ELEC 243

Problem Set 2

Homework Section

Due: January 30, 2015

Homework Problems.

H2.1 Consider the triangle function $\Lambda(t)$:

$$\Lambda(t) = \left\{ egin{array}{ll} 0 & |t| > rac{1}{2} \ 2 - 4|t| & |t| < rac{1}{2} \end{array}
ight.$$

Decompose the function $\Lambda(t)$ into a linear combination of scaled and shifted versions of the unit ramp function r(t).

- **H2.2** A system S with an input signal x(t) produces an output signal $S[x(t)] = k \frac{d}{dt} x(t)$. Prove that the system is linear.
- **H2.3** The signal s(t) shown is the input to a linear, time invarient system.

Express the signal as a linear combination of delayed and weighted step functions and ramps (the integral of the step function). Sketch your decomposition.

The response of the system to a step function is an impulse of area 1 at time t=0:

Find the output of the system, w(t), when the input is s(t). Give both an analytical expression and a sketch of the output.

H2.4 Consider a system S that is linear, and has real-valued outputs for real-valued inputs. Show that if the input is the real part of a complex exponential, the output is the real part of the system's output to the complex exponential: $S[Re(Ae^{j2\pi ft})] = Re[S(Ae^{j2\pi ft})]$. In other words, in the diagram below, show that the two systems can be exchanged.

H2.5 Two systems are connected in the feedback configuration as shown below. The feed-forward system is a simple amplifier: $S_1[x(t)] = G \cdot x(t)$, where G is a constant greater than 1, and the output of the feedback system $S_2[\cdot]$ is simply 1/10 of its input (an attenuator). Find the overall system response $\frac{y(t)}{x(t)}$. Approximate the system response if the gain G is very much greater than 1, say 10,000.

H2.6 Consider a cascade connection of two systems.

For the particular system functions given below, determine whether the interchanging the order of the systems changes the overall system function or output y(t).

Case	$S_1[\cdot]$	$S_2[\cdot]$
Α	x(t)	$G\cdot x(t)$
В	$\frac{d}{dt}x(t)$	$x(t-\tau), \tau > 0$
С	$G \cdot x(t)$	x(t) + b

H2.7 As promised, here is a problem involving the turkey specific heat capacity measurement system we discussed in class. Recall that the behavior of the system is described by the following equation:

$$mc\frac{d}{dt}\Delta T + \frac{1}{\theta}\Delta T = P_{in}$$

where

 $\Delta T = T - T_0$

T = temperature of the turkey

 T_0 = ambient temperature

m = mass of the turkey

c = specific heat capacity of the turkey

 θ = oven to ambient thermal resistance

 P_{in} = input power to the oven

Continued on next page.

To perform the measurement, 500 W of power was applied to the oven (i.e. $P_{in} = 500u(t)$) and the temperature of the turkey was measured every 20 min. The results are shown in the table on the right. The ambient temperature was 25°C and the mass of the turkey was 8 kg.

t (min)	T (°C)
0	25.0
20	45.1
40	63.5
60	80.3
80	95.7
100	109.7
120	122.6

Based on these measurements, find the specific heat capacity of the turkey (c) and the thermal resistance of the oven (θ) .