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A B S T R A C T
We harness topological information about a data manifold revealed through neural prototype-
based learning to automate t-SNE parameterization. This information is contained in the CONN
(CONNectivity) similarity of neural prototypes, which grades the strength (weakness) of topological
connectivity at various points within a data manifold. CONN suggests a data-driven specification
of localized versions (varying across the manifold) of t-SNE’s perplexity parameter which, in turn,
defines the high-dimensional similarities 𝑃 that t-SNE attempts to preserve. We further imbue 𝑃
with CONN’s graded similarity to reduce mismatch between the topology of the manifold and
its embedded representation. Experiments show these improvements, collectively called CONNt-
SNE, are capable of producing meaningful and trustworthy low-dimensional embeddings without
the need to heuristically optimize over (i.e., grid search) t-SNE’s perplexity space. Data-driven t-SNE
parameterization improves our confidence that any structure appearing in the embeddings is valid and
not merely an artifact of spurious parameterization.

1. Background
t-SNE [1] has attracted wide attention both within and

outside the machine learning community as a tool for pro-
ducing low-dimensional non-linear embeddings 𝑇 = {𝑡𝑠 ∈
ℝ𝑑′}𝑁𝑠=1 of high-dimensional point clouds 𝑋 = {𝑥𝑠 ∈5

ℝ𝑑}𝑁𝑠=1, where 𝑑′ << 𝑑, for exploratory (visual) data anal-
ysis. Typically 𝑑′ ∈ {2, 3}. The appetite for such analysis
across disciplines is strong, but many questions have been
raised about what, exactly, can (should) be inferred from
a t-SNE embedding. t-SNE’s introduction subtly stresses10

its distinction as a technique for visualization (vs. feature
engineering), yet its embeddings are often clustered either
informally (via visual assessment) or formally (applying a
clustering algorithm to 𝑇 ). Some [2] have noticed relative
deficiencies in t-SNE’s ability to faithfully indicate sepa-15

ration in complex manifolds. [3] offers a list of various
misinterpretations that can be made from a t-SNE embed-
ding due to its unfaithful representation of cluster sizes,
shapes, densities, compactness and separability. Most of
these issues arise because t-SNE is designed to preserve20

conditional probabilities between points instead of distance,
and we believe they are not severe impediments to successful
cluster discovery from low-𝑑 representations. Indeed, over
the last three decades the lattice representations of data
learned by Self-Organizing Maps [4] have produced many25

successful clusterings without explicit preservation of, e.g.
distance, between the high- and low-𝑑 spaces. However,
[3] does raise one issue we feel fundamentally impacts the
fidelity of a t-SNE representation: that of selecting its main
perplexity parameter, which we abbreviate 𝑝𝑥. 𝑝𝑥 indirectly30

controls the number of Euclidean neighbor similarities that
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t-SNE attempts to preserve, which is an unknown number
that varies across, and likely within, datasets. An example
taken from [3] of various t-SNE embeddings which can arise
from different 𝑝𝑥 specifications is given in Figure 1. Here,35

the “high-𝑑” data (left-most panel) is very simple — two
dimensional with two well-defined clusters — yet inspection
of the embeddings resulting from some perplexity values
(2, 5, 100) would yield a different conclusion. [1] suggests
that t-SNE is relatively insensitive to 𝑝𝑥 but in practice an40

optimal perplexity is obviously data-dependent and should
be data-driven. CONNt-SNE provides a mechanism for such
a scheme, using information freely available from prototype-
based learning, and commonly invoked during prototype-
based clustering.45

1.1. The t-SNE Algorithm
The t-SNE algorithm begins by defining Gaussian simi-

larities between two points in ℝ𝑑 as

𝑝𝑖𝑗 =
𝑝𝑗|𝑖 + 𝑝𝑖|𝑗

2𝑁
, 𝑝𝑗|𝑖 =

𝑒𝑥𝑝(−||𝑥𝑖 − 𝑥𝑗||2∕2𝜎2𝑖 )
∑

𝑘≠𝑖
𝑒𝑥𝑝(−||𝑥𝑘 − 𝑥𝑖||2∕2𝜎2𝑖 )

(1)

where 𝑝⋅|𝑖 is the conditional distribution of all other 𝑥𝑗 given
𝑥𝑖 and, by convention, 𝑝𝑖|𝑖 = 0. We let 𝑃 = {𝑝𝑖𝑗} be the 𝑁 ×
𝑁 matrix of such (symmetrized) similarities and denote its
𝑖-th row by 𝑃𝑖. Each Gaussian bandwidth 𝜎𝑖 is controlled by
the (global) perplexity parameter 𝑝𝑥, found through iterative
search such that following relationship holds:

𝜎𝑖 ∶ 𝑝𝑥 = 2𝐻(𝑃𝑖), 𝐻(𝑃𝑖) = −
∑

𝑗
𝑝𝑗|𝑖 log2(𝑝𝑗|𝑖). (2)
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Figure 1: The sensitivity of t-SNE embeddings to their parameterization, taken from [3].

Pointwise similarities 𝑞𝑖𝑗 in ℝ𝑑′ are derived from the pdf of
the Student’s t-distribution with one degree of freedom,

𝑞𝑖𝑗 =
(1 + ||𝑡𝑖 − 𝑡𝑗||2)−1

∑

𝑘≠𝑙
(1 + ||𝑡𝑘 − 𝑡𝑙||2)−1

, (3)

where again we let 𝑄 = {𝑞𝑖𝑗}. Embedded coordinates 𝑡𝑖 are
determined through minimization of the Kullback-Leibler
divergence as cost,

𝐶 = 𝐾𝐿(𝑃 ||𝑄) =
∑

𝑖𝑗
𝑝𝑖𝑗 log

(𝑝𝑖𝑗
𝑞𝑖𝑗

)

. (4)

1.2. CONN Similarity
CONNt-SNE provides a framework for embedding the

prototypes 𝑊 = {𝑤𝑖 ∈ ℝ𝑑}𝑀𝑖=1, 𝑀 << 𝑁 , of a vector
quantizer (VQ) trained on data 𝑋. While the prototypes of
any VQ would be suitable for this purpose we prefer neural
variants such as the SOM and Neural Gas (NG, [5]) as
the iterative stages of competition and cooperation during
training result in better prototype placement in the data cloud
than, e.g., k-means [6]. Previous work [7] utilized t-SNE as
a means to visualize Neural Gas prototypes but, contrary to
this work, did not explore any ways by which t-SNE could
be influenced by the VQ. To achieve the latter we appeal to
the CONN similarity [8] between trained prototypes 𝑤𝑖 and
𝑤𝑗 . CONN𝑖𝑗 is calculated from a recall of the entire dataset
as

𝐶𝑂𝑁𝑁𝑖𝑗 = 𝐶𝐴𝐷𝐽𝑖𝑗 + 𝐶𝐴𝐷𝐽𝑗𝑖 (5)
𝐶𝐴𝐷𝐽𝑖𝑗 =

∑

𝑠
𝐼(𝐵𝑀𝑈1(𝑥𝑠) = 𝑖 ∧ 𝐵𝑀𝑈2(𝑥𝑠) = 𝑗),

(6)
where 𝐵𝑀𝑈{1, 2} are the index of the 1𝑠𝑡 and 2𝑛𝑑 Best
Matching Units (prototypes) and 𝐼() is the indicator func-
tion. CADJ𝑖𝑗 (the Cumulative ADJacency of 𝑖 and 𝑗) reports50

the number of data vectors observed in the second-order
Voronoi cell 𝑉𝑖𝑗 generated by 𝑊 in ℝ𝑑 , and CONN is its
symmetrized version. CONN is thus a weighted version
of the Masked Delaunay Triangulation [9, 8] whose edge
weights reflect local data densities and connectivities within55

the manifold. We note for later discussion that CONN is
typically very sparse.

2. CONNt-SNE
CONNt-SNE methodology comprises two key modi-

fications to t-SNE’s definition of high-𝑑 similarity. The
first permits a varying perplexity 𝑝𝑥𝑖 when setting each
conditional distribution 𝑝⋅|𝑖 (recall from (2) that perplexity
controls the Gaussian bandwidths 𝜎𝑖 which form the pro-
totype similarities 𝑝𝑖𝑗). We now have 𝑀 different (local)
perplexities to specify but CONN provides a data-driven way
of determining these parameters as the number of CONN
neighbors of prototype 𝑤𝑖, which we denote by 𝜈𝑖 for the
remainder of this work:

𝑝𝑥𝑖 = 𝜈𝑖 = 𝑚𝑎𝑥

(

∑

𝑗
𝐼(𝐶𝑂𝑁𝑁𝑖𝑗 > 0), 2

)

. (7)

It is possible that some prototype 𝑤𝑗 has no CONN neigh-
bors (𝜈𝑗 = 0), which occurs if a) the receptive field of 𝑗 is60

empty and b) no datum has chosen 𝑗 as 𝐵𝑀𝑈2. To avoid
numerical issues we enforce a lower bound 𝑝𝑥𝑖 ≥ 2 in the
above, but suggest removing such unused prototypes from
𝑊 prior to running CONNt-SNE. With 𝑝𝑥𝑖 intelligently
and automatically specified, the same procedure of (2) sets65

each local 𝜎𝑖 (and, consequently, 𝑃𝑖). We denote by 𝑃𝜈 the
matrix of prototype similarities arising from CONN-derived
variable perplexities 𝑝𝑥𝑖.The second modification to t-SNE infuses the topologi-
cal adjacency and local density information contained in the
CONN𝑖𝑗 values into the high-𝑑 similarity definition. This
information can be viewed from two vantage points (scales).
A global view (where each CONN𝑖𝑗 value is considered
relative to all other CONN𝑘𝑙) grades the topological con-
nectivities of major/coarse structures within the manifold,
as learned by the vector quantizer. This information is most
useful for characterizing regions of higher data density. We
define a globally normalized version of CONN as

GCONN𝑖𝑗 =
CONN𝑖𝑗

∑

𝑘𝑙 CONN𝑘𝑙
, (8)

and note that ∑𝑖𝑗 GCONN𝑖𝑗 = 1. In contrast, a local view
(where each CONN𝑖𝑗 is considered relative to all other
CONN𝑖⋅, i.e., when the CONN graph is viewed node by
node) elicits finer structure in the manifold, particularly in
areas of low data density. A locally normalized version of
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CONN is given by
LCONN∗

𝑖𝑗 =
CONN𝑖𝑗

∑

𝑘 CONN𝑖𝑘
(9)

LCONN𝑖𝑗 = (LCONN∗
𝑖𝑗 + LCONN∗

𝑗𝑖)∕(2𝑀), (10)
where the last equation above is merely symmetrizing and
re-normalizing LCONN∗ to have unity sum.70

Ideally, we would like to imbue t-SNE with both (global
& local) topological views offered by CONN, as these have
been shown effective for inferring structure from complex
manifolds such as hyperspectral imagery of Earth [10, 11]
and Mars [12], radioastronomy imagery [13], and functional
MRI images of brains [14]. We achieve this multi-scale
view by defining the following composite similarity to assess
relationships in ℝ𝑑 :

𝑃CONN = 1
3
(𝑃𝜈 + GCONN + LCONN). (11)

The averaging of t-SNE’s Gaussian-based similarity with
the global and local views of manifold topology offered
by CONN is similar in spirit to the multi-scale similarity
proposed for stochastic neighbor embeddings in [15]. In that
work, an aggregate high-𝑑 similarity is averaged from those75

resulting from an exponentially increasing set of perplexities
in a range whose lower bound is user-specified and upper
bound is data dependent. In contrast, CONNt-SNE utilizes
an entirely different type of information in its multi-scale
view, combining explicit notions of manifold connectivity80

and density, as expressed by CONN. We note that this type
of information is unique to vector quantizers.

The attractive forces among embedded points in t-SNE
are set by 𝑃 (equation (1)) while the repulsive forces are gov-
erned by 𝑄 (equation (3)) [16]. Because CONN (and, con-85

sequently, GCONN and LCONN) is typically very sparse,
use of PCONN should cajole embedded points corresponding
to adjacent prototypes closer together in the embedding. On
the other hand, CONN takes a uniformly neutral view of
prototype dis-similarity (meaning that the dis-similarity of90

all non-adjacent prototypes 𝑖 and 𝑗 are graded the same,
CONN𝑖𝑗 = 0). An area of future work could explore a
CONN-based modification to 𝑄 as well, possibly by consid-
ering geodesic distances along the CONN graph, to further
sensitize the t-SNE cost function to learned data topology.95

3. Quality Measures
While visual inspection of CONNt-SNE’s embeddings

is important, we have also assessed the quality of each
embedding in two different quantitative categories: topology
preservation, and the preservation of cluster structure as100

measured by Cluster Validity Indices. Throughout this work
we indicate whether a larger or smaller value of a measure
is preferred with up ↑ and down ↓ arrows, respectively.

K-ary neighborhood preservation [15], commonly used
to assess the performance of dimensionality reduction tech-105

niques, measures the proportion of a high-𝑑 𝑘-nearest neigh-
borhood around each 𝑤𝑖 that is preserved after embed-
ding 𝑤𝑖 in low-𝑑, averaged over 𝑖. As this K-ary measure

([15, equation 15]) yields a performance curve over 𝑘 ∈
{1,… ,𝑀 −1}, we report the area under such curve (AUC),110

normalized by its theoretical maximum (𝑀-2), for compar-
ison across datasets.

K-ary neighborhood measures are one example of a
family of topology preservation (TP) measures, but there
are others. Drawing from the literature on Self-Organizing115

Maps we have also measured the mismatch between the
topology of the manifold (which we call “input space”)
and its representation in the embedding (which we call
“output space”), as reported by the Normalized Differential
Topographic Function (NDTF [17], which is a differential120

form of the Topographic Function of [18], normalized to
have unity sum). For a SOM, CONN (as a Topology Repre-
senting Network [19]) represents input space topology while
the user-specified lattice defines the output space topology.
In this work, CONN persists as a representation of input125

space topology, and we prescribe the output space topology
as the Delaunay triangulation [20] of a t-SNE embedding
𝑇 ⊂ ℝ2, which we denote by 𝑇 . In what follows we also
denote by Δ𝑇

𝑖𝑗 and ΔCONN
𝑖𝑗 the geodesic distance between

prototypes 𝑖 and 𝑗 as measured on the𝑇 and CONN graphs,130

respectively.
The NDTF (and its relatives) all measure the degree

to which the output space accurately reflects topological
adjacencies in input space (a measure of forward topology
preservation), and vice-versa (a measure of backward topol-
ogy preservation). Specifically, the forward measure,

FNDTF(𝑟) = �̂�
[

𝐼
(

Δ𝑇

𝑖𝑗 = 𝑟
)

∣ ΔCONN
𝑖𝑗 = 1

]

,

reports the proportion of prototype adjacencies on CONN
that are of geodesic distance 𝑟 on 𝑇 . Similarly, the back-
ward measure

BNDTF(𝑟) = �̂�
[

𝐼
(

ΔCONN
𝑖𝑗 = 𝑟

)

∣ Δ𝑇

𝑖𝑗 = 1
]

reports the proportion of prototype adjacencies on 𝑇 that
are of geodesic distance 𝑟 on the CONN graph. In the above,
�̂� denotes the conditional empirical mean over all relevant
adjacencies 𝑖𝑗 and 𝐼(𝐴) is the indicator function of event
𝐴. We note that the Forward and Backward (abbreviated
F/B here) NDTFs both have unity sum over 𝑟, and that
NDTF(0) is undefined. Typically, an analyst would view the
trace plot of (F/B)NDTF(𝑟) vs. 𝑟 to assess the exact location
(geodesic distance 𝑟) and severity (the value (F/B)NDTF(𝑟))
of observed topology violations. As 𝑟 = 1 is not considered
a violation, (F/B)NDTF(1) = 1 conveys perfect topology
preservation while any (F/B)NDTF(𝑟 > 1) > 0 indicates
violations. In order to combine both the location and sever-
ity of topology violations into one measure we define the
Forward/Backward Topological Neighborhood Expansion
as:

(F/B)TNE =
∑

𝑟>0
𝑟 × (F/B)NDTF(𝑟). (12)

(F/B)TNE reports the average geodesic radius by which a
topological neighborhood in one space (CONN/𝑇 ) must
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expand to be represented in another space (𝑇 /CONN). A
perfect embedding by this measure has (F/B)TNE = 1, and135

topology violations of increasing severity are reported by
values > 1.

Faithful topology representation is desirable when in-
ferring (cluster) structure of a high-𝑑 manifold from its
embedding. While sufficient, exact TP may not be necessary140

for structural identification; indeed, according to the TPMs
discussed above, the rigid 2-𝑑 SOM lattice cannot faithfully
represent manifold topologies with more than a few (8 for
rectangular lattices, 6 for hexagonal) neighbors, but this fact
has not hindered its success as a tool for cluster discovery. To145

account for this we have measured the structural preservation
of our experimental embeddings, as reported by a variety of
internal and external Cluster Validity Indices (CVIs). As t-
SNE is most commonly used to identify such structure (or
lack thereof), we believe these measures better reflect the150

quality of an embedding for most uses of t-SNE in practice.
Internal CVIs (CVIIs) measure the relationship between

compactness and separation of clusters defined by a given
partitioning of the data. While there are many such measures
[21], in this work we focus on three of the more common:
the (average) Silhouette Index ↑ (SIL, [22]), Generalized
Dunn Index ↑ (GDI, with set distance 5 and set diameter
3, as defined in [23]), and Davies-Bouldin Index ↓ (DBI,
[24]). As our goal is to show how well cluster structure is
preserved when embedding high-𝑑 prototypes 𝑊 ⊂ ℝ𝑑 as
𝑇 ⊂ ℝ2, we report CVIIs measured on the latter relative
to those measured on the former, using the true partitioning
of each dataset 𝓁∗. For example, the relative Silhouette of
an embedding, rSIL𝑇

𝑊 = [SIL(𝑇 ) − SIL(𝑊 )]∕|SIL(W)|,
measures the change in the Silhouette score of the true
partitioning after embedding 𝑊 by 𝑇 , relative to its value
in 𝑊 . rGDI and rDBI are computed similarly. As there is no
universally best CVII in all cases, we average the individual
relative CVIIs into an aggregate score:

↑ rCVII𝑇𝑊 = 1
3
(rSIL𝑇

𝑊 + rGDI𝑇𝑊 − rDBI𝑇𝑊 ), (13)

where the subtraction above arises because a lower value of
DBI is preferred. Whereas the K-ary score reports preser-
vation of Euclidean distances and the (F/B)TNE scores
report preservation of topological distances, rCVII signals155

preservation of set cohesion and distance, where the sets are
the clusters of the true data partitioning. Thus, rCVII should
give some indication of how the embedding (mis)represents
cluster structure which, in turn, hints at its impact on 2-𝑑
cluster inference.160

Both to assess whether rCVII is performing as designed,
and to simulate how actual clusterings are affected by the
process of embedding, we also cluster 𝑊 ⊂ ℝ𝑑 and
𝑇 ⊂ ℝ2, resulting in partitionings 𝓁𝑊 and 𝓁𝑇 , respectively.
The quality of each partitioning is assessed, relative to the
truth 𝓁∗, by several External CVIs (CVIEs): the Adjusted
Rand Index ↑ (ARI, [25]), Jaccard Index ↑ (JAC, [26]), and
Normalized Mutual Information ↑ (NMI, [27]). Again, we
are more interested in comparing the quality of 𝓁𝑇 relative

Data 𝑁 𝑑 𝐶 𝑀 �̄�

MNIST 70,000 784 10 2,000 18.919.219.5
FMNIST 70,000 784 10 2,000 14.614.815.1
KMNIST 70,000 784 10 2,000 16.917.317.7
COIL20 1,440 16,384 20 492 2.32.32.4
Flow18 946,915 11 12 1,457 30.330.831.4
OC 251,946 8 29 1,464 11.411.611.8

Table 1
Characteristics of the six datasets used in experiments: sample
size (𝑁) and dimension (𝑑), the number of sample classes (𝐶),
the number of prototypes which learned the data (𝑀), and
a 95% confidence interval for the average number of CONN
neighbors (�̄�). Points from the “Dead cells” class of Flow18
were removed prior to our analysis, along with unlabeled pixels
in the Ocean City image. 𝑀 reported in this table excludes any
unused prototypes.

to 𝓁𝑊 , rather than the absolute value of either, which we ac-
complish via the relative measure rARI𝑇𝑊 = [ARI(𝓁𝑇 ,𝓁∗)−
ARI(𝓁𝑊 ,𝓁∗)]∕|ARI(𝓁𝑊 ,𝓁∗)| (and similarly for JAC and
NMI). An aggregate measure of relative external cluster
validity is defined as

↑ rCVIE𝑇
𝑊 = 1

3
(rARI𝑇𝑊 + rJAC𝑇

𝑊 + rNMI𝑇𝑊 ). (14)
Computing rCVIE obviously requires a clustering, which we
obtain via Spectral Clustering with random walk normal-
ization of the graph Laplacian [28], as there is a purported
connection between certain parameterizations of t-SNE and
spectral clustering [29]. The true number of data clusters (𝐶165

from Table 1) parameterize the 𝑘-means step of the spectral
clustering procedure.

4. Experiment Design
4.1. Datasets

To demonstrate the effectiveness of CONNt-SNE we170

compare its two-dimensional embeddings to those of t-SNE
for the six real datasets (indexed by 𝛿) whose characteristics
are given in Table 1. These include Standard COIL20 [30]
(labeled as in Figure 2) and MNIST [31] along with two of
MNIST’s more challenging drop-in replacements: Fashion175

MNIST (FMNIST, [32]), containing images of 10 differ-
ent articles of clothing, and Kazushiji MNIST (KMNIST,
[33]), containing images of 10 different Japanese Hiragana
characters. Both MNIST replacements have 28 × 28 pixel
images. The Flow18 dataset contains flow cytometry mea-180

surements of 946,915 human peripheral blood mononuclear
cells labeled by 12 different phenotypes, subsampled as in
[34] (we have ignored the “Dead cells” class in this analysis).
Ocean City (OC) is a 512×512 pixel, 8-band spectral image
of Ocean City, Maryland, with 1.5 m/pixel resolution. Data185

collection, pre-processing and mean signatures of verified
land-cover classes are given in [10]. We consider the 29
clusters interactively identified in [8] as truth clusters. These
clusters comprise three larger material groupings — vegeta-
tion, water, man-made materials — each broken down into190
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Method Perplexity Similarity Embedding

t-SNE(10) 10 P10 T10
t-SNE(20) 20 P20 T20
t-SNE(30) 30 P30 T30
t-SNE(40) 40 P40 T40
t-SNE(50) 50 P50 T50
MS t-SNE var P𝑀𝑆 T𝑀𝑆
CONNt-SNE var+ P𝐶𝑂𝑁𝑁 T𝐶𝑂𝑁𝑁

Table 2
Nomenclature for the methods under comparison. var+ in-
dicates CONNt-SNE utilizing the topological information in
CONN, in addition to a variable perplexity.

a number of unique clusters with widely varying statistical
properties (see representative statistics in [35]).

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

Figure 2: COIL20 image database with integer encoded labels.

4.2. Experiment Descriptions
The various t-SNE methods and their nomenclature uti-

lized in this work are presented in Table 2. To alleviate195

notation we will use a method’s name (e.g., t-SNE(10))
and its similarity (e.g., P10) interchangeably, as the similar-
ity uniquely defines the method. Thus we have 7 methods
ℎ ∈ {P10,P20,P30,P40,P50,PMS,PCONN}, where PMSis the
multi-scale method of [15].200

To make our conclusions more robust, for each dataset
and method we have produced 200 different embeddings
resulting from initializations 𝜄 ∈ {PCA, 1,… , 199}, where

PCA denotes a 2-𝑑 principal components initialization, and
integers 1-199 represent a randomly seeded initial state.205

Thus, there are 200 embeddings for dataset 𝛿 using method
ℎ, and Tℎ should be viewed as a function 𝑇ℎ(𝛿, 𝜄). 6 datasets
× 7 methods × 200 initial states yields 8,400 embeddings
from which we draw conclusions.

We assess these 8,400 embeddings with the five quality
measures 𝜇 ∈ {FTNE,BTNE,K-ary AUC, rCVII, rCVIE}
described in §3. However, each 𝜇 measures different charac-
teristics of our embeddings and, consequently, possesses a
wide range of scales; this complicates comparison amongst
the 𝜇, and across different datasets. To facilitate such meta-
analysis we will report instead a standard score 𝑍𝜇(𝑇 ) using
𝜇(𝑇30) as a baseline, as 𝑝𝑥 = 30 is a widely used default in
popular t-SNE implementations. Thus, for each measure 𝜇
of each embedding of each dataset, 𝑇ℎ(𝛿, 𝜄), we report

𝑍𝜇(ℎ, 𝛿, 𝜄) =
𝜇(𝑇ℎ(𝛿, 𝜄)) − 𝜇(𝑇30(𝛿, 𝜄))

�̂�
[

𝜇(𝑇ℎ(𝛿, ⋅)) − 𝜇(𝑇30(𝛿, ⋅))
] ,

where �̂� is the empirical standard deviation of the mea-210

sure differences, computed over the 200 different initializa-
tions 𝜄. Additionally, for consistency, we report −𝑍FTNE and
−𝑍BTNE, as lower values of these measures indicate better
topology preservation. This makes all Z-scores comparable.

Not only is 𝑍𝜇(ℎ, 𝛿, 𝜄) unitless, its mean is: 1) the effect215

size of method ℎ relative to P30, also known as Cohen’s
𝑑 [36], and 2) proportional to the test statistic of a paired
Student’s t-test of the above. Thus, a visual inspection of the
results presented in Figure 3 immediately reveals statistical
significances of the effect sizes of each method. Since P30 is220

used as a basis for standardization, its Z-scores are all = 0,
and will be excluded from visualization of results.

All results that follow were produced by minimizing
t-SNE’s cost function (4) with Delta-Bar-Delta gradient
descent (as in [1]) for a maximum of 2,000 iterations, mon-225

itored every 50 iterations. Early stopping was permitted if
the cost function decreased by < 0.1% for 3 consecutive
monitoring steps (150 learning steps). The learning rate for
gradient descent was set = 200, with momentum increased
from 0.5 to 0.8, in line with [1]. Although the use of230

exaggeration (inflating the high-𝑑 similarities 𝑃 by some
constant 𝛼) is widely thought to improve the minimization of
(4) and avoid crowding in the embedded space, no consensus
on how much exaggeration to use, or how long to enforce
it, seems to exist. Various contradictory work recommends235

both early and late scheduling of high and low values of 𝛼 [1,
34, 37, 29, 38], while a preprint suggests use of exaggeration
may fundamentally alter the nature of t-SNE altogether [16].
As a result, we have taken the conservative recommendation
of [16] and linearly annealed 𝛼 from 4 to 2 over the 2,000240

prescribed learning steps to effect mild versions of both early
and late exaggeration schemes. Batch neural gas learning [6]
generated the prototypes used in this work for all datasets
except Ocean City, where the previously scrutinized SOM
prototypes from [8] were used for comparative consistency.245
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5. Results
5.1. Meta-Analysis I: Overall Aggregated Results

Figure 3 reports standardized effects 𝑍𝜇(𝑇 ) for each
method, showing overall aggregated effect sizes (top panel,
[a]) and those aggregated by dataset (middle panel, [b]) and250

measure (bottom panel, [c]). The 𝑍𝜇 scores for individual
measures were combined in panels [a] and [b], since they are
now comparable. Violin plots show the distribution of effect
sizes by method, with black error bars displaying the esti-
mated mean (with 95% confidence interval) of each. Purple255

points report the scores of the PCA-initialized embedding
separately, as informative (non-random) initializations are
recommended in [39]. The green lines at 𝑍 = 0 represent
the P30 case serving as baseline, and green numbers report
the proportion of experiments for each particular method260

which induce a positive effect (i.e., the estimated probability
𝑃𝑟[𝑍 > 0]). Detailed statistics by each measure and dataset
are in Figure 6).

PCONN induces the largest positive average effect (0.78,
annotated in black numbers for clarity) over all experiments,265

as reported in Figure 3[a]. Although it is hard to detect from
the confidence intervals shown at this scale, the overall effect
of PCONN is statistically larger (at significance level 𝛼 =
0.05) than both P10 and P20, which jointly performed second-
best (their performance is statistically indistinguishable, 𝛼 =270

0.05). Aggregate performance of regular t-SNE degrades
monotonically as 𝑝𝑥 increases, although this may be an over-
generalization (addressed below). The mean performance
trends are also supported by non-parametric statistical argu-
ments, where the proportion 𝑃𝑟[𝑍 > 0] is estimated at 0.53,275

0.51, and 0.54 for PCONN, P10 and P20, respectively. Bino-
mial tests (𝛼 = 0.05) of these proportions reveal PCONN and
P20 result in measurable improvements to P30 embeddings
more than half the time (a similar test for P10 produced a p-
value = 0.09). PCONN’s Z-distribution exhibits pronounced280

positive bimodality and skew, while both mode location and
skew appear negatively correlated with perplexity in regular
t-SNE. Overall from Figure 3[a] we conclude that, for these
experimental data, PCONN, P10 and P20 all produce reliable
improvements to the P30 baseline, with PCONN’s mean effect285

size (0.78) more than twice as large as P10/P20 (0.37). For
completeness we note that all three information streams
comprising PCONN (P𝜈 , GCONN, and LCONN (11)) induced
positive effects, but their combination is best.
5.2. Meta-Analysis II: Results by Dataset290

Figure 3[b] reveals most, but not all, datasets obey the
generalization that performance of regular t-SNE deterio-
rates monotonically with perplexity, which is not surprising
given the large variation in sample size (here, number of pro-
totypes), structural complexity, and inherent dimensionality295

of the data considered in this work. For example, COIL20
exhibits a statistically significant effect size improvement
from P20 to P50, and t-SNE for Ocean City has largest aver-
age effect at P40. Interestingly, OC is also the only dataset
for which CONNt-SNE’s mean effect size is neither best,300

nor statistically positive (although its PCA initialized case

is still superior to its counterparts). This is likely due to the
level of noise in Ocean City’s spectra, as well as the spectral
similarity of its 29 known clusters (which are subcluters of
three large material tranches: vegetation, water, and man-305

made materials). Because of this, [8, § 4B] removes ∼ 20%
of Ocean City’s CONN edges, according to a thresholding
scheme defined therein, to facilitate clustering. We believe
some degree of CONN edge removal would also benefit
CONNt-SNE, but have left this for future work. Despite310

this, §5.4 discusses the visual improvement of PCONN’s OC
embedding, compared to P20.
5.3. Meta-Analysis III: Results by Measure

From Figure 3[c], PCONN is the only method with a sta-
tistically positive mean effect size by all measures, excluding315

the K-ary score. We expect it to achieve higher BTNE and
FTNE measures, as the GCONN and LCONN components
increase the similarity 𝑝𝑖𝑗 of topological neighbors 𝑖 and
𝑗 in PCONN. This influence appears to help CONNt-SNE
preserve cluster structure better, resulting in higher rCVII320

scores, which are positively correlated to rCVIE scores
(0.49±0.02 overall, at 95% confidence). Positive rCVIE
effects show that, when properly parameterized, t-SNE can
be an effective tool for feature engineering. Recall that
rCVIE reports relative change in external CVI measures325

of a partitioning obtained via spectral clustering of the
embedded points, versus one obtained by clustering the
prototypes in ℝ𝑑 . We have employed spectral clustering (as
a widely accepted and trusted clustering method) in this
work and acknowledge that other clustering regimes may330

impart different effects. However, this analysis does support
further exploration of t-SNE as a pre-processing step in
larger machine learning pipelines, particularly where linear
pre-processing (e.g., PCA) are inappropriate.

Our discussion of results up to this point has ignored335

the performance of the multi-scale similarity PMS, which
is lowest in overall aggregate. An explanation for these low
scores is found in Figure 3[c], which shows PMS fails to pro-
duce either mean or median positive effects according to the
(F/B)TNE and CVI measures. PMS does, however, achieve340

significantly higher K-ary scores than all other methods. This
agrees with the conclusions presented in [15], where MS
similarities were shown to increase K-ary scores for a vari-
ety of dimension reduction algorithms, including Stochastic
Neighbor Embedding. The PMS similarity is obtained by345

averaging P𝑝𝑥 over exponentially increasing 𝑝𝑥 bound by a
range intended to be large enough to enforce global ordering,
and small enough to avoid uniformity of its values. In this
work we set the lower bound = 10 (the same used for the
𝑝𝑥 grid); the upper bound is data-dependent (set as in [15,350

§ 3.1]) but is generally much higher than our 𝑝𝑥 grid upper
bound of 50 (e.g., for MNIST with 2000 prototypes, PMSis influenced by 𝑝𝑥 ∈ {10, 20, 40, 80, 160, 320, 640, 1280}),
which directly correlates with its ability to preserve Eu-
clidean neighborhood ordering across a large range of neigh-355

borhood sizes.
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[b] Effect by Dataset

Means + 95% confidence intervals computed over 5 measures x 200 initializations. Pr[Z > 0] annotated in green.

0.85 0.16 0.89 0.90 0.20 0.16

0.42 0.03 0.19 0.45 0.36 0.32

0.07 1.00 0.03 0.07 0.93 0.98

0.72 0.39 0.79 0.78 0.29 0.30

0.72 0.25 0.76 0.64 0.44 0.37

BTNE FTNE K-ary AUC rCVII rCVIE

P
C

O
N

N

P
M

S

P
1
0

P
2
0

P
4
0

P
5
0

P
C

O
N

N

P
M

S

P
1
0

P
2
0

P
4
0

P
5
0

P
C

O
N

N

P
M

S

P
1
0

P
2
0

P
4
0

P
5
0

P
C

O
N

N

P
M

S

P
1
0

P
2
0

P
4
0

P
5
0

P
C

O
N

N

P
M

S

P
1
0

P
2
0

P
4
0

P
5
0

-5.0

-2.5

0.0

2.5

5.0

E
ff

e
c
t 

S
iz

e
 Z

[c] Effect by Measure

Means + 95% confidence intervals computed over 6 datasets x 200 initializations. Pr[Z > 0] annotated in green.

Figure 3: Performance of each method, according to the standardized score of each measure. Panel [a] reports an overall
aggregation by method whereas [b] and [c] aggregate performance by dataset and measure, respectively. Error bars convey means
and 95% confidence intervals over 1,400 experiments (200 different initializations × 6 datasets) for each method. Separate purple
points represent the measure of the PCA-initialized embedding. Green lines at 𝑍 = 0 represent the performance of its baseline
P30 (see §3), and green numbers report the estimated probabilities 𝑃𝑟[𝑍 > 0], which convey the proportion of time each method
has positive effect.
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Relationships Between Topology & Clustering Measures

Figure 4: Relationships of Cluster Validity Indices to different Topology Preservation Measures for the 8,400 embeddings studied
in this work (gray points). Pink banded trendlines in each panel report 95% predictive intervals of a spline regression, fit via a
Generalized Additive Model [40] which selects the level of model smoothing automatically.

But is this a desirable characteristic of an embedding in
practice? That is, which neighborhoods should be preserved
to most faithfully represent cluster structure in an embed-
ding? As structure identification motivates most uses of t-360

SNE we have explored this question a bit further. Figure 4
displays scatterplots of the Z-scores (gray points) of each
CVI vs. each topology preservation measure considered in
this work. A non-linear spline regression with corresponding
95% predictive interval is shown as a pink banded trend365

line. Here, the regression was fit via a Generalized Additive
Model [40] which automatically (jointly) optimizes the level
of smoothing. The CVI vs. (F/B)TNE trends are statistically
significant (p-value ≈ 0) and positive (i.e., better topological
neighborhood preservation is associated with better cluster-370

ing results). CVI vs. K-ary trends are also significant (p-
value ≈ 0) but generally negative overall. Thus, a high K-ary
score appears inversely (or, at least not positively) related
to t-SNE’s preservation of (cluster) structure. Stated another
way, demanding full Euclidean neighborhood preservation375

from an embedding algorithm may be intuitively desirable,
but appears an overly conservative constraint. This is in line
with the literature on CONN-based clustering [11, 35] which
concludes that topological characterizations of locality are
more beneficial than their Euclidean analogs for extracting380

structure from data.
5.4. Visual Inspections

In closing, we discuss some qualitative aspects of the em-
beddings visible in Figure 5. For each dataset, CONNt-SNE
embeddings are shown vertically atop the best performing385

case (according to Figure 3[b]) of regular t-SNE, which is

P10 for all except Ocean City (P20). PCA initialized results
are shown, as these outperformed most randomly initialized
embeddings according to Figure 3. Point colors represent
the prototype’s true class label (decided via plurality vote of390

its receptive field), and point sizes represent the (relative)
size of the prototype’s receptive field. Overall, CONNt-
SNE embeddings are very similar to those induced by the
best performing regular t-SNE (P10/P20) which supports
the main assertion of this work: CONNt-SNE’s data-driven395

modifications to t-SNE’s similarity cause no degradation to
the quality of embeddings; in some cases they result in visual
improvement. In what follows we point out a few details in
the embeddings of each dataset for further discussion.

MNIST (panel 5a) shows cohesion of the digit clus-400

ters, with the easily distinguishable digits (0, 1, 2, 6) well
separated; both PCONN and P10 have delineated the com-
ponents of the 4-7-9 and 3-5-8 digit super clusters, which
are typically harder to embed. Fashion MNIST (panel 5b) is
a bit more challenging. Both PCONN and P10 have isolated405

the trouser and bag clusters well, along with a footwear
super cluster which shows sensible internal arrangement. In
contrast, the super cluster containing Pullovers, Shirts and
Coats is very mixed. P10 has better separated the T-shirt
cluster at the expense of also splitting the Dresses. PCONN410

and P10 have both responded to the high intra-class variation
in KMNIST (panel 5c) by creating several subgroupings of
each class, which is more organized in some cases (e.g., the
purple subclusters are at least near each other) than others
(e.g, the pink and brown subclusters are not geographically415

close). KMNIST may not be separable in 2-𝑑, as others
have also reported poor results from a variety of dimension
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Figure 5: Embeddings of the prototypes of our experimental datasets. t-SNE(*) means P10 in all cases except Ocean City where
P20 is shown. Prototype colors represent their learned truth labels. Annotations are split across the pair for space considerations.
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reduction techniques [41]. PCONN has produced a visually
superior COIL20 embedding (panel 5d), retaining better
separation, and more of the known ring-like structure, of420

COIL20’s classes than P10. Likewise, PCONN has maintained
the integrity of the dark green CD8+ T cell cluster in Flow18
(panel 5e), but overall both PCONN and P10 have produced
embeddings visually superior to those previously published
[34, Fig. 1(b)].425

From panel 5f we see that both PCONN and P20 em-
bed the subclusters of the larger material classes — water,
vegetation, man-made materials — together. There is also
meaningful organization within these superclusters. For ex-
ample, the vegetation group has been ordered (when viewing430

the “tail” of the embeddings from bottom to top) by bright
green (cluster 𝐿), pea green (𝑂), then orange (𝑁). These
represent healthy green vegetation, yellow lawns, and dry
grasses, respectively. The gray and salmon colored clusters
(𝑆 and 𝑇 ) represent, respectively, bare soil and boat docks435

(dry woody material possibly mixed with concrete). Thus,
it is sensible that 𝑆 and 𝑇 form a “bridge” between the
vegetation and man-made material super clusters; further,
there is more organizational meaning to the fact that the 𝑆/𝑇
bridge terminates at vegetation cluster 𝑁 than, say, cluster 𝐿440

(the wood comprising the docks is more similar to bare soil
and dry grass than to green vegetation, evident from the vis-
ible near-infrared spectral signatures of the classes shown in
[8, 10]). However, PCONN elucidates a few interesting struc-
tural components of the Ocean City spectra that P20 misses.445

Of note, PCONN fully separates cluster 𝑃∕𝑄 (brown) which
represents muddy marshy land with spectrally similar (but
still distinct) vegetation to the dry grass in orange cluster 𝑁 .
Similarly, PCONN is more sensitive to the distinction among
various man-made materials (e.g. clusters 𝑋/𝑐) which P20450

fails to fully distinguish. The cluster distinctions expressed
by PCONN’s OC embedding better agree with clusters found
earlier [8, 10].

6. Conclusions and Future Directions
We have presented CONNt-SNE as a data-driven alter-455

native to cumbersome and tedious exhaustive grid searches
for optimal t-SNE perplexity. CONNt-SNE relies upon, and
benefits from, prototype representations of data, which 1) in-
crease the speed and feasibility of embedding large datasets
with t-SNE (recall, 𝑀 << 𝑁) and 2) offer unique views of460

data topology in the form of the CONN graph.
As a weighted version of the Masked Delaunay Trian-

gulation [19], CONN [8] reports topological connectedness
and separation across a manifold; we incorporate this in-
formation into automated specification of variable t-SNE465

perplexities for each prototype. We further sensitize t-SNE’s
high-𝑑 similarity to the strength of manifold connectivities,
as reported by CONN’s edge weights viewed at various
resolutions (global, local). Both modifications are crucial
to CONNt-SNE’s performance which, as shown by exper-470

iments, meets or exceeds the best offered by regular t-SNE
with grid-optimized perplexity.

We have also explored the relationship between K-ary
neighborhood preservation, which is a popular quality mea-
sure of dimension reduction techniques, and the preservation475

of known high-𝑑 cluster structure in low-𝑑 embeddings. Ex-
periments show high K-ary neighborhood scores do not nec-
essarily translate to embeddings of highest fidelity to such
structure. Manifold topology matters, both when assessing
the quality of an embedding and when inferring structure480

from it. CONNt-SNE’s data-driven ability to recognize and
respond to structural subtleties in real data facilitates more
confident and meaningful inference from its embeddings.

As CONNt-SNE is new we have many ideas for further
work, including: extensions of its framework to other dimen-485

sionality reduction techniques, permitting embedding of out-
of-sample data points through clever use of the VQ mapping,
and sensitization of t-SNE’s repulsive forces (𝑄) to manifold
dis-connectedness, as characterized by CONN.
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Figure 6: Detailed Measure Comparison by Dataset
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