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Abstract. Utilization of remote sensing multi- and hyperspectral imagery has
rapidly been increasing in numerous areas of economic and scienti�c signi�cance.
Hyperspectral sensors, in particular, provide the detailed spectral signatures that
are known to uniquely characterize and identify minerals, soils, rocks, plants, aquatic
species, man-made and other surface materials. This opens up tremendous possibil-
ities for resource exploration and management, environmental monitoring, natural
hazard prediction, and more. However, conventional analysis methods often prove
inadequate for the exploitation of the wealth of information in hyperspectral im-
ages, because of the high dimensionality of the intricate spectra. Arti�cial Neural
Networks hold the promise to revolutionize this area by meeting mathematical and
other challenges that traditional techniques fail at. In this paper, we discuss the
powers of Self-Organization for the detailed interpretation of hyperspectral images,
using the full spectral dimensionality.

1 Remote Spectral Images as High-Dimensional Data

Airborne and satellite-borne spectral imaging has become one of the most
advanced tools for collecting vital information about the surface covers of
Earth and other planets. The utilization of these data includes areas such as
mineral exploration, land use, forestry, ecosystem management; assessment of
natural hazards, water resources, environmental contamination, biomass and
productivity; and many other activities of economic signi�cance, as well as
prime scienti�c pursuits such as looking for possible sources of past or present
life on other planets. The number of applications has dramatically increased
in the past ten years with the advent of imaging spectrometers, that greatly
surpass traditional multi-spectral sensors (e.g., Landsat Thematic Mapper).
Imaging spectrometers can resolve the known, unique, discriminating spec-
tral features of minerals, soils, rocks, and vegetation. While a multi-spectral
sensor samples a given wavelength window (typically the 0.4 { 2.5 �m range
in the case of Visible and Near-Infrared surface reectance imaging) with
several broad bandpasses, leaving large gaps between the bands, imaging
spectrometers sample a spectral window contiguously with very narrow bad-
passes (Fig. 1). Hyperspectral technology is in great demand because direct
identi�cation of surface compounds is possible without prior �eld work, for
materials with known spectral signatures.
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Fig. 1. Left: The concept of hyperspectral imaging. Figure from [1]. Right: The
spectral signature of the mineral alunite as seen through the 6 broad bands of Land-
sat TM, as seen by the moderate spectral resolution sensor MODIS (20 bands in
this region), and as measured in laboratory. Hyperspectral sensors such as AVIRIS
of NASA/JPL [2] produce spectral details comparable to laboratory measurements.

Formally, the vector Sx;y = (Sx;y1 ; :::; Sx;yNB), where S
x;y
k is the data value

in the kth image band (k = 1; :::; NB) at pixel location (x; y), is called
a spectrum. It is a characteristic pattern (Fig. 1) that provides a clue to
the surface material(s) within pixel (x; y). NB denotes the number of im-
age bands. x = 1; :::; Xmax and y = 1; :::; Ymax, where Xmax and Ymax
are the spatial size of the image in the x and y direction, respectively.
The feature space spanned by Visible-Near Infrared reectance spectra is
[0� noise; U + noise]NB � <NB where U > 0 represents an upper limit of
the measured scaled reectivity and noise is the maximum value of noise
across all spectral channels and image pixels. Sections of this space can be
very densely populated while other parts may be extremely sparse, depending
on the materials in the scene and on the spectral bandpasses of the sensor.

Great spectral detail comes at a cost of very high data volume and com-
plexity. It poses new mathematical challenges in the clustering and classi-
�cation of images with high spectral dimensionality. The speci�c problems
associated with remote sensing spectral image analyses arise from any com-
bination of the following:

� The spectral patterns are high dimensional (dozens � NB � hundreds);
� The number of data points (image pixels) can be as large as several
millions;

� Surface materials that are signi�cantly di�erent for an application may
be distinguished by very subtle di�erences in their spectral patterns;

� Given the richness of data, the goal is to separate many cover classes, or
to separate materials with subtle spectral di�erences;

� The pixels can be mixed: Several di�erent materials may contribute to
the spectral signature detected from each pixel;

� Very little training data may be available for some classes; and classes
may be represented very unevenly.



\Precision Mining" of Hyperpsectral Images with SOMs 3

Noise is far less problematic than the intricacy of the actual spectral pat-
terns, because of the high Signal-to-Noise Ratios (500 { 1,500) that present-
day hyperspectral imagers provide. For this discussion, we will omit noise
issues, and additional e�ects such as atmospheric distortions, illumination
geometry and albedo variations in the scene, because these can be addressed
through well-established procedures prior to clustering or classi�cation.

ANNs have been gaining recognition as powerful answers to the above
challenges. Many sucessful applications were published, that analyze lower
dimensional spectral data (such as Landsat TM). See, for example, [3], and
references therein. Few have attempted ANN (or any) classi�cation of hyper-
spectral data into a large number of classes even though that is where the
shortcomings of classical methods become a severe limiting factor in accom-
plishing scienti�c or technical objectives. For hyperspectral images dimen-
sionality reduction is frequently accepted in order to accomodate the data to
the capability of traditional methods. This, however, often results in unde-
sirable loss of information, preventing \precision mining": discovery of new,
interesting classes, or discrimination of classes with subtle spectral di�er-
ences. Thus the analysis negates the purpose of the sophisticated sensors.

The rest of the paper is structured as follows: In Section 2, the test data
set, used throughout this paper, is introduced. Section 3 discusses hyperspec-
tral dimensionality. Section 4 and 5 present results of clustering and classi-
�cation of the test data, using the full hyperspectral dimensionality; and in
Setion 6, correctness and relaiabilty issues are discussed.

2 Test Data Set: The Lunar Crater Volcanic Field
AVIRIS Image

In this paper a VIS-NIR (0.4 - 2.5 �m), 224-band, 30 m/pixel AVIRIS image
of the Lunar Crater Volcanic Field (LCVF), Nevada, USA, is used. The LCVF
is one of NASA's remote sensing test sites, where comprehensive �eld studies
were conducted [4]. In addition, much accumulated �eld knowledge and
independent geologic research by individuals provide excellent and detailed
basis for evaluation of the results presented here [5].

Fig. 2 shows a natural color composite of the LCVF with locations rep-
resentative of 23 cover classes marked by their respective class labels. This
512 x 614 pixel AVIRIS image of a 10 x 12 square km area contains, among
other materials, volcanic cinder cones (class A, reddest peaks) and weathered
derivatives thereof such as ferric oxide rich soils (L, M, W), basalt ows of
various ages (F, G, I), a dry lake divided into two halves of sandy (D) and
clayey composition (E); a small rhyolitic outcrop (B); and some vegetation
at the lower left corner (J), and along washes (C). Alluvial material (H), dry
(N,O,P,U) and wet (Q,R,S,T) playa outwash with sediments of various clay
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Fig. 2. The Lunar Crater Volcanic Field. Color composite from an AVIRIS, 1994
image. The original image comprises 224 image bands over the 0.4 - 2.5 �m range,
512 x 614 pixels, altogether 140 Mbytes of data. Labels indicate di�erent cover
types described in the text. The ground resolution is 30 m/pixel.

content as well as other sediments (V) in depressions of the mountain slopes,
and basalt cobble stones strewn around the playa (K) form a challenging se-
ries of spectral signatures for pattern recognition (see in [6]). A long, NW-SE
trending scarp, straddled by the label G, borders the vegetated area. On this
color composite, containing information from only three image bands, many
of the cover type variations do not manifest. They will become visible in the
cluster and class maps below. The image comprises 140 Mb of data. After at-
mospheric correction and removal of excessively noisy bands (saturated water
bands and overlapping detector channels), 194 image bands remained. These
194-dimensional spectra are the input patterns in the following analyses.

3 The Dimensionality of Hyperspectral Patterns

The spectral dimensionality of hyperspectral images is not well understood.
Many believe that hyperspectral images are highly redundant because of band
correlations. Others maintain an opposite view, which also manifests in the
vigorous development of hyperspectral sensors and commercialization of hy-
perspectral data services in the last several years. Few investigations exist yet
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into the intrinsic dimensionality (ID) of hyperspectral images. Linear meth-
ods such as PCA or determination of mixture model endmembers using either
of the two major approaches [7] [8] usually yield 3{8 \e�ective components".
Bruske [9] �nds the spectral ID of the LCVF AVIRIS image (Fig. 2) to be
between 4 and 7, using a non-linear Neural Net based approach, Optimally
Topology Preserving Maps. These surprisingly low numbers, that increase
with improved sensor performance [10], result from using statistical thresh-
olds for the determination of what is \relevant", regardless of application
dependent criteria.

The number of relevant components increases dramatically when speci�c
goals are considered such as what cover classes should be separated or what
known properties of the surface can be postulated. Pendock [11], using an
associative neural network, extracted 20 linear mixing endmembers from a
50-band (2.0-2.5 �m) segment of an AVIRIS image (Fig. 2), requiring only
that a rather general surface texture criterium be met. Benediktsson et al. [12]
performed feature extraction on an AVIRIS geologic scene, which resulted in
35 bands. They used an ANN (the same network that performed the classi�-
cation itself) for Decision Boundary Feature Extraction (DBFE). The DBFE
is claimed to preserve all features that are necessary to achieve the same ac-
curacy as in the original data space, by a given classi�er for predetermined
classes. However, no comparison of classi�cation accuracy was made using
the full spectral dimension, to support the DBFE claim. In this particular
study a relatively low number of classes, 9, were of interest, and the question
posed was to �nd the number of features to describe those classes. Separation
of a higher number of classes may require more features.

It is not clear how feature extraction should be done in order to preserve
relevant information in hyperspectral images. Later in this paper it is demon-
strated that extraction of about 30 features from our LCVF image by any
of several methods leads to a loss of a number of the originally determined
23 cover classes. Wavelet compression studies on an earlier image of the the
same AVIRIS scene [13] conclude that various schemes and compression rates
a�ect di�erent spectral classes di�erently, and none was found overall bet-
ter than another, within 25% { 50% compressions (retaining 75% { 50% of
the wavelet coe�cients). In a study on simulated, 201-band spectral data,
[14] show slight accuracy increase across classi�cations on 20-band, 40-band,
and 60-band subsets. However, they base the study on only two vegetation
classes, the feature extraction is a progressive hierarchical subsampling of the
spectral bands, and there is no comparison with using the full, 201-band case.
Comparative studies using full spectral resolution and many classes are lack-
ing, in general, because few methods can cope with such high-dimensional
data technically, and the ones that are capable (such as Minimum Distance,
Parallel Piped) often perform too poorly to merit consideration.
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Undesirable loss of relevant information can result using any of these fea-
ture extraction approaches. In any case, �nding an optimal feature extraction
requires great preprocessing e�orts just to taylor the data to available tools.
An alternative is to develop capabilities to handle the full spectral informa-
tion. Analysis of unreduced data is important for exploration and novelty
detection (such as in the case of hard-earned data in planetary exploration);
as well as to allow for the distinction of signi�cantly greater number of cover
types, according to the potential provided by modern imaging spectrometers.

For example, remote monitoring of the Colorado River ecosystem in Grand
Canyon, Arizona, USA, requires discrimination and identi�cation (spatial
mapping) of about seventy plant and aquatic species, in order to provide a
meaningful information service for 26 stakeholders in businesses of dam op-
erations, electric power generation, recreation, tourism, cultural a�airs of na-
tive American tribes, and scienti�c research. Some of the species exhibit very
slight but systematic spectral di�erences that are captured in hyperspectral
data. These di�erences would most probably be lost in a PCA or a wavelet
transformation, and possibly in more sophisticated algorithms. Preliminary
SOM-based classi�cation, utilizing the full spectral information, was success-
ful in separating several \doubtful" cover types [15]. This example represents
a modern emerging paradigm that is based on the expectation of continuous
availability of (satellite-based) hyperspectral imagery and that the informa-
tion content of such data, if extracted properly, can satisfy a wide range of
needs simultaneously.

4 E�ects of Dimensionality Reduction and Inadequate
Tools

A systematic study was conducted on the LCVF image (Fig. 2), to simulta-
neously assess loss of information due to reduction of spectral dimensionality,
and to compare performances of several traditional and an SOM-based hybrid
ANN classi�er. 23 geologically relevant classes, as indicated in Fig. 2, were
used. These represent a great variety in terms of spatial extent, the similarity
of spectral signatures [6], and the number of available training samples. The
full study is described in [16]. Here the most dramatic �nding is presented.

Fig. 3, top panel, shows the best classi�cation, produced by an SOM-
hybrid ANN using all 194 spectral bands. This ANN �rst learns in an un-
supervised mode, during which the input data are clustered in the hidden
SOM layer. After the SOM converges, the output layer is allowed to learn
class labels. The preformed clusters in the SOM greatly aid in accurate and
sensitive classi�cation, by helping prevent the learning of inconsistent class
labels. Detailed description of this classi�er is given in several previous sci-
enti�c studies, which produced improved interpretation of high-dimensional
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spectral data compared to earlier analyses [17] [18] [19]. Training samples for
the supervised classi�cations in our study were selected based on knowledge
of and interest in geologic units. The SOM hidden layer was not evaluated
and used for identi�cation of spectral types, prior to training sample determi-
nation. So, Fig. 3 reects the geologist's view of the desirable segmentation.

In order to apply Maximum Likelihood and other covariance based clas-
si�ers, the number of spectral channels needed to be reduced to 30, since the
maximum number of training spectra that could be identi�ed for all classes
was 31. Dimensionality reduction was performed in several ways, including
PCA, equidistant subsampling, and band selection by a domain expert. Band
selection by domain expert proved most favorable. Fig. 3, bottom panel,
shows the Maximum Likelihood classi�cation on the LCVF data, reduced to
30 bands. A number of classes (notably the ones with subtle spectral dif-
ferences, such as N, Q, R, S, T, V, W) were entirely lost. Class K (basalt
cobbles) disappeared from most of the edge of the playa, and only traces of
B (rhyolitic outcrop) remained. Class G and F were greatly overestimated.
Although the ANN classi�er produced better results (not shown here) on
the same 30-band reduced data set than the Maximum Likelihood, a marked
drop in accuracy occurred compared to classi�cation on the full data set. This
emphasizes that accurate mapping of \interesting", spatially small geologic
units is possible from full hyperspectral information and with appropriate
tools.

It should be noted that a Backpropagation (BP) network is very di�cult
to train for the combination of such high number of inputs and output classes.
This author has not seen hyperspectral images classi�ed by a BP network,
at full spectral resolution. In contrast, the SOM-hybrid ANN above scales up
gracefully and performs the task with relative ease. Inclusion of unsupervised
learning phases was recently shown to increase the classi�cation accuracy of
a BP network too [20].

5 Discovery in Hyperspectral Images with SOMs

Let's examine now how the SOM preforms in terms of detection of clusters
in high-dimensional data. Fig. 4 displays a 40 x 40 SOM that was gener-
ated by a modi�cation of the original SOM [21], the conscience algorithm of
DeSieno [22]. The input data space was the entire 194-band LCVF image.
Groups of neurons, altogether 32, that were found to be sensitized to groups
of similar spectra in the 194-dimensional LCVF input data, are indicated by
various colors. The boundaries of these clusters were determined by a some-
what modi�ed version of the Ultsch and Simeon method [23]. Areas where no
data points (spectra) were mapped are the grey corners with uniformly high
fences, and are relatively small. The black background in the SOM lattice
shows areas that have not been evaluated for cluster detection. The spatial
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locations of the image pixels mapped onto the groups of neurons in Fig. 4, are
shown in the same colors in Fig. 5. Color coding for clusters that correspond
to classes or subclasses of those in Fig. 3, top, is the same as in Fig. 3, to
show similarities. Colors for additional groups were added.

The �rst observation is the striking match between the supervised ANN
class map in Fig. 3, top panel, and this clustering: the SOM detected all
classes that were known to us as meaningful geological units. The \discovery"
of classes B (rhyolitic outcrop, white), F (young basalt ows, dark grey and
black, some shown in the black ovals), G (a di�erent basalt, exposed along
the scarp, dark blue, one segment outlined in the white rectangle), K (basalt
cobbles, light blue, one segment shown in the black rectangle), and other
spatially small classes such as the series of playa deposits (N, O, P, Q, R,
S, T) is signi�cant. This is the capability we need for sifting through high-
volume, high-information-content data to be alerted to interesting, novel, or
hard-to-�nd units. The second observation is that the SOM detected more,
spatially coherent, clusters than the number of classes that we trained for
in Fig. 3. The SOM's view of the data is more re�ned and more precise
than that of the geologist's. For example, class A (red in Fig. 3) is split here
into a red (peak of cinder cones) and a dark orange (anks of cinder cones)
cluster, that make geologic sense. The maroon cluster to the right of the red
and dark orange clusters at the bottom of the SOM �lls in some areas that
remained unclassi�ed (bg) in the ANN class map, in Fig. 3. An example is
the arcuate feature at the base of the cinder cone in the white oval, that
apparently contains a material di�erent enough to merit a separate spectral
cluster. This material �lls other areas too, consistently at the foot of cinder
cones (another example is seen in the large black oval). Observation of further
re�nements are left to the reader.

6 Correctness, Reliability, and Precision of SOM
Analyses

The correctness of the SOM mapping is a serious concern. For small data
sets such as in [17], and for a low number of clusters, topology violation can
be detected by semi-manual examination of the map, and the situation reme-
died by using a larger lattice or often by just retraining the SOM starting
from a di�erent random initial state. For large data sets, the e�ort needed
to detect the ill conditions are great, and repeated runs are expensive. Hy-
perspectral dimension is of particular concern because very few SOM studies
exist on such high-dimensional data, to draw experience from [24]. A measure
that expresses the level of topology violation in mapping an n-dimensional
data space onto lower dimension has been constructed by Villmann, Bauer et
al. [25] [26]. This work is based on �ndings by Martinetz and Schulten [27],
and carry further in that it provides a formula that can be computed from the
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weights and neighborhood relations, and immediately alert for entanglement
of clusters. The work of Villman et al. also provides relief from topology
violation by automatically growing the SOM lattice [28] [29]. Applications
to 6-band Landsat images worked well [30]. Further work is underway to
evaluate the powers of this method for hyperspectral imagery [31].

A mapping that matches the probability density (pdf) of the input data
is preferable, because it represents regions of the input space with resolutions
appropriate for their relative densities. For this, the map magni�cation fac-
tor m(x), which is the number of neurons representing a subsection dx of
the input space, is required to be proportional to the pdf . The original SOM
algorithm does not meet the above requirement and tends to overrepresent
regions of low density, and underrepresent regions of high density [32]. This
could prevent sensitive separation of spectral clusters with subtle signature
di�erences, such as the sandy and clayey part of the playa (classes D and
E), or the splitting of class A into the red and dark orange clusters (Fig. 3,
bottom panel and Fig. 5). The conscience algorithm of DeSieno [22] adjusts
the winning frequencies of the SOM neurons so as to ensure proper spread-
ing (compaction) of information that is dense (sparse) in the input feature
space. Update of the weight vectors is given by wt+1

i = wt
i + �t(S � wt

i); for
i 2 Nc and wt+1

i = wt
i otherwise, where c and Nc denote, respectively, the

index and the the index set of the neighbourhood of the winning neuron PEc.
c = argmini(kS �wik �Bi) where the bias term Bi = (1=M �F t

i ) adjusts
the distance between the incoming pattern S and wi based on the historic
winning frequency Fi of PEi.M is the number of PEs in the Kohonen lattice.
Fi is updated along with the weights, according to F t+1

i = F t
i + �(�Nc

�F t
i )

where �Nc
is 1 for i 2 Nc, 0 otherwise. �; � and  are user controlled pa-

rameters decreasing in time. In his new book, van Hulle [33] points out that
adding a conscience algorithm to the SOM does not equate to equiprob-
abilistic mapping, in general. However, for very high dimensions, a mini-
mum distortion quantizer (such as the conscience algorithm) approaches an
equiprobable quantizer [33] (page 93). Fig. 4, 5, and 6 seem to support this
statement, although precise evaluation is di�cult because of the long time
needed to reach a mature state of the SOM for large hyperspectral images.

Visualization of the SOM's knowledge is also crucial for \precision min-
ing". Detection of clusters | as a post-processing step after SOM conver-
gence | hinges on how well the SOM's internal view of the data space is
communicated through knowledge extraction and representation. This has
been targeted by several works [23] [34] [35] [36] [37]. However, ours is the
�rst application to hyperspectral images. Closest in spirit to the browsing ca-
pabilities of [37] and the WEBSOM as used in [24], our applications require
entirely di�erent engineering solutions because of the speci�cs of spectral-
spatial image data. In our facilities, developed at the Lunar and Planetary
Laboratory, University of Arizona, interactive cluster determination tools in-
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clude \knobs" for on-the-y adjustment of fence scaling and thresholding in
the Ultsch-Simeon representation; changing the underlying map from \plain"
(as in Fig. 4) to \density map" (where the number of data points mapped
on a grid cell is indicated by grey scale or monochrome color intensities);
switching between separate or combined viewing of map and fences; chang-
ing colors, and size of grid cells and fences, for clearest possible viewing, etc.
Di�erent representations such as [35] are also planned. The ultimate goal
is automation of cluster extraction. Alternative approaches such as [38] are
being evaluated.

7 Acknowledgements

Software develpment for this work has been supported by the Applied In-
formation Systems Research Program of the O�ce of Space Science, NASA,
NAG54001. NeuralWare and Khoros packages were utilized. I am grateful to
Dr. Thomas Villmann for valuable discussions on various aspects of SOMs.
Many thanks are due to Dr. William H. Farrand for providing �eld and
geologic knowledge in evaluating results for the LCVF; and to many inter-
disciplinary collaborators for their participation in the large-scale, real-life
applications that provide the test bed for this research.

References

1. Campbell, J. (1996) Introduction to Remote Sensing. The Guilford Press
2. Green, R. O. Ed. (1996) Summaries of the 6th Annual JPL Airborne Geoscience

Workshop, 1 AVIRIS Workshop, Pasadena, CA, March 4{6, 1996
3. Carpenter, G. A., Gjaja, M. N., et al. (1997) ART Neural Networks for Remote

Sensing: Vegetation Classi�cation from Landsat TM and Terrain Data, IEEE.
Trans. Geosci. and Remote Sens. 35(2), 308{325

4. Arvidson, R. E., Dale-Bannister, M. et al. (1991) Archiving and distribution
of Geologic Remote Sensing Field Experiment Data. EOS, Transactions of the
American Geophysical Union, 72(17), 176

5. Farrand, W. H. (1991) VIS/NIR Reectance Spectroscopy of Tu� Rings and
Tu� Cones. Ph.D. Thesis, University of Arizona

6. Mer�enyi, E., (1998) Self-Organizing ANNs for Planetary Surface Composi-
tion Research, Proc. 6th European Symposium on Arti�cial Neural Networks,
ESANN'98, Bruges, Belgium, April 22{24, 1998, 197{202

7. Adams, J. B., Smith, M. O., and Gillespie, A. R. (1993) Imaging spectroscopy:
Interpretation based on spectral mixture analysis, In Remote Geochemical Anal-
ysis: Elemental and Mineralogical Composition. C.M. Peters and P.A.J. Englert,
Eds., Cambridge University Press, New York, 145{166

8. Research Systems Inc. (1997) ENVI v.3 User's Guide, RSI, Boulder, 614 pp.
9. Bruske, J., and Mer�enyi, E. (1999) Estimating the Intrinsic Dimensionality of

Hyperspectral Images. Proc. 7th European Symposium on Arti�cial Neural Net-
works, ESANN'98, Bruges, Belgium, April 21{23, 1999, 105{110



\Precision Mining" of Hyperpsectral Images with SOMs 11

10. Green, R. O. and Boardman, J. (2000) Exploration of the relationship between
Information content and Signal-to-Noise ratio and spatial resolution. Proc. 9th
AVIRIS Earth Science and Applications Workshop, February 23{25, Pasadena,
CA (in print).

11. Pendock, N. (1999) A Simple Associative Neural Network for Producing
Spatially Homogeneous Spectral Abundance Interpretations of Hyperspec-
tral Imagery. Proc. 7th European Symposium on Arti�cial Neural Networks,
ESANN'98, Bruges, Belgium, April 21{23, 1999, 99{104

12. Benediktsson, J. A., Sveinsson, J. R., et al. (1994) Classi�cation of Very-High-
Dimensional Data with Geological Applications, Proc. MAC Europe 91, Leng-
greis, Germany, 4{6 October, 1994, 13{18

13. Moon, T., and Mer�enyi, E. (1995) Classi�cation of hyperspectral images using
wavelet transforms and neural networks. Proc. of the Annual SPIE Conference,
July 9{14, San Diego, CA 2569

14. Benediktsson, J. A., Swain, P. H., et al. (1990) Classi�cation of Very High Di-
mensional Data Using Neural Networks, IGARSS'90 10th Annual International
Geoscience and Remote Sensing Symp. 2, 1269

15. Mer�enyi, E., Farrand, W. H. et al. (2000) Studying the Potential for Mon-
itoring Colorado River Ecosystem Resources Below Glen Canyon Dam Using
Low-Altitude AVIRIS Data. Proc. 9th AVIRIS Earth Science and Applications
Workshop, February 23{25, Pasadena, CA (in print).

16. Mer�enyi, E., Farrand, W. H. et al. (2000) E�cient Geologic Mapping from Hy-
perspectral Images with Arti�cial Neural Networks Classi�cation: a Comparison
to Conventional Tools. In preparation for submission to IEEE TGARS

17. Howell, E. S., Mer�enyi, E., Lebofsky, L. A. (1994) Classi�cation of Asteroid
Spectra Using a Neural Network Jour. Geophys. Res. 99, 10,847{10,865

18. Mer�enyi, E., Howell, E. S., et al. (1997) Prediction of Water In Asteroids from
Spectral Data Shortward of 3 Microns. ICARUS 129, 421{439

19. Mer�enyi, E., Singer, R. B., Miller, J. S. (1996) Mapping of Spectral Varia-
tions On the Surface of Mars From High Spectral Resolution Telescopic Images,
ICARUS 124, 280{295

20. Fardanesh, M. T., and Ersoy, O. K. (1998) Classi�cation Accuracy Improve-
ment of Neural Network Classi�ers by Using Unlabeled Data. IEEE Trans.
Geosci. and Remote Sens.36(3), 1020{1025

21. Kohonen, T. (1997) Self-Organizing Maps. Springer Series in Information Sci-
ences, 30, Springer, Berlin, Heidelberg, New York, 1995, 1997

22. DeSieno, D. (1988) Adding a Conscience to Competitive Learning. Proc. ICNN,
New York, July 1988 I, 117{124

23. Ultsch, A. and Simeon, H. P. (1990) Kohonen's Self Organizing Feature Map
for Exploratory Data Analysis. Proc. INNC-90-PARIS I, 305{308

24. Kohonen, T. (1997) Exploration of Very Large Databases by Self-Organizing
Maps. Proc. IEEE ICNN'97 I, PL1{6

25. Bauer, H.U., Herrmann, M., Villmann, Th. (1997) Topology Preservation in
Neural Maps of Real World Data. Proc. 5th European Symposium on Arti�cial
Neural Networks, ESANN'97, Bruges, Belgium, April 22{24, 1997, 205{210

26. Villmann, Th., Herrmann, R.Der, and Martinetz, Th. (1997) Topology Preser-
vation in Self-Organizing Feature Maps: Exact De�nition and Measurement.
IEEE Trans. on Neural Networks 8(2), 256{266

27. Martinetz, Th., and Schulten, K. (1994) Topology Representing Networks. Neu-
ral Networks 7(3), 507{522



12 Erzs�ebet Mer�enyi

28. Bauer, H.U. and Villmann, Th. (1997) Growing a Hypercubical Output Space
in a Self-Organizing Feature Map. IEEE Trans. on Neural Networks 8(2), 218{
226

29. Villmann, Th. and Bauer, H.-U. (1998) Applications of the growing self-
organizing map. Neurocomputing 21, 91{100

30. Villmann, T. (1999) Bene�ts and Limits of the Self-Organizing Map and its
Variants in the Area of Satellite Remote Sensoring Processing. Proc. 7th Euro-
pean Symposium on Arti�cial Neural Networks, ESANN'98, Bruges, Belgium,
April 21{23, 1999, 111{116

31. Villmann, T. and Mer�enyi, E. (2000) Extensions and Modi�cations of SOM
and its Application in Satellite Remote Sensing Processing. Accepted to
Proc. 2nd Int'l Computer Science Conventions Symposium on Neural Compu-
tation, NC'2000, May 23{26, 2000, Berlin, Germany
Conference on Geologic Remote Sensing, San Antonio, TX, 9{12 May,

32. Haykin, S. (1995) Neural Networks. A Comprehensive Foundation. McMillan
33. van Hulle, M. M. (2000) Faithful Representations and Topographic Maps: From

Distortion- to Information-Based Self-Organization. Wiley & Sons
34. Mao, J. and Jain, A. K. (1995) Arti�cial Neural Networks for Feature Extrac-

tion and Multivariate Data Projection. IEEE Trans. on Neural Networks 6(2),
296{317

35. Cottrell, M. and de Bodt, E. (1996) A Kohonen Map Representation to Avoid
Misleading Interpretations. Proc. European Symposium on Arti�cial Neural Net-
works, Bruges, Belgium, 22{24 April, 1996

36. Kraaijveld, M. A., Mao, J. and Jain, A. K. (1995) A Nonlinear Projection
Method Based on Kohonen's Topology Preserving Maps. IEEE Trans. on Neural
Networks 6(3), 548{559

37. Kaski, S., Nikkila, J. and Kohonen, T. (1998) Methods for Interpreting a Self-
Organizing Map in Data Analysis. Proc. 6th European Symposium on Arti�cial
Neural Networks, ESANN'98, Bruges, Belgium, April 22{24, 1998, 185{190

38. Fyfe, C. and Baddeley, R. (1995) Non-linear data structure extraction using
simple hebbian networks. Biol. Cybern. 72, 533{541



\Precision Mining" of Hyperpsectral Images with SOMs 13

Fig. 3. Top: SOM-hybrid ANN classi�cation of the LCVF scene, using 194 image
bands. Bottom: Maximum Likelihood classi�cation of the LCVF scene. 30, strate-
gically selected bands were used due to the limited number of training samples.
Considerable loss of class distinction occurred compared to the ANN classi�cation.
'bg' stands for background (unclassi�ed pixels).
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Fig. 4. Clusters identi�ed in a 40 x 40 SOM. The SOM was trained on the entire
194-band LCVF image, using the DeSieno [22] algorithm.

Fig. 5. The clusters from Fig. 4 remapped to the original spatial image, to show
where the di�erent spectral types originated from. The relatively large, light grey
areas correspond to the black, unevaluated parts of the SOM in Fig. 4. Ovals and
rectangles highlight examples discussed in the text.
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Fig. 6. Relationship between the number of image pixels in the clusters in Fig. 5,
and the number of SOM neurons representing them in Fig. 4.


