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Summary. Utilization of remote sensing multi- and hyperspectral imagery has shown a rapid
increase in many areas of economic and scienti�c signi�cance over the past ten years. Hy-
perspectral sensors, in particular, are capable of capturing the detailed spectral signatures that
uniquely characterize a great number of diverse surface materials. Interpretation of these very
high-dimensional signatures, however, has proved an insurmountable challenge for many tra-
ditional classi�cation, clustering and visualization methods. This chapter presents spectral
image analyses with Self-Organizing Maps (SOMs). Several recent extensions to the original
Kohonen SOM are discussed, emphasizing the necessity of faithful topological mapping for
correct interpretation. The effectiveness of the presented approaches is demonstrated through
case studies on real-life multi- and hyperspectral images.

1 Introduction

Airborne and satellite-borne remote sensing spectral imaging has become one of
the most advanced tools for collecting vital information about the surface of Earth
and other planets. The utilization of these data includes areas such as mineral ex-
ploration, land use, forestry, ecosystem management� assessment of natural hazards,
water resources, environmental contamination, biomass and productivity� and many
other activities of economic signi�cance, as well as prime scienti�c pursuits such
as looking for possible sources of past or present life on other planets. The number
of applications has dramatically increased in the past ten years with the advent of
imaging spectrometers that greatly surpass traditional multi-spectral sensors (e.g.,
Landsat Thematic Mapper (TM)). Imaging spectrometers can resolve the known,
unique, discriminating spectral features of minerals, soils, rocks, and vegetation.
While a multi-spectral sensor samples a given wavelength window (typically the

� in: U.Seiffert and L.C. Jain (Eds.), Self-Organizing Maps. Recent Advances and
Applications. Springer-Verlag Berlin, p. 121–145, 2001.
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Fig. 1. Left: The concept of hyperspectral imaging. Figure from [9]. Right: The spectral sig-
nature of the mineral alunite as seen through the 6 broad bands of Landsat TM, as seen by
the moderate spectral resolution sensor MODIS (20 bands in this region), and as measured
in laboratory. Figure from [10]. Hyperspectral sensors such as AVIRIS of NASA/JPL [16]
produce spectral details comparable to laboratory measurements.

��� � ����� range in the case of Visible and Near-Infrared imaging) with several
broad bandpasses, leaving large gaps between the bands, imaging spectrometers
sample a spectral window contiguously with very narrow, �� � �� �� badpasses.
Hyperspectral technology is in great demand because direct identi�cation of surface
compounds is possible without prior �eld work, for materials with known spectral
signatures.

Spectral images consist of an array of multi-dimensional vectors assigned to
particular spatial areas (pixel locations) re�ecting the response of a spectral sensor
at various wavelengths (see Fig. 1). These vectors are called spectra. A spectrum is
a characteristic pattern that provides a clue to the surface material within the respec-
tive area. Depending on the wavelength resolution and the width of the wavelength
window used by a particular sensor, the dimensionality of the spectra can be as low
as � � � (such as in Landsat TM), or as high as several hundred for hyperspectral
imagers.

Classi�cation of intricate, high-dimensional spectral signatures has turned out
far from trivial. Discrimination among many surface cover classes, discovery of spa-
tially small, interesting spectral species proved to be an insurmountable challenge to
many traditional clustering and classi�cation methods. This motivates research into
advanced and novel approaches. [30]. By costumary measures (such as, for exam-
ple, Principle Component Analysis (PCA)) the intrinsic spectral dimensionality of
hyperspectral images appears to be surprisingly low, ���� at most. Yet dimension-
ality reduction to such low numbers has not been successful in terms of preservation
of important class distinctions. The spectral bands, many of which are highly cor-
related, may lie on a low-dimensional but non-linear manifold, which is a scenario
that eludes many classical approaches.
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One powerful approach to these problems is the application of Self-Organizing
Maps (SOMs) [24] to implement a suitable mapping procedure which should
end in a topology preserving projection of the high-dimensional data onto a low-
dimensional lattice. In most applications a two-dimensional SOM lattice is the com-
mon choice of lattice structure because of its easy visualization [23]. In general, this
choice is not guaranteed to produce a topology preserving mapping and the interpre-
tation of the resulting map may fail [40]. Topology preserving mapping, informally
speaking, means that similar data vectors are mapped onto the same or neighbored
locations in the lattice and vice versa [41]. A further aspect that should be addressed
here is the problem of the detection of rarely occurring surface material classes in
the images. If the SOM is used as a classi�er system the distribution of the weight
vectors across the SOM lattice is determined by a power function of the probabil-
ity density of the data vectors [37], with the so-called magni�cation factor as the
power. As we will see later, for magni�cation factors less than 1, which is the case
for the standard SOM, it may be dif�cult or impossible to separate spectral patterns
of seldom occurring surface materials.

In the last few years extensions of the standard SOM were derived to respond
to the above challenges. As shown in [3] it is possible to control the magni�cation
of the SOM by the introduction of a local learning rate that is dependent on the
data density. The corresponding learning scheme can easily be implemented into
the standard learning rule. A growing SOM (GSOM) approach was developed to
generate a guaranteed topology preserving mapping in a simple hypercube structure
of the lattice [5]. Both the GSOM and magni�cation control approaches were shown
to be powerful instruments for visualization and classi�cation of remote sensing
spectral data.

This chapter is organized as follows: Sec. 2 is a short overview of the above
extensions of the standard SOM. In section 3 the data sets are described. Finally, in
section 4 application results are presented and discussed.

2 SOMs and Data Mapping

Self-organizing maps [24] as a special kind of neural maps project data from some
(possibly high-dimensional) input space � � ��� onto a position in some output
space (neural map) �, such that a continuous change of a parameter of the input
data should lead to a continuous change of the position of a localized excitation
in the neural map. This property of neighborhood preservation depends on an im-
portant feature of the SOM, its output space topology, which has to be speci�ed
prior to learning. If the topology (i.e. dimensionality and edge length ratios) of �
does not match that of the data shape, neighborhood violations are likely to occur
[43]. This can be cast in a formal way by writing the output space positions as
� � 	��� ��� ��� ���� ���


, � � �� � �� with � � �� � �� � ��� � �� where ��,
� � �� ���� � is the dimension of � (the length of the edge of the lattice) in the ���
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direction .1 Associated with each neuron � � �, is a weight vector, or pointer, ��

in �. The mapping 	��� is realized by a winner take all rule

	��� � � �� � � �
����
���

	� ���	 (1)

whereas the reverse mapping is de�ned as 	��� � � �� ��. The two functions
together determine the map


 � 		���� 	���
 (2)

realized by the SOM network. All data points � � ��� that are mapped onto the
neuron � make up its receptive �eld �
�. The masked receptive �eld of neuron � is
de�ned as the intersection of its receptive �eld with � :


� � �� �� � � � 	��� 	�
� . (3)

Therefore, the masked receptive �elds 
� are closed sets. All masked receptive
�elds form the Voronoi tesselation of �. If the intersection of two masked receptive
�elds 
�, 
�� is non-vanishing we call 
� and 
�� neighbored. The neighborhood
relations form a corresponding graph structure 
� in �: two neurons are connected
in 
� if and only if their masked receptive �elds are neighbored. The graph 
� is
called the induced Delaunay-graph (See, for example, [27] for detailed de�nitions).
Due to the bijective relation between neurons and weight vectors, 
� also represents
the Delaunay graph of the weights.

To achieve the map 
, SOMs adapt the pointer positions during the presenta-
tion of a sequence of data points � �� selected from a data distribution � 	�
, as
follows:

��� � ���� 	� ���
 � (4)

��� is the neighborhood function, usually chosen to be of Gaussian shape:

��� � ���

�
�
	�� �	�

�
�

�
(5)

Note that ��� is dependent on the best matching neuron (1).
Topology preservation in SOMs is de�ned as the preservation of the continu-

ity of the mapping from the input space onto the output space, more precisely it
is equivalent to the continuity of 
 between the topological spaces with properly
chosen metric in both� and �. For lack of space we refer to [43] for detailed consid-
erations. The topology preserving property can be used for immediate evaluations
of the resulting map, for instance for interpretation as a color space, as demon-
strated in sec. 4.2 . Topology preservation also allows the applications of interpo-
lating schemes such as the parametrized SOM (PSOM) [36] or interpolating SOM
(I-SOM) [14]. A higher degree of topology preservation, in general, improves the

1 Other spatial arrangements are also possible, which can be described by a connectivity
matrix. Here we only consider hypercubes.
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accuracy of the map [4]. As pointed out in the introduction violations of topographic
mapping can result in false interpretations. Several approaches were developed to
judge the degree of topology preservation for a given map. Here we brie�y describe
a variant �� of the well known topographic product � [4]. Instead of the Euclid-
ean distances between the weight vectors, this measure uses the respective distances
��� 	�����

� 
 of minimal path lengths in the induced Delaunay-graph 
� of the��.
During the computation of �� for each node � the sequences ��� 	�
 of �-th neigh-
bors of � in� and ��� 	�
 describing the �-th neighbor of ��, have to be determined.
These sequences and further averaging over neighborhood orders � and nodes �
�nally leads to

�� �
�

�	� � �


�
�

����
���

�

��
��� 	�
 (6)

with

� ��
�
���

���
�
������

�
���

�
���

�
������

�
���

� � ��
�
����� 	�


�
��
�
����� 	�


� � (7)

�� can take on positive or negative values: if �� � � holds the output space is too
low-dimensional, and for �� � � the output space is too high-dimensional. In both
cases neighborhood relations are violated. Only for �� � � does the output space
approximately match the topology of the input data.2

Application of SOMs to very high-dimensional data can produce dif�culties
which may result from the so-called ’curse of dimensionality’: the problem of sparse
data caused by the large data dimensionality. We want to refer to two methods for
overcoming this problem. The �rst approach, introduced by KASKI [23] uses the
fact that in extremly high-dimensional data spaces the inner product of vectors of-
ten tends to be zero, i.e. many of the data vectors � �� seem to be nearly orthogonal
to one another. Assume that the data undergo a (linear) random mapping

�� � �� (8)

where � is a random matrix the columns of which are normalized to unity and the
components of each coloumn are independent, identically and normally distributed
with zero mean. Let �� be the reduced dimension of the target space. If we assume
that �� is large and consider then ��� � �� � with the identity matrix �, one can
show that the elements ��� are approximately normally distributed and the respective
variance, denoted by 
�

�
, can be approximated by 
�

�
� �

	
. Considering the inner

2 The present variant �� overcomes the problem of strongly curved maps which may be
judged neighborhood violating by the original � even though the shape of the map might
be perfectly justi�ed [43].
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product ����	 of two mapped vectors ��, �	 we have for the deviation � from the
original inner product ��	 the expectation value zero and the variance


�
 �

�
�� �

��
�

����

��

� �
�
�

����
�
�

	


�

�
(9)

Thus, random mapping can be applied to reduce the data dimension if the original
dimension is very large. We should emphasize that the remaining dimension ��
must be large.3 Hence, this scheme is not practicable in many applications for �nal
processing but it can serve as a useful preprocessing. In particular, in the remote
sensing application presented below neither the assumptions of the zero-tendency
of the inner product nor the requirement of high reduced data dimensionality is not
ful�lled.

The second method introduces a local neighborhood range 
� for sparse data
sets in (5) to obtain a faithful mapping [11]. 
� is determined by the inner curvature
strength � of the lattice which can be obtained by a wavelet analysis of the neuron
weights. For a more detailed description we refer to [11].

2.1 Structure Adaptation by GSOM

The growing SOM (GSOM) approach [5] is an extension of the standard SOM.
Its output is a structure adapted hypercube �, produced by adaptation of both the
dimensions and the respective edge length ratios of � during the learning, in ad-
dition to the usual adaptation of the weights. In comparison to the standard SOM,
the overall dimensionality and the dimensions along the individual directions in �
are variables that evolve into the hypercube structure most suitable for the input
space topology. The GSOM starts from an initial �-neuron chain, learns like a reg-
ular SOM, adds neurons to the output space based on the criterion described below,
learns again, adds again, etc., until a prespeci�ed maximum number ���	 of neu-
rons is distributed over �. The output space topology always remains of the form
�� � �� � ���, with �� � � for � � ��, where �� is the current dimensionality of
�. Hence, the initial con�guration is � � � � � � ���� �� � �. From there it can
grow either by adding nodes in one of the directions that are already included in the
output space or by initializing a new dimension. This decision is made on the basis
of the masked receptive �elds 
� de�ned in (3). When reconstructing � �� from
neuron �, an error � � � ��� remains decomposed along the different directions,
which results from projecting the output space grid back onto the input space �:

� � � ��� �
���
���

��	�

��
�� ������

	��
�� ������	
� �� (10)

3 In the WEBSOM-application of KASKI the dimesion was reduced from ���� to approxi-
mately ��� [23].
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Here, 
� denotes the unit vector in direction � of � and ��	�
 are the projection am-
plitudes.4 Considering a receptive �eld 
� and determining its main (�rst) principal
component ���
 allows a further decomposition of ��. Projection of �� onto the
direction of ���
 then yields ���
�	�
,

�� � ���
�	�

���


�����
��
� ���� (11)

The criterion for the growing now is to add nodes in that direction which has on
average the largest (normalized) expected error amplitude ���:

��� �

�
��

�� ��

�
�

� ��	�
 ��
��
�
��� ���	�


� � � �� ������ �� (12)

After each growth step, a new learning phase has to take place in order to readjust
the map. For a detailed study of the algorithm we refer to [5].

2.2 Magni�cation Control in SOMs

A further extension of the basic SOM concerns the so-called magni�cation. The
standard SOM distributes the pointers � � ���� according to the input distribu-
tion

� 	�
 � � 	�
� (13)

with the magni�cation factor � � �
� [37], [25].5 The �rst approach to in�uence the

magni�cation of a learning vector quantizer, proposed in [12] is called the mecha-
nism of conscience. For this purpose a bias term is added in the winner rule (1):

	��
 � � �� � 	�
 � �
����
��


�
	� ���	 � �

�
�

�
� ��

��
(14)

where �� is the actual winning probability of the neuron � and � is a balance fac-
tor. Hence, the winner determination is in�uenced by this modi�cation. The algo-
rithm should converge such that the winning probabilities of all neurons are equal-
ized. This is related to a maximization of the entropy and consequently the result-
ing magni�cation is equal to unity.6 However, an arbitrary magni�cation cannot be
achieved. Therefore, BAUER ET AL. in [3] introduced a local learning parameter ��

4 At the border of the output space grid, where not two, but just one neighboring neuron
is available, we use

��������

����������
��

or
�����

���

�������
�����

to compute the backprojection of the

output space direction �� into the input space.
5 This result is valid for the one-dimensional case and higher dimenional ones which sepa-

rate.
6 VAN HULLE points out that adding a conscience algorithm to the SOM does not equate

to equiprobabilistic mapping, in general [21]. However, for very high dimensions, a mini-
mum distortion quantizer (such as the conscience algorithm) approaches an equiprobable
quantizer ([21] - page 93).
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with ���� � � 	�
� in (4), where � is an additional control parameter. Equation
(4) now reads as

��� � ����� 	� ���
 � (15)

Note that the learning factor �� of the winning neuron � is applied to all updates.
This local learning leads to a similar relation as in (13):

� 	�
 � � 	�
�
�

(16)

with �� � � 	���
 and allows a magni�cation control through the choice of �.
In particular, one can achieve a resolution of �� � �, which maximizes mutual
information [26,45].

2.3 Data Mining and Knowledge Discovery Using SOMs

If a proper SOM is trained according to the above mentioned criteria several
methods for representation and post-processing can be applied. In case of a two-
dimensional lattice of neurons many visualization approaches are known. The most
common method for the visualization of SOMs is to project the weight vectors in
the �rst dimension of the space spanned by the principle components of the data and
connecting these units to the respective nodes in the lattice that are neighbored [23].
However, if the shape of the SOM lattice is hypercubical there exist several more
ways to visualize the properties of the map. Here we concentrate only on those
that are of interest in the applications presented later in this chapter. An extensive
overview can be found in [39].

One interesting evaluation is the so-called �-matrix introduced by ULTSCH ET

AL. [38]. The elements ���� are the distances between the respective weight vectors
�� and ��� where � and �� are neighbored in �

���� � 	�� ����	 (17)

� can be used to determine clusters within the weight vector set and, hence, within
the data space. Assuming that the map 
 is approximately topology preserving,
large values of � indicate cluster boundaries. If the lattice is a two-dimensional ar-
ray the�-matrix can easily be viewed and gives a powerful tool for cluster analysis.

Another visualization technique can be used if the lattice� is three-dimensional.
The data points then can be mapped onto neuron � can be identi�ed by the color
combination red, green and blue assigned to the location �. In this way we are able
to assign a color to each data point according to equation (1) and similar colors
will encode groups of input patterns that were mapped close to one another in the
lattice � [42]. It should be emphasized that for a proper interpretation of this color
visualization, as well as for the analysis of the �-matrix, topology preservation of
the map
 is a strict requirement. The topology preserving property of 
 must be
proven prior to any evaluation of the map.

If we regard the SOM as a preprocessing method, the data can be analyzed in the
lower-dimensional neuron space de�ned by the GSOM-generated lattice. Beside the
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above mentioned �-matrix approach, a cluster algorithm such as Ward-clustering
may be applied, taking the neighborhood relations into account explicitely [44].
An additional counter-propagation layer can also be added to the SOM, to learn
a classi�cation task in a supervised manner. This approach is faster than a MLP
learning in many applications [19].

3 Remote Sensing Spectral Images

Spectral images can formally be described as a matrix � � ������, where ������ �
��� is the vector of spectral information associated with pixel location 	�� �
. The
elements �

�����
� , � � � � � ��� of spectrum ������ re�ect the responses of a spectral

sensor at a suite of wavelengths (see Fig. 1). The spectrum is a characteristic pattern
that provides a clue to the surface material within the area de�ned by pixel 	�� �
.
The individual 2-dimensional image �� � ��

����� at wavelength � is called the �th
image band.

The data space � spanned by Visible-Near Infrared re�ectance spectra is
���� ��!� ��� ��!��� � ��� where� � � represents an upper limit of the mea-
sured scaled re�ectivity and � ��! is the maximum value of noise across all spectral
channels and image pixels. The data density � 	�
 may vary strongly within this
space. Sections of the data space can be very densely populated while other parts
may be extremely sparse, depending on the materials in the scene and on the spectral
bandpasses of the sensor. According to this model traditional multi-spectral imagery
has a low �� value while �� can be several hundred for hyperspectral images. The
latter case is of particular interest because the great spectral detail, complexity, and
very large data volume pose new challenges in clustering, cluster visualization, and
classi�cation of images with such high spectral dimensionality [29].

In addition to dimensionality and volume, other factors, speci�c to remote sens-
ing, can make the analyses of hyperspectral images even harder. For example, given
the richness of data, the goal is to separate many cover classes, however, surface
materials that are signi�cantly different for an application may be distinguished by
very subtle differences in their spectral patterns. The pixels can be mixed, which
means that several different materials may contribute to the spectral signature as-
sociated with one pixel. Training data may be scarce for some classes, and classes
may be represented very unevenly.

Noise is far less problematic than the intricacy of the spectral patterns, because
of the high Signal-to-Noise Ratios (���������) that present-day hyperspectral im-
agers provide. For this discussion, we will omit noise issues, and additional effects
such as atmospheric distortions, illumination geometry and albedo variations in the
scene, because these can be addressed through well-established procedures prior to
clustering or classi�cation.

3.1 Low-Dimensional Data: LANDSAT TM Multi-spectral Images

LANDSAT-TM satellite-based sensors produce images of the Earth in � different
spectral bands. The ground resolution in meters is ����� for bands ��� and band
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�. Band � (thermal band) has a spatial resolution of �� � �� only and it is often
dropped from analyses. The LANDSAT TM bands were strategically determined
for optimal detection and discrimination of vegetation, water, rock formations and
cultural features within the limits of broad band multi-spectral imaging. The spectral
information, associated with each pixel of a LANDSAT scene is represented by a
vector � � � � ��� with �� � �. The aim of any classi�cation algorithm is to
subdivide this data space into subsets of data points, with each subset corresponding
to speci�c features such as wood, industrial region, etc. The feature categories are
speci�ed by prototype data vectors (training spectra).

In the present contribution we consider two LANDSAT TM images. The �rst
one is the north–east region of the city Leipzig in Germany7. The second one is
from the Colorado area, U.S.A. 8 For the Colorado image we also have a manu-
ally generated label map (ground truth image) for comparison. The labels indicate
several regions of different vegetation.

A Grassberger-Procaccia analysis [15] of the Leipzig image yields ��� � ���
as an estimation for the intrinsic spectral dimension. The costumary Principal Com-
ponent Analysis results in the following vector of eigenvalues:


� � 	������������������������������ ����

� (18)

Application of the same two procedures to the Colorado image yields ��� �
������ and


� � 	����� ��������������� ����� ����

�
� (19)

respectively.

3.2 Hyperspectral Data: The Lunar Crater Volcanic Field AVIRIS Image

A Visible-Near Infrared (��� � ��� �m), ���-band, �� m/pixel AVIRIS image of
the Lunar Crater Volcanic Field (LCVF), Nevada, U.S.A., was analyzed in order
to study SOM performance for high-dimensional remote sensing spectral imagery.
(AVIRIS is the Airborne Visible-Near Infrared Imaging Spectrometer, developed at
NASA/Jet Propulsion Laboratory. See http://makalu.jpl.nasa.gov for details on this
sensor and on imaging spectroscopy.) The LCVF is one of NASA’s remote sens-
ing test sites, where images are obtained regularly. A great amount of accumulated
ground truth from comprehensive �eld studies [2] and research results from inde-
pendent earlier work such as [13] provide a detailed basis for the evaluation of the
results presented here.

Fig. 2 shows a natural color composite of the LCVF with labels marking the
locations of �� different surface cover types of interest. This �� � �� ��� area
contains, among other materials, volcanic cinder cones (class A, reddest peaks) and
weathered derivatives thereof such as ferric oxide rich soils (L, M, W), basalt �ows
of various ages (F, G, I), a dry lake divided into two halves of sandy (D) and clayey

7 obtained from UMWELT-FORSCHUNGSZENTRUM Halle-Leipzig, Germany
8 Thanks to M. Augusteijn (Univerity of Colorado) for providing this image.
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Fig. 2. The Lunar Crater Volcanic Field. RGB natural color composite from an AVIRIS, 1994
image. The original image comprises 224 image bands over the 0.4 - 2.5 �m range, 512 x
614 pixels, altogether 140 Mbytes of data. Labels indicate different cover types described in
the text. The ground resolution is 20 m/pixel.

composition (E)� a small rhyolitic outcrop (B)� and some vegetation at the lower
left corner (J), and along washes (C). Alluvial material (H), dry (N,O,P,U) and wet
(Q,R,S,T) playa outwash with sediments of various clay content as well as other
sediments (V) in depressions of the mountain slopes, and basalt cobble stones strewn
around the playa (K) form a challenging series of spectral signatures for pattern
recognition (see in [29]). A long, NW-SE trending scarp, straddled by the label G,
borders the vegetated area. Since this color composite only contains information
from three selected image bands (one Red, one Green, and one Blue), many of
the cover type variations remain undistinguished. They will become evident in the
cluster and class maps below.

After atmospheric correction and removal of excessively noisy bands (saturated
water bands and overlapping detector channels), 194 image bands remained from
the original ���. These ���-dimensional spectra are the input patterns in the follow-
ing analyses.

The spectral dimensionality of hyperspectral images is not well understood and
it is an area of active research. While many believe that hyperspectral images are
highly redundant because of band correlations, others maintain an opposite view,
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which also manifests in the vigorous development of hyperspectral sensors and
commercialization of hyperspectral data services. Few investigations exist into the
intrinsic dimensionality (ID) of hyperspectral images. Linear methods such as PCA
or determination of mixture model endmembers [1] [22] usually yield � � � “end-
members”. BRUSKE [8] �nds the spectral ID of the LCVF AVIRIS image (Fig. 2) to
be between � and �, using a non-linear neural network based approach (Optimally
Topology Preserving Maps), whereas the Grassberger-Procaccia analysis [15] esti-
mates the intrinsic dimension as ��� � ����. These surprisingly low numbers, that
increase with improved sensor performance [17], result from using statistical thresh-
olds for the determination of what is “relevant”, regardless of application dependent
criteria.

The number of relevant components increases dramatically when speci�c goals
are considered such as what cover classes should be separated or what known prop-
erties of the surface can be postulated. With an associative neural network, Pen-
dock [35] extracted �� linear mixing endmembers from a ��-band (��� � ��� �m)
segment of an AVIRIS image of Cuprite, Nevada (another well-known remote sens-
ing test site), setting only a rather general surface texture criterium. Benediktsson et
al. [6] performed feature extraction on an AVIRIS geologic scene of Iceland, which
resulted in �� bands. They used an ANN (the same network that performed the clas-
si�cation itself) for Decision Boundary Feature Extraction (DBFE). The DBFE is
claimed to preserve all features that are necessary to achieve the same accuracy as in
the original data space, by the same classi�er for predetermined classes. However,
no comparison of classi�cation accuracy was made using the full spectral dimen-
sion to support the DBFE claim. In this particular study a relatively low number of
classes, �, were of interest, and the question posed was to �nd the number of fea-
tures to describe those classes. Separation of a higher number of classes may require
more features.

It is not clear how feature extraction should be done in order to preserve relevant
information in hyperspectral images. Later in this chapter it is demonstrated that se-
lection of �� bands from the LCVF image in Fig. 2 by any of several methods leads
to a loss of a number of the originally determined �� cover classes. Wavelet com-
pression studies on an earlier image of the the same AVIRIS scene [34] conclude
that various schemes and compression rates affect different spectral classes differ-
ently, and none was found overall better than another, within ���� ��� compres-
sions (retaining ��� � ��� of the wavelet coef�cients). In a study on simulated,
���-band spectral data, [7] show slight accuracy increase across classi�cations on
��-band, ��-band, and ��-band subsets. However, they base the study on only two
vegetation classes, the feature extraction is a progressive hierarchical subsampling
of the spectral bands, and there is no comparison with using the full, ���-band case.
Comparative studies using full spectral resolution and many classes are lacking, in
general, because few methods can cope with such high-dimensional data techni-
cally, and the ones that are capable (such as Minimum Distance, Parallel Piped)
often perform too poorly to merit consideration.
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Undesirable loss of relevant information can result using any of these feature ex-
traction approaches. In any case, �nding an optimal feature extraction requires great
preprocessing efforts just to taylor the data to available tools. An alternative is to
develop capabilities to handle the full spectral information. Analysis of unreduced
data is important for the establishment of benchmarks, exploration and novelty de-
tection (such as in the case of hard-earned data in planetary exploration)� as well as
to allow for the distinction of signi�cantly greater number of cover types, according
to the potential provided by modern imaging spectrometers.

4 SOM-Applications

4.1 Analysis of LANDSAT TM Images

One way to get good results for visualization of the clusters of LANDSAT TM
data is to use a SOM dimension �� � � [18] and interpret the positions of the
neurons � in the lattice � as vectors � � 
 � 	"� #� $
 in the color space �, where
"� #� $ are the intensities of the colors red, green and blue, respectively [18]. Such
assignment of colors to winner neurons immediately yields a pseudo-color cluster
map of the original image for visual interpretation. Since we are mapping the data
clouds from a �-dimensional input space onto a three-dimensional color space di-
mensional con�icts may arise and the visual interpretation may fail. However, in
the case of topologically faithful mapping this color representation, prepared using
all six LANDSAT TM image bands, contains considerably more information than a
costumary color composite combining three TM bands (frequently bands �, �, and
�). [18].

In the �rst LANDSAT example we investigate an image of the north–east re-
gion of Leipzig (described in sec. 3.1), using the GSOM approach. For compari-
son we also trained several regular SOMs with �xed output spaces the dimesion
of which range from � to �, and determined the respective ��–values, shown in Ta-
ble 1. The topographic product �� favors an output space dimension �� between

���� lattice structure ��

��� ��� ������� �������

��� ��� �� �����	�� �����
�

��� �� �� � �������� ������	

��� 	� 	� 	� 	 �������� ����
��

Table 1. Values of the topographic product �� using different, �xed output spaces for the
LANDSAT satellite image of Leipzig. For each structure, 
 or more runs were averaged.

� and �. However a clear decision cannot be made between � and �. Yet, the edge
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Fig. 3. Pseudo-color cluster maps of LANDSAT-TM six-band spectral images. Clusters of the
Leipzig image using the �� �� � standard SOM (top) and the �	� �� 
 GSOM-solution
(bottom). (Color version available on request from villmann@informatik.uni-leipzig.de)
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Fig. 4. Cluster maps of the Colorado image. The RGB color composite using bands �, 
,
and 	 (top), and the ��� �� 
 GSOM-solution derived from all six bands. (Color version
available on request from villmann@informatik.uni-leipzig.de)
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length ratios of the lattice provide a further free choice. We should emphasize that in
these runs, as well as in the further GSOM simulations, we applied the new learning
rule (15) to achieve maximal mutual information as pointed out in sec. 2.2 . The
GSOM algorithm was applied in several runs with different values of ���	 (maxi-
mum number of neurons allowed). The results obtained are depicted in Table 2. The

���� lattice structure ��

��� ��� �� � ����	�

��� �	� �� 
 ������

��� ��� �� 	 ������

Table 2. GSOM results for the Leipzig image.

favored quasi two-dimensional structure is supported by the Grassberger-Procaccia
analysis described above. Fig. 3 shows the visualization of the best GSOM solution
with respect to the ��–value. The ��–values obtained by the GSOM are better than
the respective values for the �xed lattice structures. Furthermore, for all values of
���	, the GSOM yields approximately the same structure, and the length ratios of
the edges are in a good agreement with the PCA eigenvalues (see (18)). However,
in general, the standard linear PCA fails, as shown by the second LANDSAT image
from the Colorado area. The PCA for this image suggests a one-dimensional struc-
ture (see (19)). The GSOM generates a ������ lattice (���	 � ���) in agreement
with the Grassberger-Procaccia analysis (��� � ������), which corresponds to a
�� -value of ������ indicating good topology preservation (see Fig. 4).

4.2 SOM Analyses of Hyperspectral Imagery

A systematic supervised classi�cation study was conducted on the LCVF image
(Fig. 2), to simultaneously assess loss of information due to reduction of spectral
dimensionality, and to compare performances of several traditional and an SOM-
based hybrid ANN classi�er. The �� geologically relevant classes indicated in Fig. 2
represent a great variety of surface covers in terms of spatial extent, the similarity
of spectral signatures [29], and the number of available training samples. The full
study, complete with evaluations of classi�cation accuracies, is described in [31].
Average spectral shapes of these �� classes are also shown in [29].

Fig. 5, top panel, shows the best classi�cation, produced by an SOM-hybrid
ANN using all ��� spectral bands that remained after preprocessing. This ANN �rst
learns in an unsupervised mode, during which the input data are clustered in the hid-
den SOM layer. After the SOM converges, the output layer is allowed to learn class
labels. The preformed clusters in the SOM greatly aid in accurate and sensitive clas-
si�cation, by helping prevent the learning of inconsistent class labels. As mentioned
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Fig. 5. Top: SOM-hybrid supervised ANN classi�cation of the LCVF scene, using ��	 im-
age bands. Bottom: Maximum Likelihood classi�cation of the LCVF scene. 
�, strategically
selected bands were used due to the limited number of training samples for a number of
classes. Considerable loss of class distinction occurred compared to the ANN classi�cation.
’bg’ stands for background (unclassi�ed pixels).
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in sect. 2.3 such hybrid SOM constructions can also help faster learning. Detailed
description of this classi�er is given in several previous scienti�c studies, which pro-
duced improved interpretation of high-dimensional spectral data compared to earlier
analyses [20] [32] [33]. Training samples for the supervised classi�cations were
selected based on knowledge of and interest in geologic units. The SOM hidden
layer was not evaluated and used for identi�cation of spectral types (SOM clusters),
prior to training sample determination. Hence, Fig. 5 re�ects the geologist’s view of
the desirable segmentation.

In order to apply Maximum Likelihood and other covariance based classi�ers,
the number of spectral channels needed to be reduced to ��, since the maximum
number of training spectra that could be identi�ed for all classes was ��. Dimen-
sionality reduction was performed in several ways, including PCA, equidistant sub-
sampling, and band selection by a domain expert. Band selection by domain expert
proved most favorable. Fig. 5, bottom panel, shows the Maximum Likelihood clas-
si�cation on the LCVF data, reduced to �� bands. A number of classes (notably the
ones with subtle spectral differences, such as N, Q, R, S, T, V, W) were entirely lost.
Class K (basalt cobbles) disappeared from most of the edge of the playa, and only
traces of B (rhyolitic outcrop) remained. Class G and F were greatly overestimated.
Although the ANN classi�er produced better results (not shown here) on the same
30-band reduced data set than the Maximum Likelihood, a marked drop in accuracy
occurred compared to classi�cation on the full data set. This emphasizes that ac-
curate mapping of “interesting”, spatially small geologic units is possible from full
hyperspectral information and with appropriate tools.

Discovery in Hyperspectral Images with SOMs The previous section demon-
strated the power of the SOM in helping discriminate among a large number of
predetermined surface cover classes with subtle differences in the spectral patterns,
using the full spectral resolution. It is even more interesting to examine the SOM’s
preformance in terms of detection of clusters in high-dimensional data. Fig. 6 dis-
plays a ����� SOM extended by the conscience algorithm of DeSieno according to
equation (14). The input data space was the entire ���-band LCVF image. Groups of
neurons, altogether ��, that were found to be sensitized to groups of similar spectra
in the ���-dimensional input data, are indicated by various colors. The boundaries
of these clusters were determined by a somewhat modi�ed version of the �-matrix
described in (17). Areas where no data points (spectra) were mapped are the grey
corners with uniformly high fences, and are relatively small. The black background
in the SOM lattice shows areas that have not been evaluated for cluster detection.
The spatial locations of the image pixels mapped onto the groups of neurons in
Fig. 6, are shown in the same colors in Fig. 7. Color coding for clusters that cor-
respond to classes or subclasses of those in Fig. 5, top, is the same as in Fig. 5, to
show similarities. Colors for additional groups were added.

The �rst observation is the striking correspondence between the supervised
ANN class map in Fig. 5, top panel, and this clustering: the SOM detected all classes
that were known to us as meaningful geological units. The “discovery” of classes B
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(rhyolitic outcrop, white), F (young basalt �ows, dark grey and black, some shown
in the black ovals), G (a different basalt, exposed along the scarp, dark blue, one
segment outlined in the white rectangle), K (basalt cobbles, light blue, one segment
shown in the black rectangle), and other spatially small classes such as the series of
playa deposits (N, O, P, Q, R, S, T) is signi�cant. This is the capability we need for
sifting through high-volume, high-information-content data to alert for interesting,
novel, or hard-to-�nd units. The second observation is that the SOM detected more,
spatially coherent, clusters than the number of classes that we trained for in Fig. 5.
The SOM’s view of the data is more re�ned and more precise than that of the geol-
ogist’s. For example, class A (red in Fig. 5) is split here into a red (peak of cinder
cones) and a dark orange (�anks of cinder cones) cluster, that make geologic sense.
The maroon cluster to the right of the red and dark orange clusters at the bottom of
the SOM �lls in some areas that remained unclassi�ed (bg) in the ANN class map,
in Fig. 5. An example is the arcuate feature at the base of the cinder cone in the
white oval, that apparently contains a material different enough to merit a separate
spectral cluster. This material �lls other areas too, consistently at the foot of cinder
cones (another example is seen in the large black oval). Evaluation of further re�ne-
ments are left to the reader. Evidence that the SOM mapping in Fig. 6. approximates
an equiprobabilistic mapping (that the magni�cation factor for the SOM in Fig. 6.
is close to 1), using DeSieno’s algorithm, is presented in [28].

As mentioned above, earlier investigations showed the intrinsic spectral dimen-
sionality of the LCVF data set in the range of �� � [8]. The Grassberger-Procaccia
analysis [15] yields ���

�
� ���� corroborating the above results, i.e. the data

are highly correlated, therefore a drastic dimensionality reduction may be possible.
However, a faithful mapping is necessary to preserve the information contained in
the hyperspectral image. For this purpose, the magni�cation control and the growing
SOM (GSOM) procedure, as extensions of the standard SOM, are suitable tools. The
GSOM produced a lattice of dimensions � � �� �, a radical dimension reduction.
This is in agreement with the Grassberger-Procaccia analysis above. The resulting
false color visualization of the spectral clusters is depicted in Fig. 8. It shows ap-
proximately the same quality as the ��-SOM vector quantized but manually labeled
image (supervised classi�cation) in Fig. 5, top panel.

5 Conclusion

Self-Organizing Maps have been showing great promise for the analyses of remote
sensing spectral images. With recent advances in remote sensor technology, very
high-dimensional spectral data emerged and demand new and advanced approaches
to cluster detection, visualization, and supervised classi�cation. While standard
SOMs produce good results, the high dimensionality and large amount of hyper-
spectral data call for very careful evaluation and control of the faithfulness of topo-
logical mapping performed by SOMs. Faithful topological mapping is required in
order to avoid false interpretations of cluster maps created by an SOM. This chap-
ter summarized several advances that were made in the past few years, and that
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ensure strict topology preservation through mathematical considerations. Two of
these extensions to the standard Kohonen SOM, the Growing Self-Organizing Map
and magni�cation control, were discussed in detail, along with their relationship
to other SOM extensions such as the DeSieno conscience mechanism, or to inde-
pendent analyses such as the Grassberg-Procaccia analysis for the determination of
intrinsic dimensionality. Case studies on real multi- and hyperspectral images were
presented that support our theoretical discussions. While it is outside the scope of
this contribution, as a �nal note we want to point out that full scale investigations
such the LCVF study in this chapter also have to make heavy use of advanced image
processing tools and user interfaces, to handle great volumes of data ef�ciently, and
for effective graphics/visualization. References to such tools are made in the cited
literature on data analyses.
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Fig. 6. Clusters identi�ed in a 	�� 	� SOM. The SOM was trained on the entire 194-band
LCVF image, using the DeSieno [12] algorithm.

Fig. 7. The clusters from Fig.6 remapped to the original spatial image, to show where the
different spectral types originated from. The relatively large, light grey areas correspond to
the black, unevaluated parts of the SOM in Fig.6. Ovals and rectangles highlight examples
discussed in the text.
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Fig. 8. GSOM generated false color cluster map of the same ��	 band hyperspectral image
of the Lunar Crater Volcanic Field, Nevada, USA, as in Fig.5. It shows similar groups as seen
in the supervised classi�cation map in Fig. 5, top panel.


