next up previous
Next: About this document ...

eqn1: $I_1 = 300\rm mA$

eqn2:\includegraphics[scale=0.650000]{socket.ps}

eqn3:\includegraphics[scale=0.650000]{bus.ps}

eqn4:\includegraphics[scale=0.450000]{sb_123.ps}

eqn5:\includegraphics[scale=0.800000]{interface.ps}

eqn6:\includegraphics[scale=0.500000]{iface_temp.ps}

eqn7:\includegraphics[scale=0.650000]{motor1.ps}

eqn8:$I_a$

eqn9:$T_{dev}$

eqn10:$\omega_m$

eqn11:$E$

eqn12: $T_{dev} = K_t I_a$

eqn13: $E = K_e \omega_m$

eqn14: $T_{dev} = K_T\Phi I_a$

eqn15: $E = K_E\Phi \omega_m$

eqn16:$\Phi$

eqn17:$I_F$

eqn18:$\Phi$

eqn19:$\Phi$

eqn20:$K$

eqn21:$R_a$

eqn22:\includegraphics[scale=0.650000]{motor2.ps}

eqn23:$I_a$

eqn24:$I$

eqn25:$V$

eqn26:$E$

eqn27:$V=I_a R_a + E$

eqn28: $\displaystyle V = R_a I_a + K_e \omega$

eqn29: $I_a = (V - K_e \omega)/R_a$

eqn30: $\displaystyle T=K_tI_a = \frac{K_t}{R_a}(V-K_e\omega) = K_t\frac{V}{R_a}-\frac{K_tK_e}{R_a}\omega$

eqn31:$\omega$

eqn32:$T$

eqn33:$V$

eqn34: $\displaystyle R_aT=K_t(V-K_e\omega)$

eqn35: $\displaystyle \frac{R_aT}{K_t} = V-K_e\omega$

eqn36: $\displaystyle \omega = \frac{V}{K_e} - \frac{R_aT}{K_tK_e}$

eqn37: $I_a=\frac{V}{R_a}$

eqn38:$\omega_m$

eqn39:$E$

eqn40: $V=K_e\omega_{NL}$

eqn41:$\omega_{NL}$

eqn42: $I_a=\frac{V}{R_a}$

eqn43: $T_s=K_t\frac{V}{R_a}$

eqn44:$T_s$

eqn45:$T_s$

eqn46:$T$

eqn47:$\omega$

eqn48:$V$

eqn49:\includegraphics[scale=0.650000]{speedtorque.ps}

eqn50:\includegraphics[scale=0.650000]{ckt2.3.2.ps}

eqn51:\includegraphics[scale=0.650000]{ckt2.2.ps}

eqn52:$V_{OC}$

eqn53:$+V_{OC}$

eqn54:$-V_{OC}$

eqn55:\includegraphics[scale=0.650000]{pwr_bus7.ps}

eqn56:

eqn57:\includegraphics[scale=0.500000]{ckt3.2.ps}

eqn58:\includegraphics[scale=0.500000]{ckt3.1.ps}

eqn59:$v_{out}$

eqn60:\includegraphics[scale=0.650000]{ckt3.3.ps}

eqn61: $\rm 9.81 m/s^2$

eqn62:$F=mg$

eqn63: $0.004 (F_1 - F_2)$

eqn64:$K_t$

eqn65:$K_e$

eqn66:\includegraphics[scale=0.650000]{pwr_bus7.ps}

eqn67:\includegraphics[scale=1.000000]{scanl3a.ps}

eqn68:\includegraphics[scale=0.500000]{ckt4.1.ps}

eqn69:$v_{IN}$

eqn70:$v_{OUT}$

eqn71:$R_B$

eqn72:$R_C$

eqn73:$i_B$

eqn74:$i_C$

eqn75: $\beta = i_C/i_B$

eqn76: $v_{OUT}=2\rm V$

eqn77: $v_{OUT}=12\rm V$

eqn78:$\beta$

eqn79:$\beta$

eqn80:$v_{OUT}$

eqn81:$v_{IN}$

eqn82:$v_{IN}$

eqn83:$v_{OUT}$

eqn84:$v_{IN}$

eqn85:$v_{OUT}$

eqn86:$v_{OUT}$

eqn87:$v_{IN}$

eqn88:$v_{IN}$

eqn89:$v_{OUT}$

eqn90:$v_{OUT}$

eqn91:$V_{CEsat}$

eqn92:$v_{IN}$

eqn93:$v_{OUT}$

eqn94: $v_{OUT}=7\rm V$

eqn95:$v_{OUT}$

eqn96:$v_{IN}$

eqn97: $\displaystyle A_v = \frac{\Delta v_{OUT}}{\Delta v_{IN}}$

eqn98: $\displaystyle A_v = -\beta\frac{R_C}{R_B}$

eqn99:$v_{IN}$

eqn100:$v_{OUT}$

eqn101:$v_{OUT}$

eqn102:$v_{IN}$

eqn103:$v_{BE}$

eqn104:$V_{CC}$

eqn105:$v_{OUT}$

eqn106:$i_B$

eqn107:$i_C$

eqn108:$\beta$

eqn109:

eqn110:\includegraphics[scale=0.500000]{ckt4.2.ps}

eqn111:$v_{IN}$

eqn112:$v_{OUT}$

eqn113:$v_{OUT}$

eqn114:$v_{IN}$

eqn115:$v_{IN}$

eqn116:\includegraphics[scale=0.500000]{ckt4.3.ps}

eqn117:$v_{IN}$

eqn118:$v_{OUT}$

eqn119:\includegraphics[scale=0.650000]{ckt4.4.ps}

eqn120:$R_{out}$

eqn121:$R_{L}$

eqn122:$\infty$

eqn123:$R_S$

eqn124:\includegraphics[scale=0.650000]{ckt4.7.ps}

eqn125:\includegraphics[scale=0.650000]{ckt4.6.ps}

eqn126:$v_{OUT}$

eqn127: $\displaystyle A_v = \frac{\Delta v_{OUT}}{\Delta v_{IN}}$

eqn128: $V_{ofs}={\rm avg}(v_{OUT}) - {\rm avg}(v_{IN})$

eqn129:$P_L$

eqn130:$P_D$

eqn131:$v_{OUT}$

eqn132:\includegraphics[scale=0.650000]{pwr_bus8.ps}

eqn133:\includegraphics[scale=0.640000]{opamps/cktsym.ps}

eqn134:$V_{CC+}$

eqn135:$V_{CC-}$

eqn136:$V_{CC+}$

eqn137:$V_{CC-}$

eqn138:$0.1\mu\rm F$

eqn139:$0.1\mu\rm F$

eqn140:\includegraphics[scale=0.650000]{pwr_sup.ps}

eqn141:$V_{CC-}$

eqn142:$V_{CC+}$

eqn143:\includegraphics[scale=0.650000]{ckt5.2.ps}

eqn144:$v_{in}$

eqn145:$v_{in}$

eqn146:$v_{out}$

eqn147:$v_{out}$

eqn148:$v_2$

eqn149:$v_{out}$

eqn150:$v_{out}$

eqn151:$v_2$

eqn152:$v_{out}$

eqn153:$v_2$

eqn154:$\Omega$

eqn155:$\Omega$

eqn156:$\Omega$

eqn157:$A$

eqn158:$\Omega$

eqn159:$R_1$

eqn160:$R_F$

eqn161:\includegraphics[scale=0.650000]{inv_opamp.ps}

eqn162: $A_v = \frac{V_{out}}{V_{in}}$

eqn163:$V_{out}$

eqn164:$V_{in}$

eqn165:$R_F$

eqn166:$\Omega$

eqn167:$R_A$

eqn168:\includegraphics[scale=0.650000]{ckt5.1.ps}

eqn169:$v_{in}$

eqn170:$v_{out}$

eqn171:$v_{out}$

eqn172:$v_{in}$

eqn173:$v_{out}$

eqn174:$v_{out}$

eqn175:$v_{in}$

eqn176:$R_{out}$

eqn177:$\Omega$

eqn178:$\Omega$

eqn179:$\Omega$

eqn180:\includegraphics[scale=1.000000]{scanl8b.ps}

eqn181:\includegraphics[scale=0.650000]{ckt5.3.ps}

eqn182:$v_{in}$

eqn183:$v_{out}$

eqn184:$v_{out}$

eqn185:\includegraphics[scale=0.650000]{ckt5.5.ps}

eqn186:$v_{in}$

eqn187:$v_{out}$

eqn188:$v_{in}$

eqn189:$v_{out}$

eqn190:$v_{out}$

eqn191:$v_{out}$

eqn192:$v_{out}$

eqn193:$v_{in}$

eqn194:$v_{out}$

eqn195:\includegraphics[scale=0.500000]{fig5.1.ps}

eqn196: $x(t) = x(\infty) + (x(0)-x(\infty))e^{-t/\tau}$

eqn197:$R_{eq}$

eqn198:$R_{eq}C$

eqn199:$L/R_{eq}$

eqn200:$\Omega$

eqn201:$\Omega$

eqn202:$\mu$

eqn203:$\mu$

eqn204:\includegraphics[scale=0.650000]{ckt6.2a.ps}

eqn205:\includegraphics[scale=1.000000]{electro_minus.ps}

eqn206:$v_C$

eqn207:\includegraphics[scale=0.650000]{ckt6.2b.ps}

eqn208:$v_C$

eqn209:$v_C$

eqn210:$v_C$

eqn211:$\Omega$

eqn212:$\mu$

eqn213:$\mu$

eqn214: $33 \times 10^4$

eqn215:\includegraphics[scale=0.650000]{ckt6.3.ps}

eqn216:$v_{in}$

eqn217:$v_{out}$

eqn218:$v_{out}$

eqn219:\includegraphics[scale=0.350000]{tau4.ps}

eqn220:$v_{in}$

eqn221:$v_{out}$

eqn222:$\frac{1}{e}$

eqn223: $8 \times 0.368 = 2.94$

eqn224:\includegraphics[scale=0.350000]{tau3.ps}

eqn225:$v_{in}$

eqn226:$v_{out}$

eqn227:$v_{in}$

eqn228:$v_{out}$

eqn229:$v_{in}$

eqn230:$v_{out}$

eqn231:\includegraphics[scale=0.650000]{ckt6.4.ps}

eqn232:$v_{in}$

eqn233:$v_{out}$

eqn234:$\Omega$

eqn235:$\Omega$

eqn236:$\Omega$

eqn237:$\mu$

eqn238:$\mu$

eqn239:$R_1$

eqn240:\includegraphics[scale=0.650000]{ckt6.5.ps}

eqn241:\includegraphics[scale=0.650000]{ckt6.6.ps}

eqn242:$R_a$

eqn243:$K_t$

eqn244:$K_e$

eqn245:$R_s$

eqn246:\includegraphics[scale=0.650000]{ckt6.7.ps}

eqn247:$J$

eqn248: $\displaystyle T=J\dot{\omega}$

eqn249: $\displaystyle E=K_e\omega$

eqn250:$T=K_ti$

eqn251:$R=R_s + R_a$

eqn252: $\displaystyle i=\frac{v_s - E}{R}=\frac{v_s}{R}-\frac{K_e\omega}{R}$

eqn253: $\displaystyle i=\frac{T}{K_t}=\frac{J\dot{\omega}}{K_t}$

eqn254: $\displaystyle \frac{J\dot{\omega}}{K_t}+\frac{K_e\omega}{R}=\frac{v_s}{R}$

eqn255: $\displaystyle J\dot{\omega} + \frac{K_tK_e}{R}\omega = \frac{K_t}{R}v_s$

eqn256:$v_m$

eqn257:$v_g$

eqn258:\includegraphics[scale=0.500000]{ckt6.8.ps}

eqn259:$v_m$

eqn260:$v_g$

eqn261:$v_m$

eqn262:$v_g$

eqn263:$s$

eqn264:$j\omega$

eqn265: $\omega = 2\pi f$

eqn266: $\displaystyle H(j\omega)=\frac{V_{out}(j\omega)}{V_{in}(j\omega)}$

eqn267:$V_{in}$

eqn268:$V_{out}$

eqn269:$H(j\omega)$

eqn270:$H(j\omega)$

eqn271: $\displaystyle \vert H(j\omega)\vert=\frac{\vert V_{out}(j\omega)\vert}{\vert V_{in}(j\omega)\vert}$

eqn272: $\displaystyle \angle H(j\omega)=\angle V_{out}(j\omega) - \angle V_{in}(j\omega)$

eqn273:\includegraphics[scale=0.650000]{ckt7.2.ps}

eqn274: $\displaystyle V_{out}=\frac{1/sC}{R+1/sC} V_{in}=\frac{1}{1+RCs} V_{in}$

eqn275: $\displaystyle H(s)=\frac{V_{out}}{V_{in}}=\frac{1}{1+RCs}=\frac{1}{1+\tau s}$

eqn276: $v_{in}=V_i \cos(\omega t)=Re\{V_i e^{j\omega t}\}$

eqn277: $v_{out}=V_o \cos(\omega t)$

eqn278:$s=j\omega$

eqn279: $\displaystyle H(j\omega)=\frac{1}{1+j\omega \tau}=\frac{1}{1+j\frac{\omega}{\omega_0}}$

eqn280: $\omega_0 = \frac{1}{\tau}$

eqn281: $\displaystyle \vert H(j\omega)\vert=\frac{1}{\vert 1+j\frac{\omega}{\omega_0}\vert}=\frac{1}{\sqrt{1+\frac{\omega^2}{\omega_0^2}}}$

eqn282:\includegraphics[scale=0.350000]{fr1.ps}

eqn283: $\omega = \omega_0$

eqn284: $\vert H(j\omega)\vert=\frac{1}{\sqrt{2}}=0.707$

eqn285:\includegraphics[scale=0.650000]{freq_resp.ps}

eqn286:$v_{in}$

eqn287:$v_{out}$

eqn288:$f_1$

eqn289:$v_{in}$

eqn290:\includegraphics[scale=0.650000]{phase.ps}

eqn291:$\vert V_{in}\vert$

eqn292:$\vert V_{out}\vert$

eqn293: $\displaystyle \vert H(f_1)\vert = \frac{\vert V_{out}\vert}{\vert V_{in}\vert}$

eqn294:$t'$

eqn295: $\sin(2\pi f_1 t)=0$

eqn296:$v_{in}$

eqn297: $\sin(2\pi f_1 t' + \phi)=0$

eqn298:$v_{out}$

eqn299: $\phi = \angle H(f_1)$

eqn300: $2\pi f_1 t' + \phi = 0$

eqn301: $\phi = -2\pi f_1 t' = -2\pi t'/T$

eqn302:$T$

eqn303: $\displaystyle \angle H(f_1) = -360\frac{t'}{T}$

eqn304:$f_1$

eqn305:$\Omega$

eqn306:$\mu$

eqn307:$\Omega$

eqn308:$\mu$

eqn309:\includegraphics[scale=0.650000]{ckt7.5.ps}

eqn310:$v_{in}$

eqn311:$v_{out}$

eqn312:$v_{in}$

eqn313:$v_{in}$

eqn314:$v_{out}$

eqn315:$\omega_0$

eqn316:$\tau$

eqn317:$\mu$

eqn318:\includegraphics[scale=0.650000]{ckt7.3.ps}

eqn319:$R_S$

eqn320:$R_1$

eqn321:\includegraphics[scale=0.500000]{ckt7.1.ps}

eqn322:$v_{out}$

eqn323:$v_{in}$

eqn324:$v_{out}$

eqn325:$\omega_d$

eqn326:$2\pi$

eqn327:$\omega_d$

eqn328:$\alpha$

eqn329:$\alpha$

eqn330:$\omega_d$

eqn331:$f_0$

eqn332:\includegraphics[scale=0.500000]{ckt7.4.ps}

eqn333:$v_{in}$

eqn334:$v_{in}$

eqn335:$v_g$

eqn336:$\omega_0$

eqn337:$\tau$

eqn338:$K_e$

eqn339:$K_t$

eqn340:$J'$

eqn341:\includegraphics[scale=1.000000]{scan8.1.ps}

eqn342:\includegraphics[scale=0.500000]{ckt8.7.ps}

eqn343:$m$

eqn344: $\displaystyle \frac{K_m}{1+s\tau}$

eqn345:$\omega$

eqn346:$\theta$

eqn347:$\frac{1}{s}$

eqn348:$v_{act}$

eqn349:$K_s$

eqn350:\includegraphics[scale=0.650000]{ckt8.6.ps}

eqn351:$\alpha$

eqn352:$\alpha$

eqn353:$\alpha R$

eqn354:$(1-\alpha) R$

eqn355:$R$

eqn356:\includegraphics[scale=0.650000]{pot1.ps}

eqn357: $\displaystyle v_{out} = \frac{R_2}{R_1 + R_2} v_{in} = \frac{\alpha R}{(1-\alpha)R + \alpha R} v_{in}= \alpha v_{in}$

eqn358:$3600^\circ$

eqn359:$\alpha = 0$

eqn360:$\alpha = 1$

eqn361:$v_s$

eqn362: $\displaystyle v_{out} = -5\frac{\theta}{3600^\circ}$

eqn363:$v_{dif}$

eqn364:\includegraphics[scale=0.500000]{ckt8.1.ps}

eqn365:$v_{act}$

eqn366:$v_{des}$

eqn367:$v_{act}$

eqn368:$v_{des}$

eqn369:$v_{dif}$

eqn370:$v_{des}$

eqn371:$v_{act}$

eqn372:$v_{des}$

eqn373:$v_{dif}$

eqn374:$\theta$

eqn375:$v_{act}$

eqn376:$v_{act}$

eqn377:$v_{act}$

eqn378:\includegraphics[scale=0.500000]{ckt8.4.ps}

eqn379:$v_{act}$

eqn380:$v_{act}$

eqn381:$x$

eqn382:$v_{act}$

eqn383:$\theta$

eqn384:$\alpha$

eqn385:$v_{des}$

eqn386:$v_{des}$

eqn387:$v_{act}$

eqn388:$v_{act}$

eqn389:$R_a$

eqn390:$K_t$

eqn391:$K_e$

eqn392:$v_s$

eqn393:\includegraphics[scale=0.650000]{ckt9.3.ps}

eqn394:$J$

eqn395: $\displaystyle T=J\dot{\omega}$

eqn396: $\displaystyle E=K_e\omega$

eqn397:$T=K_ti$

eqn398: $\displaystyle T=K_ti=K_t\frac{v_s-E}{R_a}=K_t\frac{v_s-K_e\omega}{R_a}=\frac{K_t}{R_a}v_s-\frac{K_tK_e}{R_a}\omega=K_1v_s-K_2\omega$

eqn399: $\displaystyle K_1=\frac{K_t}{R_a}$

eqn400: $\displaystyle K_2=\frac{K_tK_E}{R_a}$

eqn401:$\theta$

eqn402: $\displaystyle J'\ddot{\theta}+K_2\dot{\theta}+K_1K_pA\theta=K_1K_PA\theta_{des}+T_w$

eqn403:$\bf A$

eqn404: $\displaystyle \frac{v_{dif}}{v_{act}}=\frac{R_F}{47\rm k}$

eqn405:$\bf J'$

eqn406:$\bf K_p$

eqn407: $\displaystyle v_\theta = K_p\theta$

eqn408:$\bf T_w$

eqn409: $\bf\theta_{des}$

eqn410: $\frac{d}{dt}\rightarrow s$

eqn411: $x(t)\rightarrow X(s)$

eqn412: $\displaystyle J's^2\Theta(s)+K_2s\Theta(s)+K_1K_pA\Theta(s)=K_1K_PA\Theta_{des}(s)+T_w(s)$

eqn413: $\displaystyle T_1(s)=\frac{\Theta(s)}{\Theta_{des}(s)}$

eqn414:$T_w=0$

eqn415: $\displaystyle T_2(s)=\frac{\Theta(s)}{T_w(s)}$

eqn416: $\Theta_{des}=0$

eqn417: $\displaystyle \Theta(s)=T_1(s)\Theta_{des}(s)+T_2(s)T_w(s)$

eqn418:$T_1$

eqn419:$T_2$

eqn420: $\displaystyle T_1=\frac{K_1K_pA}{J's^2+K2s+K_1K_pA}=\frac{\frac{K_1K_pA}{J'}}{s^2+\frac{K_2}{J'}s+\frac{K_1K_pA}{J'}}$

eqn421: $\displaystyle T_2=\frac{1}{J's^2+K2s+K_1K_pA}=\frac{\frac{1}{J'}}{s^2+\frac{K_2}{J'}s+\frac{K_1K_pA}{J'}}$

eqn422:$T_1=1$

eqn423:$T_w\neq 0$

eqn424: $\Delta\theta=\Delta\theta_{des}$

eqn425:$T_2$

eqn426:$\frac{1}{A}$

eqn427:$A$

eqn428: $\displaystyle s^2+\frac{K_2}{J'}s+\frac{K_1K_pA}{J'}=0$

eqn429: $\displaystyle \alpha=\frac{K_2}{2J'}$

eqn430: $\displaystyle \omega_0=\sqrt{\frac{K_1K_pA}{J'}}$

eqn431:$A$

eqn432: $\displaystyle v_{dif}= -220\left(\frac{v_{act}}{47}+\frac{v_{des}}{100}+\frac{15}{330}\right)$

eqn433: $\displaystyle v_{des}=-(2.13v_{act}+4.55)$

eqn434:$v_{act}$

eqn435:$v_{dif}$

eqn436:$v_{act}$

eqn437:$v_{des}$

eqn438:$R_F$

eqn439:$R_F$

eqn440:$v_{dif}$

eqn441:$R_F$

eqn442:$R_F$

eqn443:$R_F$

eqn444:$R_F$

eqn445:$R_F$

eqn446:$R_F$

eqn447:$A$

eqn448:$R_F$

eqn449:$R_F$

eqn450:$R_F$

eqn451:$R_F$

eqn452:$R_F$

eqn453:$v_{des}$

eqn454:$R_F$

eqn455:$R_F$

eqn456:$R_F$

eqn457:$\omega_d$

eqn458:$Q$

eqn459:$A$

eqn460:$R_F$

eqn461:\includegraphics[scale=0.900000]{camera2.ps}

eqn462:\includegraphics[scale=0.900000]{camera3.ps}

eqn463:\includegraphics[scale=0.500000]{disk24.ps}

eqn464:\includegraphics[scale=1.000000]{camera.ps}

eqn465:$v_{video}$

eqn466:\includegraphics[scale=0.500000]{ckt10.1.ps}

eqn467:$v_{sync}$

eqn468:$v_{sync}$

eqn469:\includegraphics[scale=0.650000]{ckt10.2.ps}

eqn470:$v_{sync}$

eqn471:$v_{video}$

eqn472:\includegraphics[scale=0.650000]{ckt10.5.ps}

eqn473:$v_{drive}$

eqn474:$v_{video}$

eqn475:$v_{drive}$

eqn476:$v_{drive}$

eqn477:$v_{video}$

eqn478:$v_{drive}$

eqn479:$v_{video}$

eqn480:$v_{video}$

eqn481:\includegraphics[scale=0.650000]{ckt11.1.ps}

eqn482:$v_{video}$

eqn483:$v_{drive}$

eqn484:$v_{sync15}$

eqn485:$v_{rsync}$

eqn486:$\mu$

eqn487:$\Omega$

eqn488:$\Omega$

eqn489:$\Omega$

eqn490:$\Omega$

eqn491:$\Omega$

eqn492:$\Omega$

eqn493:\includegraphics[scale=0.500000]{ckt11.8.ps}

eqn494:\includegraphics[scale=0.500000]{ckt11.5.ps}

eqn495:$R_F$

eqn496:$\Omega$

eqn497:$\Omega$

eqn498:\includegraphics[scale=0.650000]{ckt11.9.ps}

eqn499:$\Omega$

eqn500:$\Omega$

eqn501:$\Omega$

eqn502:\includegraphics[scale=0.650000]{ckt11.10.ps}

eqn503:$v_s$

eqn504:$v_f$

eqn505:$v_{des}$

eqn506:\includegraphics[scale=0.500000]{ckt11.5.ps}

eqn507:\includegraphics[scale=0.650000]{ckt11.4.ps}

eqn508:$v_{sync15}$

eqn509:$v_d$

eqn510:$v_d$

eqn511:$v_d$

eqn512:$v_d$

eqn513:\includegraphics[scale=0.650000]{dip14.ps}

eqn514:\includegraphics[scale=0.650000]{ckt11.2.ps}

eqn515:\includegraphics[scale=0.650000]{ckt11.11.ps}

eqn516:$v_d$

eqn517:$v_f$

eqn518:$v_f$

eqn519:$v_{rsync}$

eqn520:$v_{sync15}$

eqn521:$v_{rsync}$

eqn522:$v_f$

eqn523:$v_{rsync}$

eqn524:$v_{drive}$

eqn525:$v_{video}$

eqn526:$v_{video}$

eqn527:$v_{sync15}$

eqn528:$v_{drive}$

eqn529:$v_{rsync}$

eqn530:$v_f$

eqn531:$v_{sync15}$

eqn532:$v_{rsync}$

eqn533:$v_f$

eqn534:$R_2$

eqn535:$\Omega$

eqn536:$\Omega$

End of File



next up previous
Next: About this document ...
J.D. Wise 2010-01-15