with homo-209

geneous density. C O N Nindex [16] is a recent one developed to address difficulties210

caused by irregular clusters and complicated cluster structure. We sketch the essence211

of DB I and C O N Nindex below. Due to space constraints please see formulae and212

references for P B M and C Dbw in [16].213

DB I is defined as the average, over all clusters, of the maximum ratio of214

the average intra-cluster scatter (standard deviation in this case) to the inter-215

cluster separation. The inter-cluster separation is the distance between cluster cen-216

ters. C O N Nindex relies on the C O N N connectivity measure [12]. As defined217

in [16], C O N Nindex = I ntra_Conn × (1− I nter_Conn) where I ntra_Conn218

is the average intra-cluster connectivity, and I nter_Conn is the average of the219

maximum inter-cluster connectivities where averaging is over all clusters Ck . The220

intra-cluster connectivity of a cluster Ck is the proportion of connections between221

prototypes that reside inside Ck , to all connections that the prototypes of Ck have222

to any other prototypes. The inter-cluster connectivity of two clusters Ck, Cl is the223

proportion of connections between prototypes of Ck and Cl (in either direction),224

to all connections (to any cluster) of those prototypes in Ck which have at least225

one connection to Cl . Both I ntra_Conn and 1− I nter_Conn are 1 when all clus-226

ters are completely separated. The value ranges of these measures are shown in227
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Table 1 Quality measures (explained in the text) for clusterings of the same (Subject 2) fMRI data
from three different SOMs, with best in bold face and worst in italics

SOM size Nr
clusters

DBI
0←∞

PBM
0→∞

CDbw
0→∞

CONNind
0→ 1

Intra_Conn
0→ 1

Sep_Conn
0→ 1

10 × 10 18 2.854 0.0008 0.023 0.364 0.535 0.681

20 × 20 25 2.934 0.0007 0.027 0.408 0.550 0.741

40 × 40 29 2.761 0.0006 0.025 0.572 0.716 0.799

60 × 60 — — — — — — —

Value ranges and arrows pointing from worst to best are under the respective measures

Table 1, along with arrows pointing from worst to best value. Sep_Conn stands for228

1− I nter_Conn. While it is hard to compare open-ended indexes, it is helpful to229

know that DB I values tend to be below 10, and DB I > 1 indicates overlaps but230

DB I < 1 does not necessarily mean separated clusters. C Dbw values can be much231

larger. P B M is scaled by 1
K 2 where K is the number of clusters, which can make its232

values magnitudes smaller compared to DB I .233

Quality measures for clusterings of the same fMRI data from SOMs of three234

different sizes are summarized in Table 1. Both DB I and C Dbw assign very similar235

scores to all SOMs although the 40× 40 SOM is slightly better by the DB I and the236

20× 20 SOM by the C Dbw. However, given the typical value ranges of these indices237

all scores are poor, and the differences are negligible. A reasonable explanation is the238

model-dependence of these indices. DB I misjudges clusterings with non-spherical239

and unevenly sized clusters. C Dbw is likely failing because of possibly heterogeneous240

densities. If we ignored the quadratic penalty by P B M (scaled it back by K 2, i.e., 324,241

625, and 841, respectively) it would indicate substantial differences, progressively242

to the advantage of the larger SOM. While the 40× 40 SOM is confirmed by experts243

as the best, the DB I , C Dbw, and P B M have difficulty correctly judging the highly244

irregular fMRI clusters. C O N Nindex , in contrast, handles irregular clusters and245

shows significant increase, given its range, in quality from 10 × 10 to 40 × 40246

SOM size. Examining the components of C O N Nindex , the 40× 40 SOM preforms247

significantly better in both metrics. It is noteworthy though that the larger increase is248

in the intra-cluster connectivity term, indicating more self-contained clusters. This249

is due to a sufficient number of prototypes for accurate mapping of the manifold250

structure, increasing the proportion of connections inside clusters regardless of their251

shapes. The connectivity measure senses this improvement correctly. No sensible252

cluster extraction could be done from a 60 × 60 SOM, which we attribute to the253

highly mixed an noisy signals (discussed below) in fMRI voxels. The 60× 60 SOM254

has enough prototypes to begin to model the structure of the noise rather than the255

characteristics of the functional regions we aim to capture.256

fMRI data is highly complex, partly because the voxels are large compared to257

the spatial extent of distinct neuronal signals and the variations of tissue types. This258

results in heavily mixed signals (time-courses) of tissue types and functional regions259

within a voxel. Exacerbating this mixing is the nature of the BOLD signal, which is260
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not always constant within the same functional region. It reflects overlapping spatial261

and temporal influences, potentially from many voxels depending on the functional262

region, subject and other factors. The result is a large degree of overall mixing that263

dilutes the discriminating characteristics of distinct functional regions. Figure 2d is264

an illustration of the level of similarity.265

While formal optimization of SOM size is beyond the scope of this paper, we266

can also draw approximate justification for the 40× 40 SOM from a Growing SOM267

(GSOM, [17]), which returns a 7 × 6 × 4 × 4 × 3 × 2 × 2 SOM. With the last268

two dimensions close to vanishing the rest of this SOM comprises 2016 neurons, a269

number close to the 1600 neurons in the 40× 40 SOM we use, and much larger than270

the number of neurons in a 10 × 10 or 20 × 20 SOM.271

5 Results from Multiple Subjects272

Figure 5 shows the localization of filtered clusters extracted from 40× 40 SOMs and273

mapped back to the three-dimensional brains for each of the six subjects. The pre-274

sented clusters belong to brain regions involved in the visual processing and motor275

response, and show commonality of the activated areas across subjects. Representa-276

tive slices are chosen to exhibit the visual, motor, and supplementary motor cortex.277

Not all extracted clusters can be displayed in each of the three slices. For example in278

subject 2 the activation in the visual cortex is shown in the coronal slice, but not in the279

more laterally located sagittal slice. The visual cortex and cuneus (the group of green280

clusters in the coronal slices, and at the bottom of the sagittal slices) are activated by281

the visual stimulus. The left motor cortex and sensory cortex (red clusters at right in282

the axial, and at top in the sagittal slices) are active, consistent with squeezing the283

ball with right hand. Subjects 1, 2, and 6 exhibit some bi-lateral activity of the motor284

areas, with the larger response in the left brain (corresponding to the movement in285

the right hand). The supplementary motor area, also used in the generation of move-286

ment, is activated in each subject (red clusters at the center of the axial slices) with287

subjects 1 and 3 generating the largest and most coherent response areas. A number288

of clusters also appear, consistently across subjects, in other functional regions such289

as the superior and medial frontal gyri (magenta colors). While those, and several290

more that map to other brain slices (e.g., cerebellum, thalamus, cyngulate gyrus, pre-291

cuneus, and caudate nucleus, not shown here) may correlate with the visual cortex292

to lesser extent, their common activation in all (or most) subjects calls attention to293

relationships worth investigating, and may hold keys to new discoveries of neuronal294

processes.295

We note that, since clusters reflect similarity of time-courses, the same cluster296

may occur in multiple areas. For example, in the axial slice of subject 4, the green297

clusters cover parts of the sensory cortex (adjacent to the red motor cortex cluster at298

center right) and a section of the precuneus (the green cluster at the bottom of the299

slice). This means in subject 4 these areas are highly correlated, likely a result of
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Fig. 5 Filtered clusters shown for all six subjects, in selected axial, coronal, and sagittal slices on
the anatomical substrate. Here we only show clusters which occur in all subjects in the motor cortex,
supplementary motor area and visual cortex (where activation is expected during our experiment),
and in the cuneus, superior frontal gyrus, and medial frontal gyrus. The color wedge codes clusters
which are present in these slices. Cluster colors are grouped into three hues that signify closely
related functional/anatomical regions. The slices shown are selected to display the same functional
regions in each subject. (Geometric co-registration remains a follow-up task at this time.)

a slightly different neural pathway that subject 4 uses to complete the task. Slight300

deviations of the pathways are expected in each subject. Thus, the same level of301

correlation between the same regions is not common in all subjects.302
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6 Conclusions303

Our objective is to call attention to the untapped potentials of larger SOMs than those304

(∼10 × 10) typically employed in fMRI analyses; to CSOM; and to connectivity305

(non-distance-based) measures, for better SOM manifold learning and cluster extrac-306

tion. To that end we demonstrate, through real, full-brain fMRI data that increasing307

the SOM size up to a point (40 × 40 lattice in our case) facilitates cleaner cap-308

ture of more relevant clusters than small SOMs. Importantly, further increase of309

the SOM size is detrimental to the clustering. We provide justification that this is310

due to the highly mixed and noisy time-course signals in fMRI data. Clusters in311

functional regions relevant to the generation of willed movement (the goal-oriented312

task we analyze), as well as others, are consistently identified from 40 × 40 SOMs313

across six subjects. This in turn supports more detailed elucidation of the functional314

relationships of brain regions and potentially allows discoveries of more nuanced315

neuronal activities related to the goal-oriented task. Follow-up work will strive for316

more comprehensive computational experiments and more formal investigation of317

the dependence of SOM sizes on the data characteristics.318
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