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A Proof of Theorem 1

We will let E` denote the event that at step `,
the following holds: for each i ∈ [p]\nbdFound,

(a) If |N(i)| ≤ `, then N̂(i), the out-

put of nbdSelect
(
i, `, {X(j)

[p]\settled}j∈S1

)
is identical to N(i), and furthermore,

nbdVerify(i, N̂(i),
{
X[p]\settled

}
j∈S1

) = true.

(b) If |N(i)| > `, then

nbdVerify(i, N̂(i),
{
X[p]\settled

}
j∈S2

) returns false.

Let us condition on
⋂
` E`. Observe that if i /∈

nbdFound at step `, then we are guaranteed that
N̄(i) ⊂ [p]\ settled. Therefore, if di ≤ `, we are
guaranteed that nbdSelect will correctly identify N(i)
and nbdVerify will confirm this identification. On
the other hand, if di > `, we are guaranteed that
N(i) 6⊂ N̂(i) (since |N̂(i)| = di ≤ `). Therefore,
nbdVerify will return false. These two properties
together imply that Algorithm 1 correctly learns the
graph. Additionally observe that when counter ` = di,
vertex i is enrolled in nbdFound and by the time the
counter ` reaches dimax, every neighbor of i has already
been enrolled in nbdFound, which of course implies
that i is enrolled in settled and is no longer sampled
from. Therefore, the total number of samples accumu-
lated for vertex i is given by g(dimax) + h(dimax). This
implies that a budget B ≥

∑
i∈[p] g(dimax) +h(dimax) is

sufficient.

To conclude the proof, we simply observe from (C1)
and (C2) (and a union bound) that P [Ec` ] ≤ pδ, and
again using the union bound over the levels `, we get
the desired result.

B Proof of Theorem 2

In order to prove Theorem 2, we will let E denote the
event that all the conditional independence tests suc-
ceed. That is for a pair of vertices i, j ∈ [p] and a sub-
set S ⊂ [p] \ {i, j}, if Xi ⊥⊥ Xj | XS , then

∣∣ρ̂i,j|S∣∣ ≤ ξ

and alternatively if Xi 6⊥⊥ Xj | XS , then
∣∣ρ̂i,j|S∣∣ > ξ.

Conditioned on E , it is clear that the following hold

1. Since (A1) holds, nbdFound, as defined in Algo-
rithm 2, satisfies condition (C1) from the state-
ment of Theorem 1.

2. nbdVerify, as defined in Algorithm 2, satisfies
condition (C2) from the statement of Theorem 1.

3. Therefore, from Theorem 1, we know that Algo-
rithm 2 succesfully recovers the graph.

4. Also, Algorithm 2 terminates when ` reaches
dmax. This implies that the computational com-
plexity of Algorithm 2 scales as O(pdmax+2).

Next, we will bound the probability that for a fixed `
nbdFound fails to satisfy condition (C1) of Theorem 1.
Observe that, by the union bound, this probability is
bounded from above by∑

i,j∈[p],
S⊂[p]\{i,j}:|S|=`

P
[
Eci,j|S

]
. (1)

We will now turn our attention to one of the inner
terms. Let us suppose that we are at level ` and let
n(i, j, S) be the total number of samples collected of
the random vector (Xi, Xj , XS); we will just refer to
this quantity as n in what follows. We can split up the
analysis into two parts:

Case (A): Xi ⊥⊥ Xj | XS : In this case, we have that
ρi,j|S = 0. Therefore,

P
[
Eci,j|S

]
= P

[∣∣ρ̂i,j|S∣∣ ≥ ξ] (2)

= P
[∣∣ρ̂i,j|S − ρi,j|S∣∣ ≥ ξ] (3)

(a)

≤ C1 (n− 2− |S|)

exp

{
− (n− 4− |S|) log

(
4 + ξ2

4− ξ2

)}
(4)

= C1 (n− 2− `)

exp

{
− (n− 4− `) log

(
16 +m2

16−m2

)}
, (5)

where (a) follows from Lemma 1 in Appendix D and
as in the lemma, the constant C1 only depends on M .
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The last step follows from plugging in |S| = ` and
ξ = m/2.

Case (B): Xi 6⊥⊥ Xj | XS : In this case, we have that∣∣ρi,j|S∣∣ > m, by assumption (A2). Also observe that∣∣ρ̂i,j|S∣∣ ≤ ξ and
∣∣ρi,j|S∣∣ ≥ m together imply that∣∣ρi,j|S∣∣ − ∣∣ρ̂i,j|S∣∣ ≥ m − ξ ⇒

∣∣ρi,j|S − ρ̂i,j|S∣∣ ≥ m − ξ,
since m > ξ. Therefore, in this case, we have

P
[
Eci,j|S

]
= P

[∣∣ρ̂i,j|S∣∣ ≤ ξ] (6)

≤ P
[∣∣ρ̂i,j|S − ρi,j|S∣∣ ≥ m− ξ] (7)

(b)

≤ C1 (n− 2− |S|)

exp

{
− (n− 4− |S|) log

(
4 + (m− ξ)2

4− (m− ξ)2

)}
(8)

= C1 (n− 2− `)

exp

{
− (n− 4− `) log

(
16 +m2

16−m2

)}
, (9)

where again (b) follows from Lemma 1 in Appendix D
and the last step follows from substituting |S| = ` and
ξ = m/2.

Using (5) and (9) in (1), we see that the probability
that nbdFound fails to satisfy condition (C1) of Theo-
rem 1 for a fixed ` is bounded from above by∑

i,j∈[p],
S⊂[p]\{i,j}:|S|=`

2C1 (n− 2− `)

× exp

{
− (n− 4− `) log

(
16 +m2

16−m2

)}
.

Therefore, for all sufficiently large p 1, we can check
that if n satisfies

n ≥ 2(`+ 3 + C2)

log
(

16+m2

16−m2

) log

(
p

(2C1)C2

)
+ 4 + `, (10)

the above sum can be bounded from above by p−C2−1

(note that this quantity plays the role of pδ in Theo-
rem 1). Since, for ` ≥ 1, 2`(C2 + 4) ≥ 2(` + 3 + C2),

we can set g(`) = c log p with c = 4(C2+4)

log
(

16+m2

16−m2

) in Algo-

rithm 2. This would imply that for all sufficiently large
p, 2 we have n(i, j, S) ≥ `c log p which guarantees that
(10) is satisfied for all `. Now, since ` is never more
than p, we have

P [error] ≤ p−C2 . (11)

1n needs to be such that (n− 4− `) ≥
2 log(n−2−`)

log((16+m2)/(16−m2))
2p > (2C1)

−C2 ∧ 4e/`, where the latter part guarantees
that the additive term 4 + ` is accounted for.

Since we just demonstrated that we can choose g(`) =
`c log p (and take h(`) to be 0), from Theorem 1 we
know that it suffices to set the budget as in Theorem 2,
i.e., B ≥ cd̄maxp log p. This concludes the proof.

C Proof of Theorem 3

As in the proof of Theorem 2, we will prove Theo-
rem 3 by showing that the choice of nbdSelect and
nbdVerify from Algorithm 3 satisfies the conditions
1 and 2 of Theorem 1. Along the way, we will also
identify the functions g(), h(), and the probability of
making an error in an intermediate step, δ. This will
complete the proof.

Let us suppose that we are at iteration number ` and
let Ec` be the event that this is the first iteration where
either nbdSelect or nbdVerify make an error. Notice
that

∑
`∈[p] P [Ec` ] bounds the probability of error from

above.

nbdSelect satisfies condition (C1) of Theorem 1
Suppose that di = `. Since assumptions (A3) -
(A4) hold3, we know from Theorem 4, that there
exists constants C3, C4, C5 such that provided
g(`) = C3` log p, we are guaranteed that the proba-

bility that N̂(i) 6= N(i) is bounded from above by
C4p

−C5 . Therefore, the probability that there exists
an i such that |N(i)| = ` whose neighborhood is not
found is bounded from above by C4p

−(C5−1).

It is important to observe here that the regression
coefficients of the Lasso problem remain unchanged
even though we are observing marginal samples. To
see why this is true, simply observe that the in-
verse covariance matrix corresponding to the vari-
ables in S (i.e., Sc is marginalized out) is given by

KSS − KSSc (KScSc)
−1
KScS , the appropriate Schur

complement. Now conditioned on making no errors in
the previous stages, we can see that the corresponding
row of the precision matrix remains unchanged.

nbdVerify satisfies condition (C2) of Theorem 1
Suppose di = `, nbdVerify fails to satisfy condition
(C2) of Theorem 1 implies that there is a failed condi-
tional independence test. At iteration number `, the
probability of failure of a conditional independence
test with a conditioning set of size ` is upper bounded
as in the proof of Theorem 2 by p−C2 provided we

choose h(`) = 4(C2+4)
log((16+m2)/(16−m2))` log p. On the

other hand, consider the situation that di > `. Since
nbdSelect, as defined in Algorithm 3, truncates
N̂(i) to be of size `, we are guaranteed that there

is a j ∈ N(i) ∩ N̂(i)c. We can again bound this

3note that these assumptions continue to hold even after
marginalizing out the variables in settled.
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by bounding the probability of a failed conditional
independence test, which is the same as before.

We can now conclude the proof by observing that the
choice for g(`) and h(`) as stated in the theorem allows
one to bound the probability of error (and implicitly δ)
from above by

∑p
`=1 C4p

−C5+1 +p−C2 +p−C2 . Choos-
ing the constants appropriately, we conclude that the
total sample complexity (and hence a valid choice
for B) is given by cd̄maxp log p at a confidence level
1− p−C2 .

D Helpful Results

D.1 Concentration of Partial Correlation
Coefficients

In this section, we will record some useful lemmata.
The first lemma concerns the concentration of empir-
ical partial correlation coefficients (defined as in the
paragraph after (2) in the manuscript) about their ex-
pected values. See [1] for a proof.

Lemma 1. Provided (A2) holds, given n samples from
(Xi, Xj , XS), if the partial correlation coefficient ρ̂i,j|S
is defined as above, then we have the following result

P
[∣∣ρ̂i,j|S − ρi,j|S∣∣ ≥ ε]
≤ C1 (n− 2− |S|) exp

{
− (n− 4− |S|) log

(
4 + ε2

4− ε2

)}
,

(12)

where C1 > 0 is a constant that depends on M from
(A2).

D.2 Support Recovery for Lasso

Suppose y = Xβ∗ + w with iid rows xi ∼ N (0,Σ).
Suppose S is the support of β∗ and suppose that the
following hold∣∣∣∣∣∣∣∣∣ΣScS (ΣSS)

−1
∣∣∣∣∣∣∣∣∣
∞
≤ 1− γ, γ ∈ (0, 1] (13)

Λmin (ΣSS) ≥ Cmin > 0 (14)

Λmax (ΣSS) ≤ Cmin < +∞ (15)

If we let β̂ ∈ Rp denote the solution to the Lasso prob-
lem

β̂ ,
1

2n
min
β∈Rp

‖y −Xβ‖22 + λn ‖β‖1 , (16)

then we have the following result.

Theorem 4. Suppose w ∼ N (0, σ2I) and suppose
that Σ satisfies the properties listed above. Then,
there exists constants C1, C2, C3, C4, C5 such that if
λn = σγ−1

√
2C1 log p/n, n ≥ C2k log p, and βmin ,

mini∈S |β∗i | > g(λn), where

g(λn) , C5λn

∣∣∣∣∣∣∣∣∣Σ−1/2SS

∣∣∣∣∣∣∣∣∣2
∞

+ 20

√
σ2 log k

Cminn
, (17)

the support β̂ is identical to that of β∗ with probability
exceeding 1− C3p

−C4 .

Proof. The proof of this theorem follows almost en-
tirely from Theorem 3 in [2]. In fact, the only thing
we modify from that result is the rate of decay of
the probability of error. In particular, we will show
that the probability of error decays polynomially in p
(or equivalently exponentially in log p) for all values
of k, whereas Theorem 3 of [2] shows that the error
decays exponentially in min {k, log(p− k)}, which is
somewhat weak for our purposes.

Towards this end, it is not hard to see that the result
that requires strengthening is Lemma 5 in [2]. We
furnish a sharper substitute in Lemma 2.

Lemma 2. Consider a fixed z ∈ Rk, a constant
c1 > 0, and a random matrix W ∈ Rn×k with
i.i.d elements Wij ∼ N (0, 1). Suppose that n ≥

max

{
4

(
√
8−1)

2 k,
64
c21
k log(p− k)

}
, then there exists a

constant c2 > 0 such that

P

[∥∥∥∥∥
[(

1

n
WTW

)−1
− Ik

]
z

∥∥∥∥∥
∞

≥ C1 ‖z‖∞

]
≤ 4 exp (−c2 log(p− k))

Proof. Set A =
(
1
nW

TW
)−1 − Ik. Observe that

P [‖Az‖∞ ≥ c1 ‖z‖∞] ≤ P [‖A‖∞ ≥ c1] by the defini-
tion of the matrix infinity norm. Next, observe that
since the infinity norm is the maximum absolute row
sum of the matrix, we have that P [‖A‖∞ ≥ c1] ≤
P
[
‖A‖2 ≥ c1/

√
k
]
. From [2, Lemma 9] (which follows

in a straightforward manner from the seminal results
of [3]), we know that

P [‖A‖2 ≥ δ(n, k, t)] ≤ 2e−nt
2/2, (18)

where δ(n, k, t) = 2

(√
k
n + t

)
+

(√
k
n + t

)2

. We will

divide the proof into three cases:

Case (a): k ≤ c21
64

Suppose we pick t =
√

c1√
k
−1−

√
k
n , under the setting

of this case, provided n ≥ 4

(
√
8−1)

2 k, we have that

t >
√
8−1
2 > 0. Notice that for this choice of t, we have
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δ(n, k, t) = c1√
k

. This gives us the following bound

P
[
‖A‖2 ≥

c1√
k

]
≤ 2 exp

−n2
(√

c1√
k
− 1−

√
k

n

)2


(19)

≤ 2 exp

−n2
(√

8− 1

2

)2
 (20)

Case (b): log(p− k) ≥ k > c21
64

Suppose we pick t = c1
8
√
k

, we have that t < 1, by the

assumption of this case. Then, if n ≥ 64k2

c21
observe

that

δ(n, k, t) = 2

(√
k

n
+ t

)
+

(√
k

n
+ t

)2

(21)

≤ c1√
k
. (22)

This implies that

P
[
‖A‖2 ≥

c1√
k

]
≤ 2 exp

{
− nc21

128k

}
. (23)

Notice that if n ≥ 64
c21
k log(p − k), then n ≥ 64k2

c21
, as

required.

Case (c): k > log(p− k)
In this case, we can adopt the result from Lemma 5
of [2].

Putting all this together, we get the desired result.
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