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Abstract
As topology representing networks, the Cumulative ADJacency graph CADJ and its symmetric version CONN ¼
CADJ þ CADJT Tasdemir and Merenyi (IEEE Trans Neural Netw 20(4): 549–562, 2009), can be utilized as inputs to

graph-based clustering (GBC) paradigms for partitioning the learned prototypes of a vector quantizer. To express complex

data faithfully, CADJ must typically be pruned (thresholded, or made sparse) to be most effective as an input to GBC

routines, whether they be algorithmic or driven by human assessment. This work, given in two parts, develops a formal

framework for CADJ pruning as a preprocessing (sparsifying) step to improve CADJ’s use in any GBC routine. That is,

rather than advocating a particular GBC method, our goal is development of sensible logic for creating sparse CADJ inputs

to the entire family of GBC methods. Part 1 defines an overall quality measure for each CADJ edge by extending lines of

reasoning used successfully in the past to prune CONN graphs. Part 2 introduces a Bayesian Dirichlet-multinomial (DM)

model of CADJ edge weights with an intelligent prior constructed through analysis of the Voronoi tessellation generated by

the vector quantization. The DM likelihood offers an internal assessment of information loss resulting from iterative CADJ

edge removal, which is used to determine an optimal stopping criterion for the pruning process. We show that DM-Pruned

CADJ graphs lead to GBCs comparable to the best previously achieved on highly structured real data.

Keywords SOM clustering � Topology representing graph � Graph sparsity

1 Introduction

CADJ was introduced in [22] as a weighted version of the

Induced Delaunay Triangulation of Martinetz and Schulten

[11] representing topological adjacencies of the M proto-

types fwjgMj¼1 of a vector quantizer. Given data X ¼ fxigNi¼1

drawn from manifold M � Rd, the CADJ weight

of the edge connecting prototypes wj and

wk is CADJjk ¼ #fx 2 X : BMU1ðxÞ ¼ j;BMU2ðxÞ ¼
kg, where BMU1ð�Þ and BMU2ð�Þ return the index of the

Best and second-Best Matching Unit (or prototype,

respectively) of the datum x, and # denotes set cardinality.

Positive CADJjk values reflect the strength of topological

connectivity of prototypes wj and wk (and, consequently,

connectivity of the portion of the manifold M they rep-

resent), whereas values of 0 indicate disconnected portions

of the manifold.

While the CADJ graph may originate from the learned

prototypes of any vector quantizer (e.g., K-means or Neural

Gas), in this work we focus solely on prototypes arising

from Self-Organizing Map (SOM) learning [8], as its lat-

tice both informs DM-Prune modeling and provides a way

to visualize CADJ, which facilitates our discussion. Indeed,

this CONNvis visualization ([22], which represents

CADJ’s symmetrized version CONN ¼ CADJ þ CADJT

on the lattice), has been used as a successful tool for

human-assisted GBC, via identification of strongly con-

nected CONN prototype communities. However, the

CONN graph representing complex, high-dimensional

datasets typically does not contain readily identifiable

communities due to a large number of weak connections

induced by noise and deemed unimportant for the expres-

sion of manifold structure. [22] proposes a method for
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pruning CONN edges by assessing their global and local

importance relative to a thresholding grid generated from

statistical summaries of the CONN edge weights. Selection

of the ‘‘best’’ combination of thresholds has historically

been performed ad hoc via human assessment of the

clusterings resulting from each pruned graph. This process

is tedious, as 1) there is no natural ordering to the thresh-

olding grid (e.g., it is unknown in what circumstances an

edge’s global importance should outweigh its local

importance), 2) it creates unnecessary work as many of the

grid threshold combinations produce very similar pruned

graphs and, most importantly, 3) it lacks guidance as to

what thresholding levels might be most useful for the

observed data. The DM-Prune strategy, introduced in [23]

and extended here, develops a priori suggestions for

thresholding CADJ for optimal cluster extraction. A scor-

ing metric l, which combines the spirit of grid thresholding

discussed above with an additional probabilistic assess-

ment, produces a quality metric for each edge which is

used to rank connections for iterative removal over ‘‘time,’’

stopping when a likelihood-based metric of pruning impact

begins to deteriorate. Our goal is toward intelligent

automation of CADJ pruning to improve its use in any

GBC method.

While CADJ is technically an M �M matrix reporting

the strength (or absence) of topological connections

between prototypes, it is typically very sparse. For the rest

of the discussion, we will only consider the subset of

connections JK ¼ fðj; kÞ : CADJjk [ 0g which index the

nonzero entries in CADJ and let |JK| denote the number of

such connections. Obviously,
P

jk CADJjk ¼ jXj ¼ N. To

hopefully avoid later confusion, we pause to clarify some

terminology we will consider interchangeable in what

follows. Because CADJ is a weighted adjacency matrix, it

defines a graph; we thus make no distinction between a

‘‘CADJ connection’’ and a ‘‘graph edge,’’ as they refer to

the same thing. A connection’s ‘‘strength’’ (graph edge

weight) refers to its corresponding CADJjk value. Addi-

tionally, this graph can simultaneously be considered to

connect the SOM prototypes in data space (Rd) or the SOM

neurons on the lattice.

As a final introductory note, we reiterate that DM-

Prune is not a clustering method on its own; rather, it is

intended to be a sparsification step for CADJ inputs to

GBC methods. We have previously shown [12] this com-

bination can produce sophisticated clusterings of compli-

cated real data if the right CADJ graph is selected as input.

In this work, we are not advocating any particular clus-

tering method to be paired with CADJ, but we are advo-

cating the use of CADJ graphs as GBC inputs vs., e.g.,

spectral clustering methods, which also rely on topology

representing networks. This conclusion is based on the

increased sensitivity of all clusterings developed in this

work vs. the spectral clustering of Fig. 1. Effectiveness of

the use of the symmetric version of CADJ (CONN) vs.

K-means has been demonstrated previously [20].

1.1 Example data: multispectral image
from mars

The initial introduction of DM-Prune [23] exercised its

nascent methodology on both synthetic and real hyper-

spectral images; for its expansion in this work, we will only

consider a complex, real multispectral image (which we

introduce immediately) for space considerations.

On January 4, 2004, NASA’s Mars Exploration Rover

Spirit landed on Mars to search for evidence of past water

reserves in Gusev Crater. This search centered in part on

compositional studies of the soil and rocks in the crater via

remote sensing with a panoramic camera (‘‘Pancam’’)

capable of imaging in the 400–1100 nanometer wavelength

range (near-UV to near-IR). We will experiment with a 700

x 450 pixel, seven-band multispectral image of Husband

Hill, taken by Spirit in the Columbia Hills region of Gusev

Crater on sol 608 of its mission, which we refer to as

‘‘MER Image’’ in what follows. Band one of this image,

centered at 423 nm, is shown in Fig. 1.

The results of a previous SOM-based clustering of this

image [14, 21] obtained interactively via CONNvis anal-

ysis (described below) are shown in the top row of Fig. 1.

This study segmented 22 scientifically verified soil and

rock compositions from the MER image, as listed in the

provided table. The 40 x 40 clustered SOM lattice is shown

here as well; white, unlabeled grid cells represent neurons

which were previously unclustered by the human analyst.

We will also ignore these in our analysis, as any new

findings involving their inclusion would require additional

scientific verification. The bottom row of Fig. 1 shows a

Spectral Clustering (SC [10] using the automatic parameter

tuning of [24], made available in the R package Spec-

trum), of the same learned SOM prototypes. While also

derived from a topology representing graph, the SC exhi-

bits a loss of scientific granularity; generally, it differen-

tiates only rock from soil. This coarse clustering highlights

the benefits of harnessing CADJ in GBC methods and

motivates its further scrutiny in this study.

1.2 Grid-based CADJ thresholding

Along with the CADJ and CONN graphs, [22] also intro-

duces the CONNvis visualization as a way to express

manifold connectivity on the SOM lattice to support

human-enabled GBC with SOMs. An example CONNvis

for the MER CONN graph is found in Fig. 2. While CADJ/

CONN are born sparse (with number of edges
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\\OðM2 ¼ 16002 ¼ 2; 540; 000Þ), the CADJ graph

underlying the CONNvis displayed in Fig. 2 still contains

26,542 edges which, collectively, obscure any immediate

cluster inference. To combat this, [22] proposes three cri-

teria useful for CONN edge removal. We review these

criteria below, applied directly to the CADJ graph (instead

of CONN).

Global importance assessments, which are simple

comparisons of CADJjk to all other CADJrs, reflect the

intuitive idea that prototypes joined together by more data

vectors are more likely to belong to the same cluster than

not. We call thresholding by global importance value

thresholding, with threshold limits denoted by tv (so that,

e.g., thresholding at tv ¼ 30 results in removing all

CADJjk\30). The tv thresholds are set as the mean con-

nection strengths when grouped by their local rank, which

is the descending rank order of each connection strength

CADJjk relative to the immediate CADJ graph-neighbors

of node j (explained in detail in [22]). Because global

assessments alone can overlook finer cluster structure that

occurs in lower-density portions of the manifold, we must

also incorporate local rank threshold limits, denoted by tn.

Thresholding at, e.g., tn ¼ 2, removes all connection

whose local rank is [ 2; the tn limits range in the integers

from 1 to the maximum number of CADJ neighbors of any

prototype j. Because the SOM is a topology-preserving

mapping from Rd to its output lattice, [22] also suggests

thresholding connections based on the lattice distance of

the neurons they connect; due to the organization that

occurs on the lattice, distant neurons are less likely to

comprise the same cluster (and if they do, should be con-

nected to intermediary lattice neurons). Letting d1ðj; kÞ
represent the Chebyshev distance between neurons j and k

on the lattice, threshold limit tl ¼ 3, e.g., removes all

connections CADJjk such that d1ðj; kÞ[ 3. The Cartesian

product of the unique tv, tn and tl values constitutes the

thresholding grid, which can grow quite large for compli-

cated data.

The connection statistics underlying the CONNvis of the

MER image are displayed at the right of Fig. 2. The

maximum number of neighbors of any prototype for this

data is 13, so there are 13 � 1 ¼ 12 possible tn

Fig. 1 Top Row: The Interactive Clustering (IC) of the MER image

of Husband Hill from [14, 21], showing spatial cohesiveness of the 22

clusters verified by MER scientist WH Farrand. The 40 � 40 SOM

clustering (top right) was obtained via human assessment of the

CONNvis visualization [22]. Bottom Row: A Spectral Clustering of

the learned SOM prototypes of the MER image, showing a marked

loss of material discrimination compared to the IC. Inset: Band 1 (at

423 nm) of Spirit’s image of Husband Hill, and the scientific

interpretation of the 22 IC clusters comprising various compositions

of rocks and soils visible in the clustered images
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thresholding limits. Studying the statistics per rank, we see

there are only seven unique tv thresholds (as CADJ values

are integers, all of the mean connection strengths of ranks

9-13 are redundant). The lattice lengths of MER connec-

tions occupy the entire possible range for a 40 x 40 SOM

(f1; . . .; 39g), so that the number of tl thresholds is

39 � 1 ¼ 38. Thus, the MER image thresholding grid is of

total cardinality 12 � 7 � 38 ¼ 3; 192. In practice, many of

these (tv, tn, tl) combinations are redundant, and our

experience with CONNvis circumvents the need to con-

struct and analyze the full grid but, even with a small

number of candidate thresholding combinations, producing

and analyzing a clustering for each is tedious.

2 Scoring and ranking edge quality

To move toward a more unified framework for edge

pruning, we propose scoring each connection CADJjk with

a measure

ljk ¼ G
cG
jk � N

cN
jk � L

cL
jk � S

cS
jk

h i1=ðcGþcNþcLþcSÞ ð1Þ

where �jk are individual components contributing to the

overall quality score, defined in Table 1 and discussed

below. The c� are weightings controlling the contribution

of each component to the overall score. We have not

experimented with changing these weightings (have set

them all ¼ 1 in the following) but include them in the

definition of ljk for potential future optimization. The

definitions of each component in Table 1 reflect our

adopted convention that each �jk is in the range [0, 1] with

1 representing the highest quality according to the indi-

vidual measure.

Because of the great success resulting from the grid

thresholding scheme in Sect. 1.2, we define the first three

components to simulate its effects: Gjk (inspired by tv

thresholding) measures the global strength of each con-

nection, Njk (inspired by tn thresholding) measures the local

strength of each connection relative to all neighbors of

prototype wj and Ljk (inspired by tl thresholding) measures

the plausibility of each connection based on the lattice

distance of neurons j and k. We describe this as a measure

of plausibility due primarily to the local lattice influence of

the prototype update step of the SOM learning rule. While

connections of long lattice length do occur, the prototypes

joined by a long lattice connection have not been directly

influenced by each other during learning; consequently, we

view them as less reliable than connections spanning small

distances on the lattice.

In addition to the above, we have added to our quality

score ljk the effects of component Sjk, which attempts to

correct for sampling noise contributing to our observed

counts CADJjk. Using a kernel density estimator f̂ ðyÞ fit to

data X, we draw B (new) samples Y1; . . .; YB (of the same

size, N, as X) and construct a CADJ matrix CADJb for

each. Sjk is the proportion of times the edge CADJjk

Fig. 2 Left: CONNvis (no thresholding) of the MER image data on

the SOM lattice. Line widths correspond to global edge strength (in

order, highest to lowest), while line colors correspond to the rank of

local edge strengths (red, blue, green and yellow = highest through 4th

highest locally ranked connection, respectively, with the rest in

grayscale from darkest to lightest. Right: The statistics of CADJ

values computed by local rank, as suggested in [22]. Violin plots of

the distribution of edge strengths within each rank are plotted, with

the mean value per rank indicated in red. The blue bars show the

cumulative percentage of data forming connections between proto-

types in each rank
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appears in the set of bootstrapped CADJ matrices. Con-

nections formed spuriously through sampling variability of

lower density portions of the manifold can be easily

identified by low Sjk values, as depicted in the example in

Fig. 3a, where connections of the MER image CONNvis

with Sjk\0:5 are shown. The connections deemed least

plausible due to sampling variability are generally of

longer length and weaker strength (indicated by their thin

lines and gray color). A few thicker green and yellow

connections exist, indicating some edges of stronger global

or local strength are not reliably persistent over repeated

sampling. Overall, 6,695 of the 26,542 edges in this CADJ

matrix have an S-score \0:5.

As defined, ljk attempts to incorporate the assessments a

human analyst would make about the importance of con-

nection CADJjk to cluster discovery via CONNvis, in

addition to incorporating new information from Sjk not

previously considered. Ranking by (increasing) l provides

a natural ordering of the set of connections by their com-

bined importance. This ordering deviates from that implied

by the CADJ value alone, as is visible in Fig. 3b.

For the rest of this discussion, we will view the act of

pruning as a process occurring over ‘‘time’’ steps t,

whereby at each t we remove edges from the CADJ graph

in increasing rank of ljk. The total time horizon T is equal

Table 1 Components comprising the quality score ljk of each connection CADJjk

Global importance Neighborhood (local) importance

Gjk ¼
CADJjk

max
r;s

CADJrs
Njk ¼

CADJjk

max
s

CADJjs

Measures the strength of each CADJ connection, relative to all others Measures the strength of each CADJ connection, relative to all

neighbors of its source neuron

Length plausibility Sampling plausibility

Ljk ¼
D� � d1SOMðj; kÞ þ 1

D� Sjk ¼
1

B

XB

b¼1

1 CADJbjk [ 0
h i

where d1SOMðj; kÞ is the Chebyshev distance between neurons j and k on

the SOM lattice and D� ¼ maxr;s d
1
SOMðr; sÞ. Measures the

plausibility of each CADJ connection based on its length on the

lattice

where B is the number of bootstrap samples and CADJb is the CADJ

matrix constructed from the bth sample. Measures the plausibility of

each connection, as a proportion of times it appears during bootstrap

resampling

Overall score ljk ¼ G
cG
jk � N

cN
jk � L

cL
jk � S

cS
jk

h i1=ðcGþcNþcLþcSÞ

where each c� [ 0 is a component weight. For this study all c� ¼ 1.

(a) (b)

Fig. 3 a An example of the MER image SOM lattice shown with connections whose Sjk values are \0:5. b A view of the l score vs. the

respective CADJ value for each connection, showing how ljk can consider CADJ connections of the same strength very differently
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to max rankðljkÞ; because the ljk values are not necessarily

distinct (edges can share the same score), T can be less than

the number of nonzero CADJ edges. At a given time step t,

we produce a pruned CADJ graph by zeroing out edges in

the original CADJ matrix, which we capture with the fol-

lowing notation for CADJ as a function of time:

CADJjkðtÞ ¼
0

CADJjk

( )

; NðtÞ ¼
X

jk2JK
CADJjkðtÞ ð2Þ

As removing edges is equivalent to removing data, the

effective sample size N also changes with t, which is

captured in the notation for N(t) above.

3 A probability model for CADJ

3.1 From graph to model

By definition, CADJjk are random counts of N observations

falling into ‘‘bins,’’ where the bins are the second-order

Voronoi cells Vjk [18] of the tessellation induced by pro-

totypes fwjg; recall that we have |JK| such nonempty bins

(nonzero edge weights). The standard probability model for

the counts of N objects in |JK| bins is the multinomial. For

our data X, the true (unknown) probability of bin Vjk is

pjk ¼
R
Vjk

f ðxÞ, where f(x) is the probability density of

manifold M from which X was drawn. Because we have an

intuitive prior, we will jointly model the CADJ counts and

unknown probabilities p in a Bayesian setting using the

compound Dirichlet-multinomial (DM) distribution [17]

fDMðCADJja;NÞ ¼
Z

fMðCADJjp;NÞfDðpjaÞ dp

¼ Cða0ÞCðN þ 1Þ
CðN þ a0Þ

Y

jk2JK

CðCADJjk þ ajkÞ
CðajkÞCðCADJjk þ 1Þ

ð3Þ

where fM is the multinomial pmf and fD is the Dirichlet pdf.

In words, this model asserts that the observed CADJ values

were generated by a two-stage compound probability

model: bin probabilities p are drawn from a Dirichlet dis-

tribution with parameter a (a vector of pseudo-counts), and

then CADJ counts are drawn from a multinomial distri-

bution with parameters p and N. Under DM conjugacy, the

posterior distribution of unknown p, after observing

multinomial count data, with prior distribution DirðaÞ, is

also Dirichlet with modified posterior parameter

�a ¼ fajk þ CADJjkg.

3.2 Selecting the Dirichlet prior

Absent a particular reason to bias the resulting estimation,

standard practice in Bayesian statistics is to select an

uninformative prior a. In this case, ajk ¼ 1; 8 jk dictates all

probability vectors p to be equally likely. However,

because our bins Vjk are polytopes in Rd; we are not

completely uninformed: each possesses a distinct geome-

try, and hence a distinct volume, which we incorporate into

the prior

U jk ¼ N �
R
Vjk

1 dx
P

rs2JK
R
Vrs

1 dx
¼ N � volumeðVjkÞP

rs2JK volumeðVrsÞ
; U ¼ fU jkg

ð4Þ

Using U as prior information in (3) specifies a type of

geometric ‘‘null model’’ for CADJ counts (capturing our

expectation that larger Voronoi cells likely contain more

observations, and vice-versa). That is, we compare

observed CADJ counts to those which might arise if uni-

form noise were recalled through the SOM trained on X,

which has the effect of normalizing each bin count relative

to its volume. As each Vjk is highly irregular, computing its

volume in Rd for general d is not trivial; we have utilized

the volume of the Maximum Volume Inscribed Ellipsoid

(MVIE, [25]) of each polytope Vjk as an approximator.

4 The K-path

The DM likelihood afforded by (3) for each of our pruned

CADJ graphs CADJðtÞ offers a natural tool for monitoring

the impacts of pruning over time, which we incorporate

into the time-dependent metric KðtÞ:

KðtÞ ¼ 1

NðtÞ log fDMðCADJðtÞjU;NðtÞÞ½ � ð5Þ

While derived from a probability mass function, KðtÞ is not

a log-likelihood in the typical sense because of division by

N(t), which is a decreasing function of t due to the sparsity

invoked by removing CADJ edges over time. Its presence

normalizes the marginal likelihood of the data at each

pruning step, since fDM is a decreasing function of N

(equivalently, an increasing function of N(t)). For each t,

KðtÞ can be thought of as the log-probability of a typical

categorical trial (with |JK| categories) in a sequence of N(t)

trials. Note that the prior U is constant over t. We refer to a

plot of KðtÞ as a function of t as the K-Path. An example

for this MER image is given in Fig. 4a.

The genesis of the K-Path is based on intuition that there

exists a relationship between data topology and data like-

lihood (resulting from an appropriate probability model).

That is, we expect connections with lower importance to
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our topological inference from the SOM to be considered

more or less expendable by K. If this intuition is true, the

K-Path should exhibit generally concave behavior over

time, with a (hopefully visible, and informative) maximum

at some time tmax. We propose that for t 2 ½0; tmaxÞ the

curve represents a denoising (or ‘‘cleaning’’) phase of the

pruning process, whereby successive removal of spurious

CADJ edges improves K. Figure 4a confirms the existence

(a) (b)

(c) (d)

(e) (f)

Fig. 4 a DM-Prune K-Path, b
in the pruning range beyond

tmax, along with its c first- and d
second-order differences. e
Depicts a K-path resulting from

using the prior a ¼ 1 in the DM

model instead of (4), while f
shows 100 Additional K-Paths

(in gray) resulting from pruning

CADJ edges in random order.

The green markers along each

curve indicate variance change

points in the time series of

D2KðtÞ and are used as

suggestions for halting the

pruning process
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of such a tmax ¼ 14; 372 for the MER image. Recall that

edges do not necessarily have distinct l scores; the large

upswing in the curve at t ¼ 1 results from initial, collective

removal of all lowest-strength edges (l � 0). Overall, K
increases in the range ½0; tmaxÞ, but not monotonically

(which is not obvious at the scale at which Fig. 4a is

shown).

From tmax onward, K exhibits decreasing behavior,

which we would expect if K is a faithful barometer of edge

importance. We call this second phase the actual pruning

phase of the process, during which K considers additional

edge removal deleteriously. The red marker in Fig. 4a at

step 15,846 denotes the point

tend ¼ t : KðtÞ ¼ Kð0Þ ^ t[ tmax. At tend; we have lost all

K gains achieved during pruning and suggest this point as

an upper bound (not tight) for the DM-Pruning process.

One might wonder whether K is guaranteed to exhibit

the behavior visible in Fig. 4a in all situations, regardless

of the order in which edges are removed. The answer is no,

an example of which is shown in Fig. 4f. In it, we have

visualized the K-Path of 4a (which results from pruning

over time according to l-ordering) alongside 100 different

K-Paths (gray lines) resulting from pruning edges in a

random order. The difference in behavior is stark; all

random pruning orders produce (generally) monotonically

decreasing K-Paths. This leads to the un-insightful con-

clusion that removing edges randomly from the graph is

not recommended. What we do gain from Fig. 4f, however,

is evidence that K does appear to encapsulate our some-

what loose starting intuition that some edges in the CADJ

graph are expendable while others are not, assuming we

specify the pruning order accordingly.

4.1 Halting the pruning process

We will consult the K-Path to help decide on a point in

time t� which produces a recommended pruning strategy.

To be clear, it will be used as a guide for sensible pruning,

instead of an oracle. At first glance, tmax appears an obvious

candidate for t� but we suggest it as a lower bound in the

pruning process. Recall from above that as the cleaning

stage (t 2 ½0; tmax�) progresses, we gain confidence that the

remaining CADJ edges are topologically important,

meaning they are nonredundant, and relevant for topolog-

ical inference from the graph. If we merely wanted the

‘‘best’’ view of the graph in this sense, we would stop

pruning at tmax. Recall, however, that our goal for this

procedure is clustering the CADJ vertices (i.e., the SOM

prototypes), which is strongly facilitated by starting with a

graph with closed (or nearly closed) graph communities.

With this goal in mind, it is likely necessary to remove

some CADJ edges beyond the cleaning stage, particularly

for the discovery of small or rare clusters. Put more

strongly, we advocate for intentionally damaging (vis-à-vis

K) parts of the denoised CADJ graph to help elicit its most

intricate community structure. The artful part of this is, of

course, determining how much damage to inflict to reveal

such structure without completely degrading the cohe-

siveness of the communities themselves.

To help guide us to a suitable t�; we will additionally

analyze the first and second derivatives of KðtÞ in the

pruning phase. Considering the time series nature of the K-

Path this amounts to considering its first- and second-order

differences DKðtÞ and D2KðtÞ, respectively. By definition,

DKðtmaxÞ should be close to zero. As time moves onward

from here, KðtÞ should exhibit increasing orders of

degradation as more important edges are removed from the

graph. Using this intuition, we suggest the point t� be set

where this degradation begins to accelerate appreciably,

which we formalize below.

Figure 4b provides a zoomed-in view of the K-Path for

the MER image in the pruning phase. A human would

likely identify some time around t ¼ 14; 892 as a natural

change point along the curve, which is somewhat justified

when viewing DKðtÞ (light blue) and its trend (dark blue) in

Fig. 4c. Consulting the plot of D2KðtÞ in Fig. 4d confirms

accelerated change of KðtÞ at this point as well. At small

time resolutions, KðtÞ is not a smooth curve, and the

(forward)-differencing filters utilized in Fig. 4c, d amplify

this local noise. Recalling that our goal is to strike a bal-

ance between under- and over- pruning, we recommend

setting t� at the point where this noise appears to increase,

which is most amplified by studying D2KðtÞ. Due to the

noise amplification that occurs in the second-order differ-

ence, this strategy would be considered conservative.

To help automatically identify such points, we turn to

more formalized changepoint analysis, which in general

outlines a framework for determining when the statistical

properties of an ordered sequence of random variables

changes. Early work [5, 6] focuses on formal hypothesis

tests of distributional changes in the sequence (particularly

changes in the mean) based on asymptotic likelihood-ratio

test statistics. From the discussion above, we are most

concerned with changes in variance of the sequence con-

structed by D2KðtÞ and will thus rely on the variance

changepoint detection outlined in [1].

The second-order variance change points for the MER

image, calculated via the changepoint package [7] in

R, are visible as green markers in the panels of Fig. 4.

Analyzing these points in the context of all three paths, we

see the first two (at t � 14; 500) do not contain much vis-

ible change in either D2KðtmaxÞ or KðtmaxÞ itself. The third

identified point at t ¼ 14; 892 does appear to signal a

perceptual change in both of these graphs, so we have set t�

at this point and show the CADJvis of the resulting
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CADJðt�Þ in Fig. 5 along with that of CADJðtendÞ for

comparison (CADJvis is the directed version of CONNvis,

producing half-lines to highlight the asymmetric strengths

among prototype connections). The CADJðt�Þ graph

appears much more amenable to cluster extraction than its

unpruned peer in Fig. 2, while CADJðtendÞ has been pruned

to the point that no cohesive prototype communities

remain. Earlier we suggested tend as an upper bound to the

pruning process, and we see evidence of that here.

With a pruning step t� specified and a pruned CADJ

obtained, we are now ready to extract clusters from the

SOM of the MER image. The following section details

CADJðt�Þ’s role in automated cluster discovery.

4.2 Automated cluster extraction from a DM-
Pruned graph

One could cluster a pruned CADJðtÞ interactively (i.e.,

through visual inspection), which is how cluster extraction

from CONNvis has traditionally been performed. As we

believe this step to be the largest bottleneck to wider

adoption of SOM-based clustering, we have recently

employed modern graph segmentation (also called com-

munity detection) algorithms to do this heavy lifting, with

promising results [12, 13, 15, 16]. In this work, we will

utilize clusterings obtained from this procedure as a proxy

oracle to provide feedback for the suitability of DM-

Pruned CADJ graphs.

Modern graph segmentation methods (of which there are

many, see, e.g., [4] for a thorough overview of classes and

methods) attempt to find communities of vertices in a graph

(such as CADJ) using properties of the graph’s adjacency

matrix. The large and varied methodologies on offer for

this task differ in how they incorporate this adjacency

information. Typically, for graph-based clustering, indi-

vidual data vectors would comprise the set of graph ver-

tices; the analyst then specifies a pairwise (dis-)similarity

measure as the graph’s adjacency matrix to serve as input

for the segmentation algorithms. In modern settings, this

can be computationally infeasible. The MER image, for

example, is 700 x 450 pixels which necessitates 315,000

graph vertices and Oð1010Þ pairwise adjacencies, typically

specified as Euclidean distance.

The studies cited above conclude that SOM represen-

tation of the data can make these algorithms a feasible

clustering tool by clustering the prototypes instead of

individual data vectors (there are far fewer prototypes than

data vectors; the MER image SOM has only 1600), making

the clustering not only automated, but very fast (with

computation time of just a few seconds for most SOMs).

Additionally, we have found that using CADJ as the graph

adjacency, instead of the typical Euclidean distance, results

in markedly better clusterings that are in line with those

produced by interactive human assessment. This success is

most pronounced when the right CADJ thresholding

scheme is chosen, which motivated the advent of DM-

Prune. Of the many graph segmentation algorithms

available, we have had most success in the studies cited

above with the Walktrap method [19], which we will use

Fig. 5 CADJvis resulting from pruning at t� ¼ 14; 892 (left) and

tend ¼ 15; 846 (right). CADJðt�Þ has much cleaner structure than the

unpruned graph visible in Fig. 2, while CADJðtendÞ has been pruned

so heavily little coherent structure remains. CADJvis is the directed

version of CONNvis, showing the asymmetries between connections
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(again) in this study, as implemented in the igraph

package [2].

In the next section, we will evaluate the quality of the

DM-Prune procedure by allowing Walktrap to cluster its

pruned graphs and performing subsequent assessment on

the resulting clusterings. Before doing so, however, we

make one final contribution to parameterizing the auto-

mated graph segmentation process. Invoking the edge-

scoring metric ljk (1), we define a new prototype similarity

matrix with entries

lADJjkðtÞ ¼ ljk � CADJjkðtÞ ð6Þ

to pass off to Walktrap. lADJ now contains additional

information unavailable in CADJ alone (the SOM length

measure Ljk and the sampling noise measure Sjk). Experi-

ments in the next section will show the addition of l
valuable to Walktrap-based cluster discovery.

4.3 Computational considerations

Once its inputs (CADJ and prior U) are available, con-

structing the K-path is relatively lightweight, involving

only repeated evaluation of the DM pmf (3) to build the

path itself and a univariate normal pdf [1] for its change-

point analysis. For example, the path presented in Fig. 4a

required � 10 seconds of computation on a 2.4 GHz Intel

Core i9 processor. This time excludes both the SOM

learning (which can be very fast in parallel hardware [9],

seconds for the data in this paper) and subsequent com-

putation of the max. volume ellipsoids which underly the

prior U; the latter is the most demanding, requiring � 20

minutes on the same CPU. All steps in this analysis are

amenable to parallel computation, although we feel more

substantial reductions in computation time can be achieved

by exploring alternative estimators of U, via either early

termination of the algorithm of [25] or appealing to other

polytope approximators such as the Dikin ellipsoid [3].

Such optimization aspects are planned for future work.

5 Clustering the MER image with DM-Prune

.

The following clustering results for MER were all pro-

duced in an automated fashion by the Walktrap algorithm

utilizing the lADJðtÞ similarity defined above, unless

otherwise noted. For exposition, we present different

clusterings resulting from pruning at various times t along

MER’s K-Path, which we denote by WT(t). Walktrap does

have one tuning parameter (‘‘steps,’’ in [19]) which has

been set at its recommended default (¼ 4) in this study.

The experimental clusterings discussed in this section

have been reconciled to the previously cited interactive

clustering (shown in Fig. 1, abbreviated by IC below),

which we consider a baseline for this comparative study.

The reconciliation process matches clusters from a

WT(t) clustering to the IC by a plurality pixel vote (i.e., by

the number of shared image pixels between clusters of each

clustering). During reconciliation, the best matching

WT(t) cluster inherits its corresponding IC cluster’s label

and color; second, third, and so on best matching clusters

will keep their label, but inherit a color similar to their

closest IC cluster. Labels of the IC clustering are all

alphabetical, while Walktrap clusters received integer

labels. This process is done to aid the human eye during

comparative clustering assessments.

Figure 6 shows the clustered SOMs used for compari-

son. The IC clustering is repeated at the top left (6a) for

convenient reference. The top right panel (6b) shows the

clustering WT(0) using the original CADJ (i.e., without any

DM-Prune involvement) as graph adjacency. We include

this clustering here to give the reader a baseline to gauge

pruning performance. In 6b we see substantial bleeding

between cluster boundaries: the separation between e and

H, I / L / S, and C / J is not well formed. As these are all

sand or soil mixtures, this boundary bleeding is not as

scientifically dissonant as the SOM might make it appear.

Of greater concern, Walktrap using the unpruned CADJ

has failed to identify clusters E (pale yellow, northwest

quadrant of SOM), g (red, northeast) and Q (lilac, south-

west). Clusters E (541 total pixels) and g (262 pixels) are

more rare, but Q is larger (4,758 pixels); its omission poses

more concern. In all, panel 6b highlights the need to prune

the CADJ graph to facilitate clean and complete cluster

discovery.

The WTðtmaxÞ clustering of panel 6c (using the modified

adjacency lADJ, instead of CADJ) has improved much of

the cluster boundary bleeding discussed above. Further, at

tmax cluster Q has been separated from C. We are, however,

still missing the more rare clusters E and g from panel 6c,

suggesting further CADJ pruning would be beneficial. As

the K-Paths of Fig. 4 collectively show no noticeable

degradation for pruning in a small extended window

beyond tmax we selected t� ¼ 14; 892 (as identified by the

changepoint analysis) to halt the pruning process. The

resulting Walktrap clustering in panel 6d has retained

much of the cleanup observed in 6c and finally separates

the small clusters E and g from their parents. Figure 7 (left

cFig. 6 MER clustered SOMs via a human CONNvis analysis and b–e
the DM-Prune-ing strategy using the indicated prune step and

prototype similarity. f The MER image clustered via WTðt�Þ showing

good spatial agreement to the IC clustering of Fig. 1
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panel) displays the median spectral signatures (black lines)

of IC clusters D, E, H and g, along with the band-wise

interquartile range of each cluster (shaded according to

cluster color). In it, we see that clusters D and E have very

similar spectra. As noted in [14], these clusters likely

represent the same material (Jibsheet rock) with slight

spectral differences due to heterogeneous textures on the

surfaces of the rocks. Because these spectra are so similar,

it is not surprising that further pruning (at t� vs. tmax) is

needed to distinguish them. The spectral differences

between g and H, however, are much more pronounced. It

is suggested in [14] that g could be a dust devil (whirling

cloud of dust) in Spirit’s frame at the time of imaging; if so,

it is not unexpected that cluster g remained hidden within H

(which is a large heterogeneous cluster collectively repre-

senting airfall dust) until further pruning at t�. While the

stark spectral distinction between g and H would likely

have flagged a human’s attention at less severe pruning (we

can easily identify g in the CONNvis of CADJðtmaxÞ, not

shown), our goal for DM-Prune is to arrive at a pruned

graph that produces sensitive AND automated clusterings.

The experienced human eye can detect nuance in CONNvis

but an algorithm needs more explicit direction, hence our

suggestion to examine graph prunings beyond tmax.

The one apparent degradation that is visible between the

WTðt�Þ and IC clusterings is the destruction of the clean

boundary between clusters P (Bowline type rock) and C

(sand mixture), where WTðt�Þ has merged more of C into

P. In the right panel of Fig. 7, we provide the cluster

statistics of the IC cluster P, the part of C that was not

merged with P, and the WTðt�Þ induced overlap (which we

call C!P and color blue temporarily for this discussion).

Examining the plot at right, it is clear that the spectra of

C!P more closely resemble those of P, except at the third

image band where they match C well. This indicates that

the spectral delineation in the IC between C and P is not as

clean as it could be. Because of this, we consider this

instance of boundary bleeding to be potentially valid and

put it forth as an example of the types of discoveries that

can be made from automating the SOM clustering process.

Unlike humans, computers never tire and their judgment

remains constant over time.

5.1 Efficacy of lADJ

We finally address the impact of incorporating the l scores

into the graph adjacency weights prior to invoking Walk-

trap. Intuitively, this makes sense, as CADJ alone is blind

to both its lattice representation and any sampling vari-

ability inherent in our observed data. The clustered SOM in

Fig. 6e reports the Walktrap clustering obtained from using

CADJðt�Þ instead of lADJðt�Þ. Again we see bleeding

between clusters I, L and S, although that is not alarming as

discussed above. Also, the rare cluster g is retained in this

clustering, which could have been predicted as it forms a

well-separated island in the CADJvis of Fig. 5. However,

CADJ alone pruned at this level fails to signal the presence

of cluster E strongly enough for Walktrap to isolate it. The

well-formed cluster attached to the tail of C is also omitted.

Interestingly, the boundary bleeding between clusters C

and P discussed at length above is also present here,

lending further support to the hypothesis that the original

C–P boundary could use re-examination. Overall, addi-

tional weighting of CADJ edges by their respective l score

Fig. 7 Band-wise statistics of the spectra of Left: IC clusters D,E,H and g and Right: C, P and the C!P merged region of the WTðt�Þ clustering.

Black lines represent median cluster spectra; shaded regions are the IQR of each cluster
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appears valuable for Walktrap-based cluster discovery.

This will be further explored in follow-up studies.

6 Conclusions and outlook

The key to obtaining the most sensitive clusterings from

CADJ/CONN graphs is to determine the subset of edges

relevant for the representation of the most salient parts of

the underlying manifold topology, which is accomplished

by intelligent graph pruning. To achieve this, DM-Prune

invokes the K-path, based on a Dirichlet-multinomial

likelihood of CADJ weights, to signal an appropriate level

of pruning. As examined in Sect. 4, K is only able to

convey such information when the size (volume) of the

second-order Voronoi cells underlying the CADJ values is

properly incorporated into the model. Ultimately, this

provides a type of effect-size analysis for CADJ, which

helps ensure edges representing the most effective topo-

logical connectivities are preserved during edge pruning.

Variance changepoint analysis of the K-path appears suit-

able for identifying candidate levels of pruning which

retain vital local connectivities without destroying mean-

ingful cluster structure. For the time being, we have rele-

gated the selection of the best candidate pruning level

among those identified via changepoint analysis to the

human analyst. In future work, we will explore more for-

mal analysis of the variance likelihoods underlying the

changepoint analysis in hopes of informing this decision

via proper statistical significance tests. Collectively, these

steps move us closer to fully automated, high-quality

cluster extraction from the SOM.
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