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Abstract. We introduce a Bayesian Dirichlet-Multinomial model of the
edge weights of the Cumulative ADJacency (CADJ) graph [1] with
the goal of intelligent graph pruning. As a topology representing graph,
CADJ is an effective tool for cluster extraction from the learned proto-
types of SOMs, but for complex data the graph must typically be pruned
to elicit meaningful cluster structure. This work is a first attempt to
guide this pruning in a formal modeling framework. Our model, dubbed
DM-Prune, earmarks edges for removal via comparisons to a novel null
model and provides an internal assessment of information loss resulting
from iterative removal of edges. We show that DM-Pruned CADJ graphs
lead to clusterings comparable to the best previously achieved on highly
structured real data.

Keywords: SOM clustering · Topology representing network ·
Graph sparsity

1 Introduction: The CADJ Graph

CADJ was introduced in [1] as a weighted version of the Induced Delau-
nay Triangulation of Martinetz and Schulten [2]. As a subgraph of the Delau-
nay Triangulation, CADJ represents topological adjacencies of the prototypes
{wi}Wi=1 of a vector quantizer. Given data X = {xs}Ns=1 drawn from manifold
M ⊆ R

d, the CADJ weight of the edge connecting prototypes wi and wj is
CADJij = #{x ∈ X : BMU1(x) = i, BMU2(x) = j}, where BMU1(·) and
BMU2(·) return the index of the Best and second-Best Matching Unit (or proto-
type, respectively) of the datum x. Positive CADJij values reflect the strength
of topological connectivity of prototypes wi and wj (and, consequently, connec-
tivity of the portion of the manifold M they represent), whereas values of 0
indicate disconnected portions of the manifold. When used in conjunction with
the learned prototypes of a Self-Organizing Map [3], CADJ–in particular its
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symmetrized version CONN = CADJ + CADJT along with the CONNvis
visualization ([1], an example of which is depicted in Fig. 1)–has been a suc-
cessful tool for cluster discovery ([1,4] and references therein) via identification
of its closed, connected communities. However, the CONN graph representing
complex, high-dimensional datasets typically does not contain readily identifi-
able communities. In [1] a method for inducing sparsity in CONN is proposed to
remedy this by evaluating global and local importance of edge weights relative to
each other, removing edges by thresholding well-understood graph parameters
on a grid, and judging the impact by post-evaluation of the quality of extracted
clusters at the various levels of thresholding. This is tedious, and in the current
framework the analyst has little formalized feedback regarding the effects of the
thresholding on the representation of the data manifold as a whole. This work is
a first attempt to provide formal, principled suggestions for thresholding, before
extracting clusters. We will earmark connections for removal by comparing their
strengths to those which would be expected if the data were generated under
uniform noise; a metric afforded to us by DM-Prune will report the impact of
their successive removal as a means of locating a stopping point in the pruning
process. Our goal is toward intelligent automation of the pruning process.

(a) (b) (c) (d)

Fig. 1. (a) Data drawn from four Gaussian clusters (colored points, 1000 draws per
cluster) and their learned SOM prototypes (black points). The Voronoi tessellation is
outlined in dashed black lines. (b) The CONNvis visualization of the Gaussian data
mapped to its SOM lattice, clearly outlining the four clusters (see [1] for an explanation
of the line colorings and widths). (c) A sample of 4000 uniformly distributed points
depicted against the same Voronoi tessellation as (a). (d) The CONNvis visualization
of the uniform data recalled on the SOM learned by the Gaussian data, highlighting
the structure expected from the Uniform Null Model U

2 A Probabilistic Model for CADJ

By definition, the edge weights CADJij are counts of N observations falling into
“bins,” where the bins are the second-order Voronoi cells Vij generated by the
tessellation induced by {wi} (see [5] for a more complete reference for higher-
order Voronoi tessellations). To simplify the notation, let k ∈ {1, . . . ,K} re-index
the (i, j) : CADJij > 0, so that K is the number of non-empty cells Vij . Simi-
larly, let nk = CADJij , N =

∑K
k=1 nk; then the collection n = (n1, n2, . . . , nK)
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of counts in our K bins (categories) can be modeled via the Multinomial distri-
bution with parameters p = (p1, . . . , pK), which give the probabilities of obser-
vation x falling into bins 1, . . . , K.

For our data X, the true probability of bin k is pk =
∫
Vk

fM(x), where
fM(x) is the probability density of manifold M from which X was drawn. Since
fM(x) is unknown we must estimate p in order to parameterize the Multinomial
distribution. This is easily accomplished in a Bayesian framework by appealing
to the conjugacy of the Dirichlet distribution to the Multinomial. The Dirichlet
distribution of dimension K, denoted Dir(α), is parameterized by vector α =
(α1, . . . , αK), where all αk > 0, and describes probability distributions over the
K − 1 dimensional unit simplex (i.e., {p :

∑K
k=1 pk = 1}). We note for later

use that each marginal pk has a Beta distribution with parameters β1 = αk and
β2 = α0 − αk (where α0 =

∑K
k=1 αk).

Invoking Dirichlet-Multinomial (DM) conjugacy, the posterior distribution
of unknown p after observing multinomial count data n with prior distribution
Dir(α) is also Dirichlet, but with modified posterior parameter ᾱ = α + n.
Under the DM setup, the marginal distribution of the observed counts (i.e., the
data likelihood, or Bayesian evidence) is given by [6]

fDM (n|α) =

∫
fM (n|p, N)fD(p|α) dp =

Γ (α0)Γ (N + 1)

Γ (N + α0)

K∏
k=1

Γ (nk + αk)

Γ (αk)Γ (nk + 1)
. (1)

The Dirichlet parameter α controls both the mean and covariance of the
resulting distribution, and consequently affects our estimation of p. A typical
choice for an uninformative prior has αk = a = 1∀ k, meaning the resulting
Dirichlet distribution considers all probability vectors equally likely. As a→∞ the
Dirichlet more strongly favors uniform p. Our choice of prior will be influenced
by our choice of learning algorithm, where the prototypes {wi} are placed via
the Conscience-SOM (CSOM) algorithm of DeSieno [7], which aims to produce
a maximum entropy mapping M → {wi}. Because of this, we have reason to
expect equi-probable p and set αk = a > 1∀ k. In the experiments which follow,
αk = 10 was used as a default.

3 A Multi-focal View

The model in Sect. 2 was constructed by considering all CADJ connections
simultaneously, which we refer to as a global view of manifold connectivity (and
denote by subscripts G in what follows). However, depending on characteris-
tics of the manifold as represented by the prototypes {wi}, local connectivity
might be more informative at certain points of the manifold than others, and
vice-versa. In our framework, we have a separate local model of connectivity
emanating from each (non-empty) Voronoi cell i ∈ 1, . . . , W , with corresponding
local versions of our quantities of interest: Ki = the number of bins in each
local model, which is given by the number of CADJ neighbors of prototype i;
ni = (ni,1, . . . , ni,Ki

) are the observed counts of these Ki bins; Ni =
∑Ki

j=1 ni,j ;
αi and ᾱi denote the vectors of prior and posterior parameters associated with
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these local models, respectively. We stress that only the probability space (the
number of bins K) changes between the global and local views, not the counts or
parameters. In what follows, an expression fDM (n|α) should be interpreted as
evaluating the DM density of the global model at observation n with parameter
α, and fDM (ni|αi) denotes evaluation of the DM density of local model i, at
counts ni with parameters αi.

4 The Λ Metric

The evidence provided by the DM model (1) for our CADJ values provides a
natural starting point to monitor the degradation caused as we invoke sparsity
into the prototype connectivity graph and, as discussed in the previous section,
we would like to simultaneously monitor both the global (G) and overall local
(L) nature of these impacts. In our setup, removing a CADJ connection k, can
be represented by sparsifying the α parameters of our model (i.e., by setting αk

to some small value ε ≈ 0, we used 1e − 20). The impact of pruning can then
be monitored via the Bayesian odds of the sparse prior model to the full, which
forms the basis of our metric Λ.

The pruning process will be iterative over time t. Before beginning, we assign
ranks rk to each connection, which denote its order of removal (by convention,
rk ∈ {1, . . . , R}, where R ≤ K is the number of distinct ranks and rk = 1 means
connection k is slated for removal at time t = 1). Let ρt = {k : rk ≤ t}, so
that ρt returns the set of indices slated for removal at all times ≤ t. Since, for
us, removing connections corresponds to sparsifying α, we also define αk(t) =
{ε if k ∈ ρt, αk else} and their vectorized versions α(t) and αi(t). The impacts
on our global and local models from pruning at step t are

ΛG(t) =
(

fDM (n|α(t))
fDM (n|α(0))

)1/N

; ΛL(t) =
W∏

i=1

(
fDM (ni|αi(t))
fDM (ni|αi(0)

)1/Ni

(2)

and we aggregate these two views into a combined measure Λ = ΛG×ΛL. ΛG and
ΛL (and, consequently Λ) describe the evidence of the sparse model, relative to
the full model. To account for the different natural scales of the data likelihoods
and produce a comparable global and local view we have normalized each of the
above odds by their effective sample size. We call the curve traced by Λ(t) over
time the Λ-Path and monitor its trajectory as we successively prune.

An example of a Λ-Path is given in Fig. 2 displaying the global, local and
combined relative likelihoods of pruning over time. For viewing purposes, all
three curves have been scaled from [Λ(R), 1] to [0, 1] (the likelihood of the fully
pruned model at t = R is not 0). Red dotted guidelines show selected % levels
(e.g, every 5%) of the total likelihood retained, along with their corresponding
steps t, at the bottom of the path plot. These guidelines suggest where to prune
the graph in order to conserve a particular level of the likelihood. Note that
a loss in data likelihood is not necessarily proportional to a total loss in data
(or connections) from the model: certain connections are more important than
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others, as will be reflected by their evidence (1). Of particular interest to us is
the point of intersection where ΛG and ΛL attain equal relative evidence, since
removing a connection harms its corresponding local likelihood more than it
does ΛG. At the point t∗ : ΛG(t∗) = ΛL(t∗), we have damaged our local model
fit to the point where each of the component views contributes equal evidence;
we postulate this might serve as an upper bound on t when implementing this
pruning procedure.

5 Ranking Connections for Removal

The thresholding procedure described in [1] utilizes relative strengths of the
observed CADJ counts themselves as a guide for thresholding, with low-ranking
connections (either globally or locally) removed first. This is essentially a rank
analysis, where the justification for removing a certain connection is derived by
comparing its strength (i.e., weight) to others, at different focal areas (globally
or locally). Our basis for comparison will be informed by conditioning our notion
of “strength” on a different set, which we call the Uniform Null Model U . Specifi-
cally, we take U to be a fictitious, unobserved manifold that has Uniform measure
fU (x) over the support of M. Under U , the probabilities associated with each
second-order Voronoi cell Vk are given by qk =

∫
Vk

fU (x) dx. Using the qk we
construct, for each connection k and its estimated probability distribution pk,
the quantity Qk = PB(pk > qk), which serves as an indicator of strength relative
to U . The measure PB(·) denotes probability with respect to k’s marginal Beta
distribution (see Sect. 2). Obviously, 0 ≤ Qk ≤ 1, where values ≈ 0 (or 1) indi-
cate posterior bin probabilities much less (or greater) than would be expected
under U .

This choice of null model compares our observed CADJ graph, which rep-
resents structured M, to a CADJ (with respect to the same set of prototypes
{wi}) derived from data that has no structure at all. Namely, we are trying to
distinguish observed structure in CADJ from that which would result from uni-
form noise. Due completely to the size (volume) of the second-order Voronoi cells
Vk, uniform noise (such as is displayed in Fig. 1c) can still produce the appear-
ance of structure in the CONNvis visualization (shown in Fig. 1d, which was
generated by recalling the uniform noise using the SOM trained on the Gaus-
sian clusters in Fig. 1a, and recording their BMU1 and BMU2). In our context,
connections k whose Qk values are the lowest are prime candidates for pruning
(and are assigned rank rk = 1, putting them first in line for removal). Under our
multi-focal view we actually must consider QG,k and QL,k for each connection
k, as the global and local models dictate separate marginal distributions. The
ranking rk is defined as the geometric mean of the two so Qk =

√
QG,k × QL,k

and rk = rank(Qk).
As computing qk is equivalent to determining the volume of convex polytopes

(i.e., the second-order Voronoi cells) we must turn to estimation procedures for
practical implementation. In low to medium dimension, rejection sampling can
work; we have had some success in creating tight sampling bounds around the
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second-order Voronoi cells via the solution to the extrema linear program of [8].
Alternatively, Markov-Chain Monte Carlo methods [9,10] can be employed. We
believe even crude estimates may still be useful for our purposes as the qk for the
Ocean City data discussed in Sect. 6.2 were estimated by considering the relative
proportions of their bounding hypercubes and the results there are promising.

6 Clustering Applications

To determine the success of our method we compare the cluster structure recov-
ered from the DM-Pruned CADJ graph to known cluster structure in both syn-
thetic and real-world data. Cluster extraction from an SOM has typically been of
the highest quality when interactively performed from CONNvis. This is time-
consuming, requires expertise, and is somewhat subjective. To mitigate these
bottlenecks we employ a leading graph segmentation algorithm (Walktrap [11],
available in [12]) to segment the pruned CADJ , which we have shown produces
clusterings of similar quality to those of the human analyst [13]. Results are
judged via Unweighted and Weighted Overall Accuracies (UOA and WOA) as
compared to reference images. UOA is the average of class-wise %-accuracies
whereas WOA is the average pixel-wise accuracy. Utilizing Walktrap as a clus-
tering oracle has its own effects on the quality of the recovered partitioning as
it requires further parameterization (which we do not optimize here), but the
relative accuracies between different pruning levels should still indicate their
comparative suitability for cluster discovery.

For each of our data applications we compute the Λ-path and select as can-
didates for pruning those connections which, when removed, result in 95% and
90% of the “full” model likelihood (denoted Λ-95 and Λ-90, respectively). We
also consider the graph resulting from pruning at an additional t-step of inter-
est in each case, as explained below. For reference we compare to a more naive
scheme of simply keeping the top locally-ranked connections which contain 100,
95 and 90 percent of the data (denoted tn − 100, 95, 90, respectively).

6.1 6d Synthetic Spectral Image

Our synthetic data is a 128× 128 pixel synthetic spectral image (6d synthetic,
11-class, [14]) of 6 bands containing 11 clusters of various sizes. The spatial
layout of the class labels, distinguished by 11 colors, is shown in Fig. 2a. The
15 × 15 SOM trained on this data is shown in Fig. 2b, where each lattice cell
is painted with the color code of the majority pixel labels which were mapped
to the cell’s neuron. Overlain on the SOM is a visualization called TopoView
[4], which depicts the CONN graph without showing the edge weightings, for
clarity. The islands which are readily visible indicate that this CONN graph
contains clear closed communities, even without pruning. The one exception
is the connection from the single neurons representing clusters R (pink) and Y
(fluorescent yellow); our goal with this experiment is to ensure that DM-Pruneing
does not destroy the clearly delineated structure visible in Fig. 2b.



50 J. Taylor and E. Merényi

The Λ-path resulting from a Dirichlet-Multinomial fit of these data is shown
in Fig. 2d. In it, we see that a steep drop in likelihood occurs between t = 35 and
tdrop = 36. Pruning at t = 25 (Λ-95), t = 35 (Λ-90), and tdrop = 36 produces the
accuracies reported in Fig. 2c, which shows perfect cluster capture at both the
Λ-95 and Λ-90 levels (since each of their resulting pruned graphs removed the
connection between R and Y). Pruning at tdrop = 36 also removed connection
R-Y, but destroyed the local connectivity holding the large white cluster (B)
together (not shown here), resulting in its lower accuracies.
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% Acc. % # %
UOA WOA Data Clus Conn

Λ-95 100.0 100.0 96.0 11 98.3
Λ-90 100.0 100.0 93.8 11 97.7
Λ-tdrop 95.6 87.8 86.0 11 95.1

tn-100 90.9 99.9 100.0 10 100.0
tn-95 81.7 75.1 95.2 10 50.6
tn-90 87.6 90.9 90.1 10 35.2
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Fig. 2. (a) The spatial layout of the 11 classes of our 6d synthetic spectral cube. (b)
The undirected TopoView visualization of CADJ overlain on the SOM lattice which
learned the data visualized in (a). Each lattice neuron is connected to the neurons
which represent adjacent prototypes in the Induced Delaunay Triangulation of [2].
(c) The accuracies achieved after clustering the SOM depicted in (b) via pruning
by both DM-Prune and a simpler scheme involving local connection rankings. Along
with accuracy, the table also reports the % of data and connections which remain
represented in the resulting pruned graph, as well as the number of true clusters which
were identified by each method. (d) The Λ-Path (Sect. 4) depicting degradation of the
Dirichlet-Multinomial relative likelihood as the CADJ graph is progressively pruned.
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6.2 Real Data: Ocean City Spectral Image

For experiments with real data, we use a 512 × 512 pixel, 8-band spectral image
of Ocean City, Maryland, with 1.5 m/pixel resolution. References to data col-
lection, description of pre-processing and mean signatures of verified land-cover
classes are given in [15] along with an earlier interactive clustering as in [1].
This image contains many clusters with widely varying statistical properties

(a) Reference Cluster Map
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(c) Λ(t∗) Cluster Map
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(d) Λ(t∗) Clustered SOM

Fig. 3. (a) Interactive clustering of the Ocean City spectral image from CONNvis
visualization of SOM prototypes, from [15]. The 28 clusters include ocean, bay, canal,
pool water, (medium to dark blue colors); roofing materials (red, white, light pink, hot
pink, magenta); grass, shrubs around houses (green, yellow), other vegetation (orange,
brown), and several rare clusters: roofs a, m (in blue circle), roofs c, V, shrub g, dry
grass M (in white ovals). Asphalt (magenta, G) and reflective paint (neon blue, X)
occur on roads as well as on roofs. (b) The 40× 40 clustered SOM for Ocean City,
with the labels and colors of each reference cluster depicted in the lattice cells. (c) The
clustered image resulting from pruning the Ocean City CADJ at step t∗ = 398. (d)
The clustered SOM which generated (c).
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(see Table 1 of [4]), and it is very noisy. We compare DM-Prune segmentations
with the segmentation of this image from [15], shown in Figs. 3a, b. The CONN
representation of this data can be seen in [1].

The DM-Prune clustering from step t∗ = 398 (where ΛL dips below ΛG in
Fig. 4a) in Fig. 3c is very similar to that in Fig. 3a by visual inspection. All
major landmarks, water components, all houses, roads, and vegetation are very
well delineated. Major differences include the absence of cluster T (salmon color);
the absence of small clusters c, g, M, V, X; and the presence of a few extra clusters
in Fig. 3c. The locations of c, g, M, V are in white ovals; X was merged to E.
These diferences are easiest to find in the SOMs in Figs. 3b and d. Cluster T (a
particular roof type) has been divided among clusters G, P, Q, and S, which is
reasonable given their neighboring locations in the SOM and their similar cluster
signatures in the reference clustering (as seen in Fig. 3 of [15]). In the spatial
image cluster T pixels are mostly merged to cluster G, a similar type of roof.
Given that in [16] cluster T was detected by Walktrap using the unthresholded
CONN graph, the absence of T here could be the result of DM-Pruneing, as
its null model probabilities qk were very crudely estimated. The missing small
clusters can be ascribed to Walktrap performance since in [16] the same are also
absent when Walktrap (with the same default number of steps, 4) is applied to
the unthresholded CONN graph. The small clusters a and m (circled in blue)
are found, probably due to their more unique signatures. Class-wise and pixel-
wise accuracies in Fig. 4b also indicate good match between Fig. 3c and a. While
they are relatively low (best case just below 70%) in absolute terms, we need
to consider that, in an image with 1.5 m/pixel footprint, many pixels contain
multiple materials at object boundaries. These mixed pixels may get assigned to

Fig. 4. (a) 1200 steps of the Λ-Path of pruning the Ocean City CADJ with DM-Prune.
(b) Accuracies of resulting clustering from DM-Prune and simpler thresholding schemes,
as compared to Fig. 3a.
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different clusters based on different pruning/thresholding of the CADJ graph.
The differences can cause fairly large accuracy loss even though they are not
distracting to the eye. The accuracy measures ignore the spatial coherence of
the errors in areas where mixing is expected. I.e., if the non-matching pixels
were scattered throughout the image in a salt-and-pepper fashion, we would
consider the match much poorer while the accuracies would remain the same.
Overall, we can say the DM-Prune clustering is approaching the quality of the
reference clustering.

7 Conclusions and Outlook

We have introduced DM-Prune as a Bayesian Dirichlet-Multinomial model of the
edge weights of the CADJ graph for the purpose of pruning its edges to facili-
tate cluster discovery from SOM prototypes. The modeling framework provides
a natural mechanism for both selecting edges ripe for pruning and assessing the
overall impact from doing so. Experiments with both synthetic and real-world
spectral image data confirm that graph sparsification governed by DM-Prune is
capable of retaining vital local connectivities, which if removed would destroy
our view of meaningful cluster structure, while simultaneously shedding spuri-
ous connections which cloud this view. Future work involves integrating more
sophisticated estimation of the null model probabilities qk and further experi-
ments with the methodology to gain confidence for setting the DM α parameter
and, most importantly, to provide more concrete recommendations for identify-
ing optimal pruning levels from the Λ-Path metric.

Acknowledgment. We thank Dr. Beáta Csathó, University of Buffalo, for the Ocean
City spectral image and accompanying truth. This project was partially supported by
a North American ALMA Development Cycle 5 Study Program, administered by the
National Radio Astronomy Observatory, with the consent of the U.S. National Science
Foundation.

References
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16. Merényi E, Taylor J (June 2017) SOM-empowered graph segmentation for fast
automatic clustering of large and complex data. In: 12th international workshop
on self-organizing maps and learning vector quantization, clustering and data visu-
alization (WSOM+2017), pp 1–9




