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We harness topological information about a data manifold revealed through neural prototype-based
learning to automate t-SNE parameterization. This information is contained in the CONN
(CONNectivity) similarity of neural prototypes, which grades the strength (weakness) of topological con-
nectivity at various points within a data manifold. CONN suggests a data-driven specification of localized
versions (varying across the manifold) of t-SNE’s perplexity parameter which, in turn, defines the high-
dimensional similarities P that t-SNE attempts to preserve. We further imbue P with CONN’s graded sim-
ilarity to reduce mismatch between the topology of the manifold and its embedded representation.
Experiments show these improvements, collectively called CONNt-SNE, are capable of producing mean-
ingful and trustworthy low-dimensional embeddings without the need to heuristically optimize over (i.e.,
grid search) t-SNE’s perplexity space. Data-driven t-SNE parameterization improves our confidence that
any structure appearing in the embeddings is valid and not merely an artifact of spurious
parameterization.

� 2022 Published by Elsevier B.V.
1. Introduction

As a sub-field of unsupervised machine learning, dimensionality
reduction seeks to represent points in high-dimensional data
clouds by points in lower-dimensional spaces as faithfully as pos-
sible. Linear projections from high-d to low-d, such as Principal
Component Analysis, are commonly used for this task, but cannot
faithfully represent non-linear high-d structures. As such, many
nonlinear dimensionality reduction (NDR) techniques [1] have
been proposed to produce more accurate low-d representations
of complex high-dmanifolds. However, like most of machine learn-
ing, poor parameterization can greatly affect the quality of NDR
techniques.

This work presents a data-driven framework we call CONNt-
SNE for automatically parameterizing a widely used NDR algo-
rithm known as t-SNE (t-distributed Stochastic Neighbor Embed-
ding, [2]). The framework is intended for, and based upon
knowledge obtained from, prototype-based manifold learning. In
Section 2 we briefly review the t-SNE algorithm and concepts from
prototype-based learning which form the basis for CONNt-SNE’s
methodology, outlined in Section 3. In Section 4 we review existing
measures used to assess the quality of NDR techniques, discuss
their strengths and weaknesses, and contribute an additional mea-
sure of topology preservation known as TNE (Topological Neigh-
borhood Expansion) to this canon. Section 5 details the
experimental design underpinning the results of Section 6, which
show CONNt-SNE meets or exceeds the performance of regular t-
SNE, even when its performance is optimized over a grid of possi-
ble parameter values. We stress here that such optimization of t-
SNE’s parameters is only possible in controlled experimental set-
tings where additional knowledge of high-d data structure is avail-
able (e.g., through a priori known cluster structure or manifold
structure). For most use-cases in unsupervised learning such exter-
nal information is unavailable, which motivated development of
CONNt-SNE as a way to provide trustworthy, automated t-SNE
parameterizations.
2. Background

t-SNE [2] has attracted wide attention both within and outside
the machine learning community as a tool for producing low-

dimensional non-linear embeddings T ¼ fts 2 Rd0 gNs¼1 of high-

dimensional point clouds X ¼ fxs 2 RdgNs¼1, where d0 � d, for
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exploratory (visual) data analysis. Typically d0 2 f2;3g. The appe-
tite for such analysis across disciplines is strong, but many ques-
tions have been raised about what, exactly, can (should) be
inferred from a t-SNE embedding. t-SNE’s introduction subtly
stresses its distinction as a technique for visualization (vs. feature
engineering), yet its embeddings are often clustered either infor-
mally (via visual assessment) or formally (applying a clustering
algorithm to T). Some [3] have noticed relative deficiencies in t-
SNE’s ability to faithfully indicate separation in complex manifolds.
[4] offers a list of various misinterpretations that can be made from
a t-SNE embedding due to its unfaithful representation of cluster
sizes, shapes, densities, compactness and separability. Most of
these issues arise because t-SNE is designed to preserve condi-
tional probabilities between points instead of distance, and we
believe they are not severe impediments to successful cluster dis-
covery from low-d representations. Indeed, over the last three dec-
ades the lattice representations of data learned by Self-Organizing
Maps [5] have produced many successful clusterings without
explicit preservation of, e.g. distance, between the high- and low-
d spaces. However, [4] does raise one issue we feel fundamentally
impacts the fidelity of a t-SNE representation: that of selecting its
main perplexity parameter, which we abbreviate px. px indirectly
controls the number of Euclidean neighbor similarities that t-SNE
attempts to preserve, which is an unknown number that varies
across, and likely within, datasets. An example taken from [4] of
various t-SNE embeddings which can arise from different px spec-
ifications is given in Fig. 1. Here, the ‘‘high-d” data (left-most panel)
is very simple—two dimensional with two well-defined clusters—
yet inspection of the embeddings resulting from some perplexity
values (2, 5, 100) would yield a different conclusion. [2] suggests
that t-SNE is relatively insensitive to px but in practice an optimal
perplexity is obviously data-dependent and should be data-driven.
CONNt-SNE provides a mechanism for such a scheme, using infor-
mation freely available from prototype-based learning, and com-
monly invoked during prototype-based clustering.

2.1. The t-SNE algorithm

The t-SNE algorithm begins by defining Gaussian similarities
between two points in Rd as

pij ¼
pjji þ pijj

2N
; pjji ¼

expð�kxi � xjk2=2r2
i ÞX

k–i

expð�kxk � xik2=2r2
i Þ

ð1Þ

where p�ji is the conditional distribution of all other xj given xi and,
by convention, piji ¼ 0. We let P ¼ fpijg be the N � N matrix of such
(symmetrized) similarities and denote its i-th row by Pi. Each Gaus-
sian bandwidth ri is controlled by the (global) perplexity parameter
px, found through iterative search such that following relationship
holds:
Fig. 1. The sensitivity of t-SNE embeddings t
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ri : px ¼ 2HðPiÞ; HðPiÞ ¼ �
X
j

pjjilog2ðpjjiÞ: ð2Þ

Pointwise similarities qij in Rd0 are derived from the pdf of Stu-
dent’s t-distribution with one degree of freedom,

qij ¼
ð1þ kti � tjk2Þ

�1

X
k–l

ð1þ ktk � tlk2Þ
�1 ; ð3Þ

where again we let Q ¼ fqijg. Embedded coordinates ti are deter-
mined through minimization of the Kullback–Leibler divergence
as cost,

C ¼ KLðPkQÞ ¼
X
ij

pij log
pij

qij

 !
: ð4Þ
2.2. CONN similarity

CONNt-SNE provides a framework for embedding the prototypes

W ¼ fwi 2 RdgMi¼1;M � N, of a vector quantizer (VQ) trained on
data X. While the prototypes of any VQ would be suitable for this
purpose we prefer neural variants such as the SOM and Neural
Gas (NG, [6]) as the iterative stages of competition and cooperation
during training result in better prototype placement in the data
cloud than, e.g., k-means [7]. Previous work [8] utilized t-SNE as
a means to visualize Neural Gas prototypes but, contrary to this
work, did not explore any ways by which t-SNE could be influenced
by the VQ. To achieve the latter we appeal to the CONN similarity
[9] between trained prototypes wi and wj. CONNij is calculated
from a recall of the entire dataset as

CONNij ¼ CADJij þ CADJji ð5Þ
CADJij ¼

X
s

IðBMU1ðxsÞ ¼ i ^ BMU2ðxsÞ ¼ jÞ; ð6Þ

where BMUf1;2g are the index of the 1st and 2nd Best Matching
Units (prototypes) and IðÞ is the indicator function. CADJij (the
Cumulative ADJacency of i and j) reports the number of data vectors
observed in the second-order Voronoi cell Vij generated by W in Rd,
and CONN is its symmetrized version. CONN is thus a weighted ver-
sion of the Masked Delaunay Triangulation [10,9] whose edge
weights reflect local data densities and connectivities within the
manifold. We note for later discussion that CONN is typically very
sparse.

3. CONNt-SNE

CONNt-SNE methodology comprises two key modifications to t-
SNE’s definition of high-d similarity. The first permits a varying
perplexity pxi when setting each conditional distribution p�ji (recall
o their parameterization, taken from [4].
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from (2) that perplexity controls the Gaussian bandwidths ri

which form the prototype similarities pij). We now have M differ-
ent (local) perplexities to specify but CONN provides a data-
driven way of determining these parameters as the number of
CONN neighbors of prototype wi, which we denote by mi for the
remainder of this work:

pxi ¼ mi ¼ max
X
j

IðCONNij > 0Þ; 2
 !

: ð7Þ

It is possible that some prototype wi has no CONN neighbors
(mi ¼ 0), which occurs if a) the receptive field of i is empty and b)
no datum has chosen i as BMU2. To avoid numerical issues we
enforce a lower bound pxi P 2 in the above, but suggest removing
such unused prototypes fromW prior to running CONNt-SNE. With
pxi intelligently and automatically specified, the same procedure of
(2) sets each local ri (and, consequently, Pi). We denote by Pm the
matrix of prototype similarities arising from CONN-derived vari-
able perplexities pxi.

The second modification to t-SNE infuses the topological adja-
cency and local density information contained in the CONNij values
into the high-d similarity definition. This information can be
viewed from two vantage points (scales). A global view (where
each CONNij value is considered relative to all other CONNkl) grades
the topological connectivities of major/coarse structures within the
manifold, as learned by the vector quantizer. This information is
most useful for characterizing regions of higher data density. We
define a globally normalized version of CONN as

GCONNij ¼ CONNijX
kl

CONNkl

; ð8Þ

and note that
P

ijGCONNij ¼ 1. In contrast, a local view (where each
CONNij is considered relative to all other CONNi�, i.e., when the
CONN graph is viewed node by node) elicits finer structure in the
manifold, particularly in areas of low data density. A locally normal-
ized version of CONN is given by

LCONN�
ij ¼

CONNijX
k

CONNik

ð9Þ

LCONNij ¼ ðLCONN�
ij þ LCONN�

jiÞ=ð2MÞ; ð10Þ

where the last equation above is merely symmetrizing and re-
normalizing LCONN� to have unity sum.

Ideally, we would like to imbue t-SNE with both (global & local)
topological views offered by CONN, as these have been shown
effective for inferring structure from complex manifolds such as
hyperspectral imagery of Earth [11,12] and Mars [13], radioastron-
omy imagery [14], and functional MRI images of brains [15]. We
achieve this multi-scale view by defining the following composite
similarity to assess relationships in Rd:

PCONN ¼ 1
3
ðPm þ GCONNþ LCONNÞ: ð11Þ

The averaging of t-SNE’s Gaussian-based similarity with the glo-
bal and local views of manifold topology offered by CONN is similar
in spirit to the multi-scale similarity proposed for stochastic neigh-
bor embeddings in [16]. In that work, an aggregate high-d similar-
ity is averaged from those resulting from an exponentially
increasing set of perplexities in a range whose lower bound is
user-specified and upper bound is data dependent. In contrast,
CONNt-SNE utilizes an entirely different type of information in
its multi-scale view, combining explicit notions of manifold con-
nectivity and density, as expressed by CONN. We note that this
type of information is unique to vector quantizers.
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The attractive forces among embedded points in t-SNE are set
by P (Eq. (1)) while the repulsive forces are governed by Q (Eq.
(3)) [17]. Because CONN (and, consequently, GCONN and LCONN)
is typically very sparse, use of PCONN should cajole embedded
points corresponding to adjacent prototypes closer together in
the embedding. On the other hand, CONN dis-similarity of all
non-adjacent prototypes i and j are the same, CONNij = 0. We have
summarized the various similarity measures discussed in this work
in Table 1.

As CONNt-SNE only modifies the high-dimensional similarity
measure P used in the t-SNE framework it, by itself, imparts no
additional computational effort to embed learned prototypes of
data. However, obtaining these prototypes does require additional
computation whose complexity obviously varies with the method
by which the prototypes are obtained (e.g., online vs. batch ver-
sions of k-means, SOM, NG, etc.). We suggest that, regardless of
the additional computation required, prototype-based learning is
useful in its own right and is worth the additional time it requires.

t-SNE has computational complexity O N2
� �

when embedding N

data points [2]; because prototype learning reduces sample size

(often, the number of learned prototypes M ¼ O
ffiffiffiffi
N

p� �
) immediate

savings for t-SNE computational effort are achieved. Additionally,
we point out that hardware implementations of neural prototype
learning exist [18] making the prototype learning step near-
instantaneous, even for large datasets.

4. Quality measures

While visual inspection of CONNt-SNE’s embeddings is impor-
tant, we have also assessed the quality of each embedding in two
different quantitative categories: topology preservation, and the
preservation of cluster structure as measured by Cluster Validity
Indices. Throughout this work we indicate whether a larger or
smaller value of a measure is preferred with up " and down #
arrows, respectively.

4.1. Measuring topology preservation

K-ary neighborhood preservation [16], commonly used to
assess the performance of dimensionality reduction techniques,
measures the proportion of a high-d k-nearest neighborhood
around each wi that is preserved after embedding wi in low-d,
averaged over i. As this K-ary measure ([[16] Eq. 15]) yields a per-
formance curve over k 2 f1; . . . ;M � 1g, we report the area under
such curve (AUC), normalized by its theoretical maximum (M-2),
for comparison across datasets.

K-ary neighborhood measures are one example of a family of
topology preservation (TP) measures, but there are others. Drawing
from the literature on Self-Organizing Maps we have also mea-
sured the mismatch between the topology of the manifold (which
we call ‘‘input space”) and its representation in the embedding
(which we call ‘‘output space”), as reported by the Normalized Dif-
ferential Topographic Function (NDTF [19], which is a differential
form of the Topographic Function of [20], normalized to have unity
sum). For a SOM, CONN (as a Topology Representing Network [21])
represents input space topology while the user-specified lattice
defines the output space topology. In this work, CONN persists as
a representation of input space topology, and we prescribe the out-
put space topology as the Delaunay triangulation [22] of a t-SNE
embedding T � R2, which we denote by DT . In what follows we

also denote by DDT

ij and DCONN
ij the geodesic distance between proto-

types i and j as measured on theDT and CONN graphs, respectively.
The NDTF (and its relatives) all measure the degree to which the

output space accurately reflects topological adjacencies in input



Table 1
An overview of point similarities considered in this work.

Similarity Description

P;Q Standard t-SNE point similarities (in the original space and
embedded space, respectively) from [2].

CONN The CONN similarity [9] expressing manifold connectivity
between prototypes.

LCONN,
GCONN

Locally and Globally normalized CONN similarities, see eqs. (8)
and (10).

Pm t-SNE’s point similarity using a variable perplexity for each
point, set by CONN. See eq. (7).

PCONN The similarity used for CONNt-SNE, aggregated from Pm,
GCONN & LCONN.
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space (a measure of forward topology preservation), and vice versa
(a measure of backward topology preservation). Specifically, the
forward measure,

FNDTFðrÞ ¼ Ê I DDT

ij ¼ r
� �

jDCONN
ij ¼ 1

h i
;

reports the proportion of prototype adjacencies on CONN that are of
geodesic distance r on DT . Similarly, the backward measure

BNDTFðrÞ ¼ Ê I DCONN
ij ¼ r

� �
jDDT

ij ¼ 1
h i

reports the proportion of prototype adjacencies on DT that are of

geodesic distance r on the CONN graph. In the above, Ê denotes
the conditional empirical mean over all relevant adjacencies ij and
IðAÞ is the indicator function of event A. We note that the Forward
and Backward (abbreviated F/B here) NDTFs both have unity sum
over r, and that NDTF(0) is undefined. Typically, an analyst would
view the trace plot of (F/B) NDTFðrÞ vs. r to assess the exact location
(geodesic distance r) and severity (the value (F/B) NDTFðrÞ) of
observed topology violations. As r ¼ 1 is not considered a violation,
(F/B) NDTFð1Þ ¼ 1 conveys perfect topology preservation while any
(F/B) NDTFðr > 1Þ > 0 indicates violations. In order to combine both
the location and severity of topology violations into one measure
we define the Forward/Backward Topological Neighborhood Expan-
sion as:

ðF=BÞTNE ¼
X
r>0

r � ðF=BÞNDTFðrÞ: ð12Þ

(F/B) TNE reports the average geodesic radius by which a topologi-
cal neighborhood in one space (CONN/DT ) must expand to be rep-
resented in another space (DT /CONN). A perfect embedding by
this measure has (F/B) TNE = 1, and topology violations of increasing
severity are reported by values > 1.
4.2. Measuring structural preservation with cluster validity indices

Faithful topology representation is desirable when inferring
(cluster) structure of a high-d manifold from its embedding. While
sufficient, exact TP may not be necessary for structural identifica-
tion; indeed, according to the TPMs discussed above, the rigid 2-
d SOM lattice cannot faithfully represent manifold topologies with
more than a few (8 for rectangular lattices, 6 for hexagonal) neigh-
bors, but this fact has not hindered its success as a tool for cluster
discovery. To account for this we have measured the structural
preservation of our experimental embeddings, as reported by a
variety of internal and external Cluster Validity Indices (CVIs). As
t-SNE is most commonly used to identify such structure (or lack
thereof), we believe these measures better reflect the quality of
an embedding for most uses of t-SNE in practice (See Table 2).
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4.2.1. Internal cluster validity indices
Internal CVIs (CVIIs) measure the relationship between com-

pactness and separation of clusters defined by a given partitioning
of the data. While there are many such measures [23], in this work
we focus on three of the more common: the (average) Silhouette
Index " (SIL, [24]), Generalized Dunn Index " (GDI, with set dis-
tance 5 and set diameter 3, as defined in [25]), and Davies-
Bouldin Index # (DBI, [26]). As our goal is to show how well cluster
structure is preserved when embedding high-d prototypes W � Rd

as T � R2, we report CVIIs measured on the latter relative to those
measured on the former, using the true partitioning of each dataset
‘�. For example, the relative Silhouette of an embedding,
rSILTW ¼ ½SILðTÞ � SILðWÞ�=jSILðWÞj, measures the change in the Sil-
houette score of the true partitioning after embedding W by T, rel-
ative to its value in W. rGDI and rDBI are computed similarly. As
there is no universally best CVII in all cases, we average the indi-
vidual relative CVIIs into an aggregate score:

" rCVIITW ¼ 1
3
ðrSILTW þ rGDITW � rDBITWÞ; ð13Þ

where the subtraction above arises because a lower value of DBI is
preferred. Whereas the K-ary score reports preservation of Eucli-
dean distances and the (F/B) TNE scores report preservation of topo-
logical distances, rCVII signals preservation of set cohesion and
distance, where the sets are the clusters of the true data partition-
ing. Thus, rCVII should give some indication of how the embedding
(mis)represents cluster structure which, in turn, hints at its impact
on 2-d cluster inference.

4.2.2. External cluster validity indices
Both to assess whether rCVII is performing as designed, and to

simulate how actual clusterings are affected by the process of
embedding, we also cluster W � Rd and T � R2, resulting in parti-
tionings ‘W and ‘T , respectively. The quality of each partitioning is
assessed, relative to the truth ‘�, by several External CVIs (CVIEs):
the Adjusted Rand Index " (ARI, [27]), Jaccard Index " (JAC, [28]),
and Normalized Mutual Information " (NMI, [29]). Again, we are
more interested in comparing the quality of ‘T relative to ‘W , rather
than the absolute value of either, which we accomplish via the rel-

ative measure rARITW ¼ ½ARIð‘T ; ‘�Þ � ARIð‘W ; ‘�Þ�=jARIð‘W ; ‘�Þj (and
similarly for JAC and NMI). An aggregate measure of relative exter-
nal cluster validity is defined as

" rCVIET
W ¼ 1

3
ðrARITW þ rJACT

W þ rNMITWÞ: ð14Þ

Computing rCVIE obviously requires a clustering, which we
obtain via Spectral Clustering with random walk normalization of
the graph Laplacian [30], as there is a purported connection
between certain parameterizations of t-SNE and spectral clustering
[31]. The true number of data clusters (C from Table 3) parameter-
ize the k-means step of the spectral clustering procedure.

5. Experiment design

5.1. Datasets

To demonstrate the effectiveness of CONNt-SNE we compare its
two-dimensional embeddings to those of t-SNE for the six real
datasets (indexed by d) whose characteristics are given in Table 3.
These include Standard COIL20 [32] (labeled as in Fig. 2) and
MNIST [33] along with two of MNIST’s more challenging drop-in
replacements: Fashion MNIST (FMNIST, [34]), containing images
of 10 different articles of clothing, and Kazushiji MNIST (KMNIST,
[35]), containing images of 10 different Japanese Hiragana charac-
ters. Both MNIST replacements have 28 � 28 pixel images. The
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Flow18 dataset contains flow cytometry measurements of 946,915
human peripheral blood mononuclear cells labeled by 12 different
phenotypes, subsampled as in [36] (we have ignored the ‘‘Dead
cells” class in this analysis). Ocean City (OC) is a 512 � 512 pixel,
8-band spectral image of Ocean City, Maryland, with 1.5 m/pixel
resolution. Data collection, pre-processing and mean signatures
of verified land-cover classes are given in [11]. We consider the
29 clusters interactively identified in [9] as truth clusters. These
clusters comprise three larger material groupings—vegetation,
water, man-made materials—each broken down into a number of
unique clusters with widely varying statistical properties (see rep-
resentative statistics in [37]).

5.2. Experiment descriptions

The various t-SNE methods and their nomenclature utilized in
this work are presented in Table 4. To alleviate notation we will
use a method’s name (e.g., t-SNE(10)) and its similarity (e.g., P10)
interchangeably, as the similarity uniquely defines the method.
Thus we have 7 methods h 2 fP10;P20;P30;P40;P50;PMS;PCONNg,
where PMS is the multi-scale method of [16].

To make our conclusions more robust, for each dataset and
method we have produced 200 different embeddings resulting
from initializations i 2 fPCA;1; . . . ;199g, where PCA denotes a 2-
d principal components initialization, and integers 1–199 repre-
sent a randomly seeded initial state. Thus, there are 200 embed-
dings for dataset d using method h, and Th should be viewed as a
function Thðd; iÞ. 6 datasets � 7 methods � 200 initial states yields
8,400 embeddings from which we draw conclusions.

We assess these 8,400 embeddings with the five quality mea-
sures l 2 fFTNE;BTNE;K-aryAUC; rCVII; rCVIEg described in Sec-
tion 4. However, each l measures different characteristics of our
embeddings and, consequently, possesses a wide range of scales;
this complicates comparison amongst the l, and across different
datasets. To facilitate such meta-analysis we will report instead a
standard score ZlðTÞ using lðT30Þ as a baseline, as px ¼ 30 is a
widely used default in popular t-SNE implementations. Thus, for
each measure l of each embedding of each dataset, Thðd; iÞ, we
report

Zlðh; d; iÞ ¼ lðThðd; iÞÞ � lðT30ðd; iÞÞ
r̂ lðThðd; �ÞÞ � lðT30ðd; �ÞÞ½ � ;
Table 2
An overview of various measures used to assess the quality of t-SNE embeddings in this w

Topology Preserving Measures

K-ary " The K-ary neighborhood preservation score, conveying the proportion o
[16]

(F/B) NDTF
(r)

The Forward/Backward Normalized Differential Topographic Function
(e.g., high-d) that are of geodesic distance r in another space (e.g., low-d
high-d space is perfectly represented by the topology of the embedded
indicates topological mismatch (folding) between the two spaces unde

(F/B) TNE # The Forward/Backward Topological Neighborhood Expansion, indicatin
represent the immediate topological neighbors of another space. Newl
distances r, combining the severity and location of topological violatio

Cluster Validity Indices

rCVII " Relative Internal Cluster Validity Indices (13), combining the quality of
Index [24], the Generalized Dunn Index [25], and the Davies-Bouldin In
embedding are reported relative to their measure in high-d space. This
quality based on distances in two different spaces.

rCVIE " Relative External Cluster Validity Indices (14), combining the agreemen
Index [27], the Jaccard Index [28], and Normalized Mutual Information
resulting from a clustering of the low-d embedding, reported relative t
were obtained by Spectral Clustering [30], as [31] suggests there is a c
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where r̂ is the empirical standard deviation of the measure differ-
ences, computed over the 200 different initializations i. Addition-
ally, for consistency, we report �ZFTNE and �ZBTNE, as lower values
of these measures indicate better topology preservation. This makes
all Z-scores comparable.

Not only is Zlðh; d; iÞ unitless, its mean is: 1) the effect size of
method h relative to P30 (also known as Cohen’s d [38]), and 2) pro-
portional to the test statistic of a paired Student’s t-test of the
above. Thus, differences in summary statistics of Zlðh; d; iÞ immedi-
ately reveal statistical significances of the effect sizes of each
method. Since P30 is used as a basis for standardization, its Z-
scores are all = 0, and will be excluded from visualization of results.

All results that follow were produced by minimizing t-SNE’s
cost function (4) with Delta-Bar-Delta gradient descent (as in [2])
for a maximum of 2,000 iterations, monitored every 50 iterations.
Early stopping was permitted if the cost function decreased by
<0.1% for 3 consecutive monitoring steps (150 learning steps).
The learning rate for gradient descent was set ¼ 200, with momen-
tum increased from 0.5 to 0.8, in line with [2]. Although the use of
exaggeration (inflating the high-d similarities P by some constant
a) is widely thought to improve the minimization of (4) and avoid
crowding in the embedded space, no consensus on how much
exaggeration to use, or how long to enforce it, seems to exist. Var-
ious contradictory work recommends both early and late schedul-
ing of high and low values of a [2,36,39,31,40], while a preprint
suggests use of exaggeration may fundamentally alter the nature
of t-SNE altogether [17]. As a result, we have taken the conserva-
tive recommendation of [17] and linearly annealed a from 4 to 2
over the 2,000 prescribed learning steps to effect mild versions of
both early and late exaggeration schemes. Batch neural gas learn-
ing [7] generated the prototypes used in this work for all datasets
except Ocean City, where the previously scrutinized SOM proto-
types from [9] were used for comparative consistency.
6. Results

6.1. Meta-analysis I: overall aggregated results

Fig. 3 reports standardized effects ZlðTÞ for each method, show-
ing overall aggregated effect sizes (top panel, [a]) and those aggre-
gated by dataset (middle panel, [b]) and measure (bottom panel,
[c]). The Zl scores for individual measures were combined in pan-
ork. Up (down) arrows indicate a larger (smaller) value of the measure is preferred.

f k-nearest neighbors that are preserved in the high- and low-dimensional spaces

[19], measuring the proportion of topologically adjacent neighbors in one space
embedding), according to its topology. FNDTF(r ¼ 1) = 1 indicates the topology of
space, while BNDTF(r ¼ 1) = 1 indicates the opposite. Any (F/B) NDTF(r P 2) > 0
r consideration.
g the average neighborhood size (geodesic radius) in one space that is required to
y presented in this work, TNE aggregates the NDTF over all possible geodesic
ns into one measure.

a clustering as reported by three widely used internal measures: the Silhouette
dex [26]. Here, ‘‘relative” indicates that the CVIIs values computed in the low-d
relative measure overcomes difficulties when comparing assessments of cluster

t of a clustering to a true (known) partitioning as reported by the Adjusted Rand
[29]. Here, ‘‘relative” indicates that the reported values are measures of CVIEs

o those obtained from a clustering in high-d space. The clusterings in each space
onnection between it and t-SNE.



Table 3
Characteristics of the six datasets used in experiments: sample size (N) and dimension (d), the number of sample classes (C), the number of prototypes which learned the data (M),
and a 95% confidence interval for the average number of CONN neighbors (�m). Points from the ‘‘Dead cells” class of Flow18 were removed prior to our analysis, along with
unlabeled pixels in the Ocean City image. M reported in this table excludes any unused prototypes.

Data N d C M �m

MNIST 70,000 784 10 2,000
18:919:2

19:5

FMNIST 70,000 784 10 2,000
14:614:8

15:1

KMNIST 70,000 784 10 2,000
16:917:3

17:7

COIL20 1,440 16,384 20 492
2:32:3

2:4

Flow18 946,915 11 12 1,457
30:330:8

31:4

OC 251,946 8 29 1,464
11:411:6

11:8

Fig. 2. COIL20 image database with integer encoded labels.

Table 4
Nomenclature for the methods under comparison. var + indicates CONNt-SNE
utilizing the topological information in CONN, in addition to a variable perplexity.

Method Perplexity Similarity Embedding

t-SNE(10) 10 P10 T10
t-SNE(20) 20 P20 T20
t-SNE(30) 30 P30 T30
t-SNE(40) 40 P40 T40
t-SNE(50) 50 P50 T50
MS t-SNE var PMS TMS

J. Taylor and Erzsébet Merényi Neurocomputing 507 (2022) 441–452
els [a] and [b], since they are now comparable. Violin plots show
the distribution of effect sizes by method, with black error bars dis-
playing the estimated mean (with 95% confidence interval) of each.
Purple points report the scores of the PCA-initialized embedding
separately, as informative (non-random) initializations are recom-
mended in [41]. The green lines at Z ¼ 0 represent the P30 case
serving as baseline, and green numbers report the proportion of
experiments for each particular method which induce a positive
effect (i.e., the estimated probability Pr½Z > 0�). Detailed statistics
by each measure and dataset are in Fig. 6).

PCONN induces the largest positive average effect (0.78, anno-
tated in black numbers for clarity) over all experiments, as
reported in Fig. 3[a]. Although it is hard to detect from the confi-
dence intervals shown at this scale, the overall effect of PCONN is
statistically larger (at significance level a ¼ 0:05) than both P10
and P20, which jointly performed second-best (their performance
is statistically indistinguishable, a ¼ 0:05). Aggregate performance
of regular t-SNE degrades monotonically as px increases, although
this may be an over-generalization (addressed below). The mean
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performance trends are also supported by non-parametric statisti-
cal arguments, where the proportion Pr½Z > 0� is estimated at 0.53,
0.51, and 0.54 for PCONN, P10 and P20, respectively. Binomial tests
(a ¼ 0:05) of these proportions reveal PCONN and P20 result in mea-
surable improvements to P30 embeddings more than half the time
(a similar test for P10 produced a p-value = 0.09). PCONN’s Z-
distribution exhibits pronounced positive bimodality and skew,
while both mode location and skew appear negatively correlated
with perplexity in regular t-SNE. Overall from Fig. 3[a] we conclude
that, for these experimental data, PCONN, P10 and P20 all produce
reliable improvements to the P30 baseline, with PCONN’s mean effect
size (0.78) more than twice as large as P10/P20 (0.37). For complete-
ness we note that all three information streams comprising PCONN
(Pm, GCONN, and LCONN (11)) induced positive effects, but their
combination is best.
6.2. Meta-analysis II: results by dataset

Fig. 3[b] reveals most, but not all, datasets obey the generaliza-
tion that performance of regular t-SNE deteriorates monotonically
with perplexity, which is not surprising given the large variation in
sample size (here, number of prototypes), structural complexity,
and inherent dimensionality of the data considered in this work.
For example, COIL20 exhibits a statistically significant effect size
improvement from P20 to P50, and t-SNE for Ocean City has largest
average effect at P40. Interestingly, OC is also the only dataset for
which CONNt-SNE’s mean effect size is neither best, nor statisti-
cally positive (although its PCA initialized case is still superior to
its counterparts). This is likely due to the level of noise in Ocean
City’s spectra, as well as the spectral similarity of its 29 known
clusters (which are subclusters of three large material tranches:
vegetation, water, and man-made materials). Because of this, [[9]
Section 4B] removes 	 20% of Ocean City’s CONN edges, according
to a thresholding scheme defined therein, to facilitate clustering.
We believe some degree of CONN edge removal would also benefit
CONNt-SNE, but have left this for future work. Despite this, Sec-
tion 6.4 discusses the visual improvement of PCONN’s OC embed-
ding, compared to P20.
CONNt-SNE var+ PCONN TCONN



Fig. 3. Performance of each method, according to the standardized score of each measure. Panel [a] reports an overall aggregation by method whereas [b] and [c] aggregate
performance by dataset and measure, respectively. Error bars convey means and 95% confidence intervals over 1,400 total experiments (200 different initializations � 6
datasets) with each method, while the gray shaded violin plots show the entire distribution of values underpinning these error bars. Separate purple points represent the
measure of the PCA-initialized embedding. Green lines at Z ¼ 0 represent the performance of its baseline P30 (see Section 4), and green numbers report the estimated
probabilities Pr½Z > 0�, which convey the proportion of time each method has positive effect.
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Fig. 4. Relationships of Cluster Validity Indices to different Topology Preservation Measures for the 8,400 embeddings studied in this work (gray points). Pink banded
trendlines in each panel report 95% predictive intervals of a spline regression, fit via a Generalized Additive Model [42] which selects the level of model smoothing
automatically.
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6.3. Meta-analysis III: results by measure

From Fig. 3[c], PCONN is the only method with a statistically pos-
itive mean effect size by all measures, excluding the K-ary score.
We expect it to achieve higher BTNE and FTNE measures, as the
GCONN and LCONN components increase the similarity pij of topo-
logical neighbors i and j in PCONN. This influence appears to help
CONNt-SNE preserve cluster structure better, resulting in higher
rCVII scores, which are positively correlated to rCVIE scores
(0.49
0.02 overall, at 95% confidence). Positive rCVIE effects show
that, when properly parameterized, t-SNE can be an effective tool
for feature engineering. Recall that rCVIE reports relative change
in external CVI measures of a partitioning obtained via spectral
clustering of the embedded points, versus one obtained by cluster-
ing the prototypes in Rd. We have employed spectral clustering (as
a widely accepted and trusted clustering method) in this work and
acknowledge that other clustering regimes may impart different
effects. However, this analysis does support further exploration
of t-SNE as a pre-processing step in larger machine learning pipeli-
nes, particularly where linear pre-processing (e.g., PCA) is
inappropriate.

Our discussion of results up to this point has ignored the perfor-
mance of the multi-scale similarity PMS, which is lowest in overall
aggregate. An explanation for these low scores is found in Fig. 3[c],
which shows PMS fails to produce either mean or median positive
effects according to the (F/B) TNE and CVI measures. PMS does,
however, achieve significantly higher K-ary scores than all other
methods. This agrees with the conclusions presented in [16],
where MS similarities were shown to increase K-ary scores for a
variety of dimension reduction algorithms, including Stochastic
Neighbor Embedding. The PMS similarity is obtained by averaging
Ppx over exponentially increasing px bound by a range intended
to be large enough to enforce global ordering, and small enough
to avoid uniformity of its values. In this work we set the lower
bound = 10 (the same used for the px grid); the upper bound is
data-dependent (set as in [[16] Section 3.1]) but is generally much
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higher than our px grid upper bound of 50 (e.g., for MNIST with
2000 prototypes, PMS is influenced by px in a range from 10 to
1280), which directly correlates with its ability to preserve Eucli-
dean neighborhood ordering across a large range of neighborhood
sizes.

But is this a desirable characteristic of an embedding in prac-
tice? That is, which neighborhoods should be preserved to most
faithfully represent cluster structure in an embedding? As struc-
ture identification motivates most uses of t-SNE we have explored
this question a bit further. Fig. 4 displays scatterplots of the Z-
scores (gray points) of each CVI vs. each topology preservation
measure considered in this work. A non-linear spline regression
with corresponding 95% predictive interval is shown as a pink
banded trend line. Here, the regression was fit via a Generalized
Additive Model [42] which automatically (jointly) optimizes the
level of smoothing. The CVI vs. (F/B) TNE trends are statistically sig-
nificant (p-value � 0) and positive (i.e., better topological neigh-
borhood preservation is associated with better clustering results).
CVI vs. K-ary trends are also significant (p-value � 0) but generally
negative overall. Thus, a high K-ary score appears inversely (or, at
least not positively) related to t-SNE’s preservation of cluster struc-
ture. Stated another way, demanding full Euclidean neighborhood
preservation from an embedding algorithm may be intuitively
desirable, but appears an overly conservative constraint. This is
in line with the literature on CONN-based clustering [12,37] which
concludes that topological characterizations of locality are more
beneficial than their Euclidean analogs for extracting structure
from data.

6.4. Visual inspections

In closing, we discuss some qualitative aspects of the embed-
dings visible in Fig. 5. For each dataset, CONNt-SNE embeddings
are shown vertically atop the best performing case (according to
Fig. 3[b]) of regular t-SNE, which is P10 for all except Ocean City
(P20). PCA initialized results are shown, as these outperformed



Fig. 5. Embeddings of the prototypes of our experimental datasets. t-SNE(*) means P10 in all cases except Ocean City where P20 is shown. Prototype colors represent their
learned truth labels. Label annotations are split across the pair for space considerations.

J. Taylor and Erzsébet Merényi Neurocomputing 507 (2022) 441–452

449



Fig. 6. The performance measures considered in this work (summarized in Table 2) for each experimental dataset (summarized in Table 3). These measures underpin the
aggregate performances depicted in Fig. 3, and are shown here for completeness.
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most randomly initialized embeddings according to Fig. 3. Point
colors represent the prototype’s true class label (decided via plural-
ity vote of its receptive field), and point sizes represent the (rela-
tive) size of the prototype’s receptive field. The annotations in
each panel describe the true class labels (represented by different
450
colors) for each dataset: for MNIST these are handwritten digits 1–
10; for FMNIST they are articles of clothing; for KMNIST the Hira-
gana characters are shown; the mapping for COIL20’s integer
encodings is shown in Fig. 2; for Flow18 the cell types from [36]
are annotated; the different material types in the Ocean City spec-
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tral image (e.g., concrete, waters, vegetation) are encoded by the
same letters A,B,etc. as described in [9].

Overall, CONNt-SNE embeddings are very similar to those
induced by the best performing regular t-SNE (P10/P20) which sup-
ports the main assertion of this work: CONNt-SNE’s data-driven
modifications to t-SNE’s similarity cause no degradation to the
quality of embeddings; in some cases they result in visual
improvement. In what follows we point out a few details in the
embeddings of each dataset for further discussion.

MNIST (panel Fig. 5(a)) shows cohesion of the digit clusters,
with the easily distinguishable digits (0, 1, 2, 6) well separated;
both PCONN and P10 have delineated the components of the 4–7-9
and 3–5-8 digit super clusters, which are typically harder to
embed. Fashion MNIST (panel Fig. 5(b)) is a bit more challenging.
Both PCONN and P10 have isolated the trouser and bag clusters well,
along with a footwear super cluster which shows sensible internal
arrangement. In contrast, the super cluster containing Pullovers,
Shirts and Coats is very mixed. P10 has better separated the T-
shirt cluster at the expense of also splitting the Dresses. PCONN
and P10 have both responded to the high intra-class variation in
KMNIST (panel Fig. 5(c)) by creating several subgroupings of each
class, which is more organized in some cases (e.g., the purple sub-
clusters are at least near each other) than others (e.g, the pink and
brown subclusters are not geographically close). KMNIST may not
be separable in 2-d, as others have also reported poor results from
a variety of dimension reduction techniques [43]. PCONN has pro-
duced a visually superior COIL20 embedding (panel Fig. 5(d)),
retaining better separation, and more of the known ring-like struc-
ture, of COIL20’s classes than P10. Likewise, PCONN has maintained
the integrity of the dark green CD8 + T cell cluster in Flow18
(panel Fig. 5(e)), but overall both PCONN and P10 have produced
embeddings visually superior to those previously published [36],
[Fig. 1(b)].

From panel Fig. 5(f) we see that both PCONN and P20 embed the
subclusters of the larger material classes—water, vegetation, man-
made materials—together. There is also meaningful organization
within these superclusters. For example, the vegetation group
has been ordered (when viewing the ‘‘tail” of the embeddings from
bottom to top) by bright green (cluster L), pea green (O), then
orange (N). These represent healthy green vegetation, yellow
lawns, and dry grasses, respectively. The gray and salmon colored
clusters (S and T) represent, respectively, bare soil and boat docks
(dry woody material possibly mixed with concrete). Thus, it is sen-
sible that S and T form a ‘‘bridge” between the vegetation and man-
made material super clusters; further, there is more organizational
meaning to the fact that the S/T bridge terminates at vegetation
cluster N than, say, cluster L (the wood comprising the docks is
more similar to bare soil and dry grass than to green vegetation,
evident from the visible near-infrared spectral signatures of the
classes shown in [9,11]). However, PCONN elucidates a few interest-
ing structural components of the Ocean City spectra that P20
misses. Of note, PCONN fully separates cluster P=Q (brown) which
represents muddy marshy land with spectrally similar (but still
distinct) vegetation to the dry grass in orange cluster N. Similarly,
PCONN is more sensitive to the distinction among various man-
made materials (e.g. clusters X/c) which P20 fails to fully distin-
guish. The cluster distinctions expressed by PCONN’s OC embedding
better agree with clusters found earlier [9,11].
7. Conclusions and future directions

We have presented CONNt-SNE as a data-driven alternative to
cumbersome and tedious exhaustive grid searches for optimal t-
SNE perplexity. CONNt-SNE relies upon, and benefits from, proto-
type representations of data, which 1) increase the speed and fea-
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sibility of embedding large datasets with t-SNE (recall,M � N) and
2) offer unique views of data topology in the form of the CONN
graph.

As a weighted version of the Masked Delaunay Triangulation
[21], CONN [9] reports topological connectedness and separation
across a manifold; we incorporate this information into automated
specification of variable t-SNE perplexities for each prototype. We
further sensitize t-SNE’s high-d similarity to the strength of mani-
fold connectivities, as reported by CONN’s edge weights viewed
at various resolutions (global, local). Both modifications are crucial
to CONNt-SNE’s performance which, as shown by experiments,
meets or exceeds the best offered by regular t-SNE with grid-
optimized perplexity.

We have also explored the relationship between K-ary neigh-
borhood preservation, which is a popular quality measure of
dimension reduction techniques, and the preservation of known
high-d cluster structure in low-d embeddings. Experiments show
high K-ary neighborhood scores do not necessarily translate to
embeddings of highest fidelity to such structure. Manifold topol-
ogy matters, both when assessing the quality of an embedding
and when inferring structure from it. CONNt-SNE’s data-driven
ability to recognize and respond to structural subtleties in real data
facilitates more confident and meaningful inference from its
embeddings.

As CONNt-SNE is new we have many ideas for further work,
including: extensions of its framework to other dimensionality
reduction techniques, permitting embedding of out-of-sample data
points through clever use of the VQ mapping, and sensitization of
t-SNE’s repulsive forces (Q) to learned manifold dis-connectedness,
possibly by considering geodesic distances along the CONN graph.
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