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Abstract—Inference of latent variables from complicated
data is one important problem in data mining. The high
dimensionality and high complexity of real world data often
make accurate inference difficult. We approach this challenge
with a neural architecture we call Conjoined Twins, which is
a two-layer feedforward network with a Self-Organizing Map
(SOM) as its hidden layer. Its output layer can preferentially
use different numbers (k) of SOM winners for the inference
of different latent variables. We introduced this architecture
in [1], [2]. In this paper we propose an automated procedure
for the customization of k and demonstrate the effectiveness
of the method by the inference of two physical parameters of
icy planetary surfaces from spectroscopic data.
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I. INFERENCE OF LATENT VARIABLES FROM
HIGH-DIMENSIONAL OBSERVABLE DATA

Data collected to characterize a real world process or
problem are usually high-dimensional, providing a wealth of
information that can potentially be exploited by the observer.
The elements of the high-dimensional data vectors are called
observable variables. Latent variables, which are impossible
or hard to observe directly, have to be inferred from the
observable data. However, the high dimensionality as well
as the often accompanying high complexity of the data
make it difficult to extract the latent variables. Due to the
“curse of dimensionality”, parametric modeling becomes
problematic because the requirement for large number of
data samples in the estimation of parameters is often unmet.
Motivated by the idea that the data samples, although high-
dimensional, can lie on a low-dimensional submanifold,
another strategy is to embed the data in a low-dimensional
space (dimension reduction), as in a number of manifold
learning algorithms (e.g., [3], [4], [5]). The resulting low-
dimensional representation is intended to factorize the latent
variables, or the degrees of freedom, of the data set. A
classical approach, principle component analysis, works well
for linear submanifolds, but suffers when nonlinearities exist.
Several nonlinear approaches, such as Isomap [4] and locally
linear embedding [5], have been successful in applications
where there is a small number of latent variables (e.g.,
pose of face and illumination direction in data sets of face

images [6]), but might lose effectiveness when the number
of latent variables increases. In addition, to separate all latent
variables, a necessary step for these algorithms is to estimate
the intrinsic dimension (the total number of latent variables),
which is a nontrivial task. Moreover, latent variables that
induce relatively small variations in the data can be lost in
such dimension reduction. Our approach to this problem is
through Self-Organizing Maps (SOM) [7], which preserve
the topology of the data in a low-dimensional representa-
tion without reducing the data dimensionality. SOM is an
adaptive vector quantizer, which spreads vector quantization
prototypes optimally throughout the manifold to capture the
structure, and at the same time organizes the prototypes
in a low-dimensional lattice. Although the influences of
different latent variables can be convoluted in the SOM
representation, we can disentangle those influences by using
linear combinations of different numbers of SOM outputs
for the recovery of different variables. To do this, we use a
neural architecture we call Conjoined Twins, introduced in
[1], [2], the output layer of which is trained to infer latent
variables with the help of the SOM. In this paper we propose
an automated approach for the most essential step in the
Conjoined Twins, namely the customization of the number
of SOM outputs to use for each latent variable.

II. CONJOINED TWINS – A k-WINNERS-TAKE-ALL
(kWTA) SOM-HYBRID NEURAL ARCHITECTURE

Before elaborating on the customization procedure (Sec-
tion III), which is the focus of this paper, we briefly review
the motivation and the concept of the Conjoined Twins in
this section. The Conjoined Twins was developed from an
SOM-hybrid neural architecture, when we needed to infer
two highly nonlinearly dependent variables for a planetary
surface characterization problem. The SOM-hybrid neural
architecture is a two-layer fully connected supervised feed-
forward network, with a 2-dimensional SOM as the hidden
layer (Fig. 1). The customary handling of the SOM outputs,
or the Winner-Takes-All (WTA) mode, was beneficial for
the inference of one variable, but not for the other [1],
[2], therefore we generalized the use of the SOM such that
any number (k) of SOM winners could contribute to the



supervised learning in the output layer (section II-B). The
idea of the Conjoined Twins was to combine the use of
different numbers (k) of SOM winners for different latent
variables in one architecture (section II-C).

A. The SOM-hybrid neural architecture

Figure 1. The SOM-hybrid neural architecture. Each neuron i, in the SOM
lattice A of N neurons, is connected to the input buffer with a D-element
prototype wi (the ith row vector of the N × D matrix W). An L × N
weight matrix V connects the output layer to the SOM.

The SOM-hybrid neural architecture, as shown in Fig. 1,
takes an input vector x = [x1, x2, ..., xD]T randomly from
the D-dimensional data set in each learning step. In the
first, unsupervised, learning phase of this machine, the SOM
iteratively adjusts its N prototypes, wi, according to the
SOM algorithm [7] while the output layer is idle. We use
the Conscience SOM variant [8] to achieve equal winning
probabilities across all SOM neurons, producing a more
faithful pdf matching than the original Kohonen’s algorithm.
Briefly, for each input vector x, an SOM winner or the best
matching unit (BMU) c is determined as

c = arg min
j

(‖ wj − x ‖2 −bj) ∀j ∈ A (1)

The bias bj is computed from the winning frequency pj , of
SOM neuron j, as

bj = γ(t)× ((N × pj)− 1) (2)

where γ is a parameter. All prototypes wj are then updated:

wnew
j = wold

j + α(t)hc,j(t)(x−wold
j ) (3)

α is the learning rate. hc,j(t) is a neighborhood function.
In the Conscience algorithm hc,j(t) can be fixed and of
small size (e.g., the immediate neighbors in a diamond or
square configuration), instead of the commonly used large
neighborhood (e.g., Gaussian) that has to decrease with time.
A topologically ordered mapping of the input data forms
during this learning phase, which reflects the structure of
the high-dimensional manifold. Upon the convergence of the
SOM, the output layer is turned on and a second, supervised,
learning phase starts. Each neuron p in the output layer
combines the SOM outputs into a weighted sum

lp =
∑

i∈A

vpiyi p = 1, 2, ..., L (4)

and minimizes the total squared error in the outputs lp by
iteratively adjusting V according to the delta rule [9]. vpi is
the element of V in the pth row and ith column. When this
network is used to infer latent variables, the output vector,
l (= [l1, l2, ..., lL]T ), yields the inferred variable values.

This supervised architecture is suitable for the analysis
of high-dimensional data mainly for two reasons. One is
the ease and economy of the SOM in the handling of
high-dimensional data, compared to other more frequently
used approaches. The other is the ability of the SOM to
distinguish the subtle differences between high-dimensional
feature vectors, which has generally helped achieve good
prediction accuracies [10], [11].

The customary way of passing the SOM’s knowledge to
the output layer is the winner-takes-all (WTA) mode, which
assigns an output value of 1 to the BMU c and 0 to the rest.

yi =
{

1 i = c
0 i 6= c

(5)

By this, the right side of eq. 4 is reduced to one term.
lp = vpc p = 1, 2, ..., L (6)

With a single term left in the weighted sum the network
will be unable to distinguish between the data samples that
map to the same SOM neuron and will yield the same
inferred value for these samples. In problems where the
number of different values a latent variable can take is
much smaller than N , the WTA mode can work successfully
in differentiating these various values. However, when the
latent variable is continuous, i.e., the number of possible
values is much larger than N , the resolution of the inferred
values is severely restricted by the WTA mode, which may
prevent high inference accuracies.

B. Exploitation of the SOM’s knowledge with kWTA

To relieve the above limitation in the inference resolution
caused by the WTA mode, we allow multiple (k) SOM
outputs to be nonzero in eq. 4 (k-winners-take-all or kWTA).
This can be justified by the SOM algorithm: the prototypes
within the lattice neighborhood of the BMU learn concur-
rently from the same input vector (eq. 3). The memory of
the data is stored not only in the BMUs but also in their
neighbors. Observing that the activation levels of the SOM
neurons are inversely proportional to the distance di between
the prototype wi and the input vector x, a natural choice for
kWTA is to use the top k SOM outputs:

yi =

{ 1 i = i1(= c)
d1

d1+di
i = i2, i3, ..., ik

0 i 6= i1, i2, ..., ik

(7)

We then normalize yi to make the total output from the SOM
sum up to 1, which is consistent with the WTA mode.

yiq =
yiq∑k

q=1 yiq

q = 1, 2, ..., k (8)

Each output is now expressed as a linear combination of k
nonzero SOM outputs.



lp =
k∑

q=1

vpiq
yiq

p = 1, 2, ..., L (9)

This can help improve the inference capability for contin-
uous latent variables. WTA is obviously a special case of
kWTA (k = 1). NeuralWare’s implementation in Neural
Works Professional II/Plus [12] provides the special cases
of k = 1 and k = 3.

C. Conjoined Twins architecture

Figure 2. Conceptual diagram of a Conjoined Twins architecture.

Each latent variable can have a different effect on the
manifold structure. Consequently, their recovery may be
best done from mixtures of different numbers of SOM
prototypes. The idea of the Conjoined Twins we proposed
in [1], [2] is to combine the use of customized mixtures
of SOM prototypes in a single architecture, as shown in
Fig. 2. It has multiple copies of the output layer in Fig. 1,
which we call “heads”. All “heads” rely on the same “body”
of knowledge, the learned SOM, but each draws from a
different ki number of SOM winners in the weighted sum
(eq. 9) for best learning of li. This architecture provides a
solution for the inference of multiple latent variables with
minimal increase in computational cost compared to the
SOM-hybrid machine in Fig. 1. As we showed in [1], [2]
for the inference of two latent variables, the essential step,
i.e., the customization of k for each latent variable, was
accomplished through manual evaluation of the SOM. The
focus of this paper is to propose a procedure to automate
this customization step.

III. AUTOMATIC CUSTOMIZATION OF k

Two questions to answer for the determination of k are:
how many SOM winners are sufficient to represent the
information in a data sample, i.e., what is the collective
upper limit, K, of k for all latent variables, and what is
the necessary smallest ki ≤ K for the supervised learning
of li. We propose a two-step procedure accordingly.

A. Determination of the upper limit of k

We determine the upper limit of k from the relative
importance of SOM winners. For any data sample, the BMU
(or the first ranking winner) is the most important one,
containing the most information about that given sample.

The importance of the other winners can be evaluated by
their similarities to the BMU. As was shown in [15], the so-
called induced Delaunay graph could represent this similar-
ity relationship more faithfully than the customary Euclidean
metric when discontinuities and nonlinearities exist in the
manifold structure. According to a procedure proposed by
Martinetz and Schulten [15], an edge, or a connection, in the
induced Delaunay graph is constructed between two SOM
prototypes that form a pair of BMU and second BMU for
at least one data sample. These two prototypes are Voronoi
neighbors. An example of an induced Delaunay graph is
given in Fig. 3, left, for the two-dimensional “clown” data
set from [13], the structure of which mimics a clown’s
face. The induced Delaunay graph (black lines) delineates
the discontinuities between different parts, such as between
the eyes and the nose and between the mouth and the
body, whereas the regular Delaunay graph (grey lines) does
not show the same separations. However, with the induced
Delaunay graph, noisy data can still easily obscure discon-
tinuities because one data sample is enough to establish a
connection. To distinguish the important connections from
the unimportant ones, a connection strength, CONN(i, j),
was defined between prototypes wi and wj as the number
of data samples that choose these two prototypes as the
BMU and the second BMU [14]. The CONN matrix is
then the induced Delaunay graph whose edges are weighted
by the connection strengths. It reflects the anisotropic data
distribution in the Voronoi cells of the prototypes (Fig. 3,
right) and uses this information to interpret the similarity
relationships between the prototypes. Using the CONN , the
discontinuities obscured by noise can emerge. For example,
in Fig. 3, middle, the separations between the three subclus-
ters in the left eye (right on the figure) become visible. The
advantage of the CONN in unravelling detailed structure
in a manifold makes it a suitable basis for the determination
of the upper limit K. A loose upper limit can simply be
determined as K = m + 1, where m is the maximum
number of Voronoi neighbors to any prototype, because only
the Voronoi neighbors share the same information about
a given datum as the BMU. Usually m is already much
smaller than the total number of SOM prototypes, N , but
we can further tighten this limit by examining the strengths
of the connections to these m neighbors. For each prototype,
we rank all of its Voronoi neighbors according to their
connection strengths. For example, in Fig. 3, right, among
the four neighbors of prototype P1, the first ranking (the
most similar) to the last ranking (the least similar) neighbors
are P2, P3, P4 and P5, in decreasing order of connection
strengths. By computing the average connection strength si

to the ith ranking neighbors across all SOM prototypes

si =
1
ni

∑

p,q∈A ∧ wq is the
ith Voronoi neighbor of wp.

CONN(p, q) (10)
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Figure 3. Illustration of the Delaunay graph, the induced Delaunay graph and the CONN matrix with the two-dimensional “clown” data set from [13],
where the manifold structure mimics a clown’s face (two eyes, a nose, a mouth and a body). Open circles and crosses represent the SOM prototypes with
and without samples mapped to them, respectively. Grey dots are data samples. Left and middle figures are from [14]. Left: The induced Delaunay graph
(black lines) highlights most of the discontinuities in the manifold structure, which are hardly seen from the Delaunay graph (gray lines). Middle: The
CONN matrix, which weighs each connection in the induced Delaunay graph with its connection strength, makes more detailed structures visible, such
as the three subclusters in the left eye. Part of the body, in the dashed square, is magnified on the right. Right: Magnified detail from the upper left part of
the clown’s body, as an example of how the CONN matrix reflects the anisotropic data distribution in the Voronoi cells (dashed lines). The 4 connections
from prototype P1 to P2, P3, P4 and P5 have strengths 5, 3, 2 and 1, respectively. To make this easy to see, we colored the data samples that contribute
to each of the 4 connections, the same as their corresponding connections. According to the connection strengths, P2, P3, P4 and P5 can be ranked as the
first (the most similar) to the fourth ranking (the least similar) neighbors of P1.

we can quantify the importance of neighbors of each rank.
ni (i = 1, 2, ...,m) is the total number of ith ranking
neighbors in the SOM. Since si is dependent on several
factors, e.g., the size of the SOM, the size of the data set and
how the data samples are distributed across the Voronoi cells,
we normalize si by the average strength of all connections in
the SOM, s, as in eq. 11, such that a consistent thresholding
can be proposed for the determination of K for different
SOMs learned with different data sets.

norm si =
si

s
(11)

s =

∑
p,q∈A CONN(p, q)∑m

i=1 ni
=

P∑m
i=1 ni

(12)

where P is the total number of data samples. We can then
apply a threshold µ1 (a user-chosen parameter) to norm si

to find the number of important neighbors, imax.

imax = max{i : norm si > µ1} (13)

K is then determined as imax + 1 (including the BMU).
There is one situation where norm si may be insuffi-

cient for selecting K: when the connections to ith ranking
neighbors are weak (small si), but ni is large, the neighbors
of rank i may still be useful in the supervised learning. In
view of this, it is better to consider the combined effect of si

and ni in the thresholding. For this purpose, we propose an
alternative, thresholding on the percentage of data samples,
%datai, involved in the connections of each rank i with a
user-chosen parameter µ2:

imax = max{i : %datai > µ2} (14)

%datai =
si × ni

2P
× 100% (15)

si×ni can be interpreted as the accumulated strength in the
connections to all ith ranking neighbors. Normalized by 2P ,

it shows the importance of these neighbors by the percentage
of the total connection strength involved. We will use this
thresholding with µ2 = 1% for the automatic determination
of K in this paper, assuming that connections contributed
by less than 1% of data samples are negligible.

B. Searching for the best k below the upper limit K

K has been determined in the previous step as the maxi-
mum of the number of SOM winners that potentially carry
information about each data sample. However, information
about a specific latent variable li can be contained in a
smaller number, ki ≤ K, of winners. Therefore, the second
step of the customization is to search for ki, the necessary
number of SOM winners, for each latent variable li, below
the upper limit K. Since the search range of ki has already
been narrowed by K, we perform an exhaustive search by
repeating the supervised phase of the training K times with
k = 1, 2, ...,K and selecting ki with which we obtain the
highest inference accuracy for li.

After this, we can “mount” the “heads” of the Conjoined
Twins (Fig. 2) by attaching the weight matrix V trained with
k = ki to the head that specializes on the inference of li.

IV. APPLICATION TO INFERENCE OF TWO PHYSICAL
PARAMETERS FROM NEAR-INFRARED SPECTRA

We apply the Conjoined Twins to the inference of tem-
perature and grain size from Near-Infrared high-dimensional
spectral data that will be collected from icy surfaces in the
Pluto-Charon system. Temperature and grain size are two
latent variables that influence the remote sensing spectra,
which are often used to recover these physical parameters
for extended surface areas. Both temperature and grain size
have global influence on the spectral shapes, but in different
ways. As seen from two representative sets of sample spectra
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Figure 4. Variations in spectra of H2O ice as a function of temperature (T) and grain size (GS). Figures are from [2]. Left: Spectra as a function of 13
different temperatures for one fixed grain size, 0.003 cm. Right: Spectra as a function of 9 different grain sizes at a fixed temperature, 50 K.

of H2O ice in Fig. 4, both parameters deepen the absorptions,
e.g., at 1.3 µm and 1.65 µm, but the band depth is a
nonmonotonic function of grain size whereas it changes
monotonically with temperature, at a given wavelength. In
addition, temperature has a much smaller effect on the
spectral brightness than grain size. The subtle change in
spectral shape caused by temperature makes the discrimina-
tion between spectra with different temperatures, as well as
the accurate inference of temperatures, difficult. The data we
use here are synthetic spectra of H2O ice generated through
a radiative transfer code [16], [17] on a parameter grid of 126
temperatures, with 2 K spacing between 20 and 270 K, and
81 grain sizes logarithmically spaced from 0.0003 to 3.0 cm.
Each data vector is a 230-dimensional spectrum. We use a
20×20 and a 40×40 SOM to learn the same data set and
investigate how the customization of k works differently in
these two cases. The prediction accuracies are computed as
the percentage of test data samples that are predicted with
less than 5% error.

In the unsupervised learning phase, the whole data set
is used, whereas in the supervised phase the data set is
randomly split into a training and a test set with a 9:1 ratio.
When the unsupervised learning ends, K is automatically
determined as 6 and 4 for the 20×20 and the 40×40 SOMs,
respectively, from the statistics computed from the CONN
matrix (Table I). From the supervised training runs repeated
with different values of k (Table II), the best k for each
latent variable is also automatically identified from the high-
est inference accuracies (in bold face). The customization
results are: k = 3 and k = 4 with the 20×20 SOM, and
k = 1 and k = 4 with the 40×40 SOM, for the inference
of grain size and temperature, respectively. With the 20×20
SOM, we achieve 77.9% and 53.9%, and with the 40×40
SOM, we achieve 97.9% and 81.3% prediction accuracies
for grain size and temperature. When the number of SOM
winners used in the learning is less than the customized best
k, the accuracy is lower than the best result because of the
loss of information contained in the excluded winners; when
the number of SOM winners is larger than the best k, the

Table I
STATISTICS OF THE CONNECTIONS TO VORONOI NEIGHBORS, FROM

THE HIGHEST RANKING TO THE LOWEST, COMPUTED ACROSS ALL SOM
PROTOTYPES FOR THE 20×20 AND THE 40×40 SOMS LEARNED WITH

THE SPECTRAL DATA SET. THE %datai VALUES ABOVE THE
THRESHOLD µ2 (=1% IN THIS PAPER) ARE SHOWN IN BOLD FACE. THE
UPPER LIMIT K IS AUTOMATICALLY DETERMINED AS 6 AND 4 FOR THE

20×20 SOM AND THE 40×40 SOM, RESPECTIVELY.

Neighbor ranking i
1 2 3 4 5 6

ni 380 371 287 158 61 15
20×20 si 27.51 16.01 9.57 6.20 4.11 2.73
SOM norm si 1.71 1.00 0.60 0.39 0.26 0.17

%datai 51.22 29.10 13.45 4.80 1.23 0.20
ni 1262 1109 363 112 15 1

40×40 si 9.98 5.90 2.88 1.81 1.27 1.00
SOM norm si 1.40 0.83 0.40 0.25 0.18 0.14

%datai 61.73 32.06 5.11 0.99 0.09 0.00

Table II
PREDICTION ACCURACIES (%) FOR GRAIN SIZE (GS) AND

TEMPERATURE (T), AFTER 1 MILLION SUPERVISED TRAINING STEPS,
WITH THE 20×20 AND 40×40 SOMS IN THE kWTA MODE, EACH WITH
A DIFFERENT k BELOW THE UPPER LIMIT K . AN ADDITIONAL RESULT

IS SHOWN FOR THE 40×40 SOM WITH k = 5 BECAUSE ITS %data4

(0.99%) IS EXTREMELY CLOSE TO THE THRESHOLD µ2 (1%). THE
HIGHEST INFERENCE ACCURACIES (IN BOLD FACE) INDICATE THE BEST

CHOICES OF k. RESULTS ARE FROM SINGLE RUNS FOR REASONS OF
TIME LIMITATIONS. FURTHER JACK-KNIFE RUNS ARE IN PROGRESS.

k
SOM size 1 2 3 4 5 6

20×20 GS 73.0 72.4 77.9 73.7 67.9 66.2
T 32.9 49.7 53.7 53.9 52.5 53.0

40×40 GS 97.9 51.9 54.3 47.4 47.2 –
T 61.2 71.2 77.3 81.3 80.6 –

poorer accuracy can result from the fact that we include more
winners but we use the same number of training steps as
with less than k winners. The possibility of higher inference
accuracies by including more than k winners, with longer
supervised training, will be investigated in future work.

The different customization results for the two SOMs
and the significant improvements in the inference accuracies
achieved with the larger SOM can be explained by the differ-
ent representations of the two latent variables. In the 40×40
SOM, we observed that 81 grain size clusters separated from
each other almost cleanly [1]. This enables a near perfect



inference accuracy with k = 1 because each individual
neuron represents a single grain size. We also observed
that in each grain size cluster the prototypes varied in an
orderly fashion according to temperatures [1]. Unlike grain
size, temperature cannot be uniquely represented by single
neurons because there are more possible values (126) than
the number of neurons in each grain size cluster (∼19). Each
prototype forms a mixture of spectra with different tempera-
tures, and a specific temperature can best be recovered from
the mixtures in the first 4 winners (k = 4). This difference
in the dominance of the two physical parameters on the
SOM clustering can be easily understood from their different
effects on the spectral shape (Fig. 4). However, in the small
SOM (20×20), we found that the grain size clusters did
not separate clearly. Due to the reduced size of the SOM,
each prototype is forced to represent not only a mixture of
different temperatures, but also a mixture of different grain
sizes. This explains why multiple winners (k = 3) work
better for the inference of grain size than a single winner
(77.9% v.s. 73.0%). The overall performance suggests that
the variations in data caused by the two latent variables are
insufficiently represented in the small SOM, due to which
they cannot be inferred as accurately as with the large SOM.
However, we should note that the increase in computational
burden is significant with increasing SOM size, and should
be considered in the tradeoff between computational cost
and inference capability. In this case, we are satisfied with
the the 40×40 SOM because the results obtained with it are
scientifically useful [1], [2].

V. CONCLUSION

We propose a principled customization procedure for the
Conjoined Twins neural machine, to automate the determina-
tion of the best number of the SOM winners for the learning
of each of several latent variables. We show the effectiveness
of the approach through a data set with two latent variables
here. Follow-up work will assess the effectiveness for three
or more latent variables. We also note the possible limitation
in the linear model (eq. 4) we use to retrieve information
from the SOM, and that alternative nonlinear models could
further improve the inference accuracies.
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