20 MHz OSCILLOSCOPE

INSTRUCTION MANUAL

LS 1020

LEADER ELECTRONICS CORP.
OSCILLOSCOPE

LS 1020

INSTRUCTION MANUAL

TABLE OF CONTENTS

1. INTRODUCTION ... 1-1
 1.1 For Safety's Sake 1-1
 1.2 Operating Precautions 1-2
 1.2.1 Line Voltage and Fuse 1-2
 1.2.2 Maximum Allowable Input Voltage 1-2
 1.2.3 Installation 1-3
 1.2.4 CRT Intensity 1-3

2. SPECIFICATIONS .. 2-1
 2.1 Description ... 2-1
 2.2 Features ... 2-1
 2.3 Specifications 2-2
 2.3.1 LS 1020 Oscilloscope 2-2
 2.3.2 LP-051 Low Capacitance Probe 2-4

3. PANEL DESCRIPTION 3-1
 3.1 Exterior ... 3-1
 3.2 Front Panel .. 3-2
 3.2.1 Display Block 3-2
 3.2.2 Vertical Block 3-3
 3.2.3 Trigger Block 3-5
 3.2.4 Sweep Block 3-7
 3.3 Rear Panel ... 3-8

4. BASIC OPERATING PROCEDURES 4-1
 4.1 Displaying Trace 4-1
 4.2 Using the Low Capacitance Probe 4-2
 4.2.1 Appearance and Name 4-2
 4.2.2 Probe Adjustment 4-2
 4.3 Connecting Signal 4-3
 4.3.1 Direct Connection 4-3
 4.3.2 Using the Low Capacitance Probe 4-4
 4.4 Single-Trace Operation 4-5
 4.5 Dual-Trace Operation 4-6
4.6 Triggering for Stable Display ... 4-7
 4.6.1 Trigger Mode Selection .. 4-7
 4.6.2 Trigger Source Selection ... 4-8
 4.6.3 Trigger Coupling Selection 4-9
 4.6.4 Trigger Point Setting ... 4-10
4.7 Horizontal Magnification ... 4-11

5. MEASUREMENT APPLICATIONS ... 5-1
 5.1 DC Voltage Measurements ... 5-1
 5.2 AC Voltage Measurements ... 5-2
 5.3 Time Interval Measurements ... 5-3
 5.4 Frequency Measurements .. 5-4
 5.5 Pulse Rise Time Measurements 5-5
 5.6 Observing Composite Video Signal 5-6
 5.7 Phase Difference Measurements 5-7
 5.7.1 Dual-Trace Method .. 5-7
 5.7.2 X-Y Display Method ... 5-8

6. MAINTENANCE ... 6-1
 6.1 Cleaning .. 6-1
 6.2 Periodical Calibration ... 6-1
1. INTRODUCTION

Thank you for purchasing our product. Please read the instruction manual carefully before operating this instrument.

1.1 For Safety's Sake

Explanation of the Terms

WARNING ... The WARNING sign calls attention to abnormal conditions or dangerous practices that could result in personal injury or death.

[CAUTION] ... The CAUTION sign calls attention to abnormal conditions or dangerous practices that could result in damage to the instrument or other property.

Cautions on operation appear in the instruction manual. Read the manual carefully to ensure correct operation.

WARNING

- Do not remove any cases or covers.
 The high-voltage section inside this instrument can cause electrical shock.
- Do not operate this instrument and connected units in a volatile or flammable atmosphere.
 An explosive can result.
- Do not insert metal objects (e.g., wire, pin) into the vents.
 Otherwise, you may damage the instrument or suffer electrical shock.
- Connect this instrument to the rated power line voltage.
 Excessive voltage can cause fire.
- Do not touch the high-voltage section with hand directly when measuring it.
 You may suffer electrical shock.
- Do not connect this instrument to equipment whose chassis has electrical potential to ground (i.e., transformerless equipment).
 Otherwise, you may damage the instrument or suffer electrical shock.
1.2 Operating Precautions

1.2.1 Line Voltage and Fuse [CAUTION]

Confirm that the power line voltage is correct before connecting the power cord. The voltage range and fuse rating are indicated on the rear panel. The instrument must be connected to the rated line voltage and line frequency of 50 Hz or 60 Hz.

When replacing the fuse, turn the power switch off and disconnect the power cord from the mains. Use specified fuse only.

<table>
<thead>
<tr>
<th>Rated Voltage</th>
<th>Voltage Range</th>
<th>Fuse Rating</th>
<th>Leader Parts Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 V</td>
<td>90 to 110 V</td>
<td>1 A, time-lag</td>
<td>4363765006</td>
</tr>
<tr>
<td>120 V</td>
<td>108 to 132 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220 V</td>
<td>198 to 242 V</td>
<td>0.5 A, time-lag</td>
<td>4363750006</td>
</tr>
</tbody>
</table>

1.2.2 Maximum Allowable Input Voltage [CAUTION]

The maximum allowable input voltage to the input connectors and probe is shown in Table below. Do not apply excessive voltage to prevent damage the instrument.

<table>
<thead>
<tr>
<th>Input Connector</th>
<th>Maximum Allowable Input Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1 OR X IN</td>
<td>400 V peak (DC + AC peak)</td>
</tr>
<tr>
<td>CH2 OR Y IN</td>
<td>400 V peak (DC + AC peak)</td>
</tr>
<tr>
<td>EXT TRIG IN</td>
<td>400 V peak (DC + AC peak)</td>
</tr>
<tr>
<td>Probe</td>
<td>600 V peak (DC + AC peak)</td>
</tr>
</tbody>
</table>

The maximum allowable input voltage reduces when 1 kHz or higher frequency is applied. The maximum input voltage of "400 V peak (DC + AC peak)" is as shown in Figure 1-1.

![Figure 1-1](image)

Figure 1-1
1.2.3 Installation [CAUTION]

Do not use the instrument in the following environments.

• High temperature environments
 Do not place the instrument under direct sunlight or near a heater (e.g., stove). Do not move the instrument from cold to warm environment abruptly, it may cause condensation.
 Operating temperature range: 0 to 40°C

• High humidity environments
 Do not place the instrument in the high humidity environment (e.g., bathroom, near a humidor).
 Operating humidity range: 10 to 85 % RH

• Dusty environments

• Excessive magnetic fields
 Do not place the instrument by the strong magnetic field (e.g., high-power transformer). Waveform distortion or tilt may occur.

1.2.4 CRT Intensity [CAUTION]

Do not leave the instrument with high intensity or displaying sharp spot. The CRT screen may be burned-in or its life may reduce.
2. SPECIFICATIONS

2.1 Description

The Model LS 1020 Dual-Trace Portable Oscilloscope with 6-inch rectangular, internal graticule CRT features a bandwidth of DC to 20 MHz, maximum deflection factor of 0.5 mV/div (5MHz), and maximum sweep speed of 50 μs/div. Various functions (e.g., TV sync separator, variable holdoff, X-Y display mode) allow this oscilloscope for educational use as well as production line and service applications of TVs, VTRs, and audio products.

2.2 Features

• High-sensitivity of 0.5 mV/div
 Enables measurement of low level signals (e.g., power supply ripple, noise components).

• TV-V, TV-H trigger
 Allows TV video signal observation. Stable display can be obtained by selecting the vertical or horizontal sync signal of the video signal regardless of the TIME/DIV switch setting.

• Variable holdoff
 The variable holdoff time (from the sweep end to sweep start) can display complex waveform stably.

• ALT trigger
 Displays asynchronous waveforms stably.

• X-Y display
 Offers X-Y oscilloscope capability: CH1 for X axis, CH2 for Y axis.

• Scale illumination
 Permits operating the oscilloscope in dark locations, or photographing the screen.

• CH1 OUTPUT connector
 Outputs buffered signal applied to the CH1 input connector. Therefore, the oscilloscope can be used as a wideband, high-sensitivity amplifier.
2.3 Specifications

2.3.1 LS 1020 Oscilloscope

CRT
- **Type**: 150 mm, rectangular, internal graticule
- **Accelerating Potential**: 2 kV, regulated
- **Effective Display Area**: 8 x 10 divisions (1 div = 10 mm)
- **Beam rotator**: Adjustment on the front panel
- **Scale Illumination**: 3 steps
- **Intensity Modulation**: Positive TTL level reduces brightness

Vertical Axis (CH1, CH2)
- **Deflection Factor**: 5 mV/div to 5 V/div
- **0.5 mV/div to 2 mV/div (X10 MAG on)**
- **1-2-5 sequence, 10 ranges, continuous variable between ranges**
- **Accuracy**: ±3 %
- **±5 % (X10 MAG on)**

Bandwidth
- **DC Coupled**: DC to 20 MHz (8 div ref), -3 dB
- **AC Coupled**: DC to 5 MHz (8 div ref), -3 dB (X10 MAG on)
- **Rise Time**: 17.5 ns
- **70 ns (X10 MAG on)**
- **Input Impedance**: 1 MΩ ±1.5 %
- **30 pF ±5 pF (deviation: ±2 pF)**

Input Coupling
- **AC, GND, DC**

Maximum Input Voltage
- 400 V peak

Operation Mode
- **CH1, CH2, CHOP, ALT, ADD**
- **Polarity**: CH2 only
- **CH1 OUT**: Approx. 50 mV/div (into 50 Ω)
- DC to 20 MHz, -3 dB

Horizontal Axis
- **Sweep Mode**: Triggered sweep, automatic sweep
- **Sweep Time**: 0.1 μs/div to 0.2 s/div
- **1-2-5 sequence, 20 ranges, continuous variable between ranges**
- **Accuracy**: ±3 %
- **Magnifier**: 10 times ±5 %
- (0.1 and 0.2 μs/div ranges are not calibrated.)
- **Maximum Sweep Speed**: 50 ns/div (X10 MAG on)
Triggerring
Holdoff Variable Range
Signal Source
Coupling
Trigger Slope
Sensitivity

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Internal</th>
<th>External</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORM</td>
<td>30 Hz to 10 MHz</td>
<td>0.5 div</td>
</tr>
<tr>
<td></td>
<td>2 Hz to 20 MHz</td>
<td>1.5 div</td>
</tr>
<tr>
<td>AUTO</td>
<td>30 Hz to 10 MHz</td>
<td>0.5 div</td>
</tr>
<tr>
<td></td>
<td>30 Hz to 20 MHz</td>
<td>1.5 div</td>
</tr>
</tbody>
</table>

TV triggering
- Triggered by sync signal of composite video signal.
- To select the trigger polarity to match the signal polarity, use SLOPE switch.

X-Y Mode
- Input Connector: CH1: X axis, CH2: Y axis
- Deflection Factor: Same as the vertical axes
- X Axis Bandwidth: DC or 10 Hz to 1 MHz (8 div ref), -3 dB
- X-Y Phase Accuracy: ≤3° at 100 kHz

Calibrator
- Output Voltage: 0.5 Vp-p ±2 %
- Frequency: Approx. 1 kHz, square wave

Environmental Conditions
- Operating:
 - Temperature: 0 to 40°C
 - Humidity: 10 to 85 % RH
- Spec-Guaranteed:
 - Temperature: 10 to 35°C
 - Humidity: 10 to 85 % RH

Others
- Power Requirements: 100 V, 120 V, 220 V ±10 % 50/60 Hz
- Power Consumption: 50 VA
- Size and Weight: 310 (W) x 150 (H) x 375 (D) mm, 8.5 kg

Front View
Rear View
Accessories

LP-051 Low Capacitance Probe 2
(X10, X1 selectable)
Fuse 1
Instruction Manual 1

2.3.2 LP-051 Low Capacitance Probe

Applicable Oscilloscope Input Resistance: 1 MΩ, ±2 %
Input Capacitance: 20 to 35 pF

<table>
<thead>
<tr>
<th></th>
<th>X10</th>
<th>X1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attenuation</td>
<td>1/10, ±2 %</td>
<td>1/1</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>DC to 50 MHz</td>
<td>DC to 6 MHz</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>10 MΩ</td>
<td>1 MΩ</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>Approx. 20 pF</td>
<td>Approx. 200 pF</td>
</tr>
<tr>
<td>Maximum Input Voltage</td>
<td>600 VDC</td>
<td></td>
</tr>
</tbody>
</table>
3. PANEL DESCRIPTION

3.1 Exterior

① Handle

② Bottom feet
 Tilt stand angles the oscilloscope for bench top operation.

③ Legs
 Provides a winding the power cord, and supports the oscilloscope for vertical operation.

④ Fuse
 To remove fuse, rotate the cap counterclockwise using a Phillips screwdriver. The fuse can be removed with the cap.
 When replacing the fuse, confirm that the type and rating indicated on the rear panel.

⑤ Power cord
 Connect the power cord to the rated power line voltage.
3.2 Front Panel

3.2.1 Display Block

6 POWER ON/OFF switch
 Push the switch in to turn power on. The pilot lamp lights.
 Release the switch to turn power off.

7 Pilot lamp
 Indicates the oscilloscope is powered on.

8 ILLUM switch
 Controls brightness of the scale illuminator. Three positions (i.e., off, mid, high) are provided.

9 ROTATION adjustment
 Compensates slight tilting of the trace due to terrestrial magnetism when
 the oscilloscope is relocated. Adjust the trace with respect to the horizontal
 graticule line.

10 FOCUS control
 Adjusts trace sharpness.

11 INTEN control
 Controls brightness of the displayed waveform.
 Clockwise rotation increases brightness; counterclockwise rotation
 decreases brightness.
Graticule
The graticule is inscribed on the CRT inner surface for parallax-free measurements. Display area is 8 x 10 divisions (1 div = 10 mm). Sub-scales at interval of 0.2 division are provided on the vertical and horizontal center lines. The vertical deflection factor and horizontal sweep time is calibrated with respect to this graticule. The supplemental scales (0, 10, 90, and 100%) are provided for measuring the rise and fall times of pulse.

3.2.2 Vertical Block

CH1 POSITION control
Clockwise rotation moves the waveform up.

VARIABLE control, PULL X10 MAG switch (CH1 or X)
This knob has following two functions.
VARIABLE: Provides continuously variable between the setting of the CH1 VOLTS/DIV switch. Counterclockwise rotation decreases sensitivity. Set this control to the CAL position for voltage measurements.
PULL X10 MAG: Pulling this switch out increases the CH1 vertical deflection factor 10 times. By this setting, bandwidth reduces to 5 MHz (-3 dB). Noise caused by an amplifier may be increased. Normally, push this knob in.

VOLTS/DIV switch (CH1 or X)
Selects the deflection factor of the input signal applied to the CH1 OR X IN connector. The 10 ranges, 5 mV/div to 5 V/div, are provided. In the X-Y display mode, this switch selects the X axis deflection factor.

CH1 OR X IN connector
For applying an input signal to the CH1 vertical amplifier, or X-axis amplifier during X-Y operation.

[CAUTION] Do not apply excessive voltage to the connector. The maximum allowable input voltage is 400 V peak.

Ground terminal
@ VARIABLE control, PULL X10 MAG switch (CH2 or Y)
This knob has following two functions.
VARIABLE: Provides continuously variable between the setting of the CH2 VOLTS/DIV switch. Counterclockwise rotation decreases sensitivity.
Set this control to the CAL position for voltage measurements.
PULL X10 MAG: Pulling this switch out increases the CH2 vertical deflection factor 10 times. By this setting, bandwidth reduces to 5 MHz (-3 dB). Noise caused by an amplifier may be increased. Normally, push this knob in.

@ VOLTS/DIV switch (CH2 or Y)
Selects the deflection factor of the input signal applied to the CH2 OR Y IN connector.
The 10 ranges, 5 mV/div to 5 V/div, are provided.
In the X-Y display mode, this switch selects the Y axis deflection factor.

@ CH2 OR Y IN connector
For applying an input signal to the CH2 vertical amplifier, or Y-axis amplifier during X-Y operation.

[CAUTION] Do not apply excessive voltage to the connector. The maximum allowable input voltage is 400 V peak.

@ AC-GND-DC switch (CH2 or Y)
Selects the method of coupling the input signal applied to the CH2 OR Y IN connector.
DC: DC coupled.
AC: AC coupled. A capacitor block the DC component.
GND: The amplifier input is grounded, and the CH2 OR Y IN connector is opened.

@ CAL 0.5 Vp-p Terminal
Outputs probe calibration signal. The frequency is about 1 kHz.

@ CH2 POSITION control, PULL CH2 INV
Clockwise rotation moves the waveform up.
By pulling this knob, the CH2 waveform is inverted; top of the waveform for negative, bottom of the waveform for positive. Normally, push this knob in for normal polarity operation.
V MODE switch
Display mode selector for vertical axis.
CH1: Displays CH1 input signal only.
To trigger with internal source, set the TRIG SOURCE switch to CH1.
CH2: Displays CH2 input signal only.
To trigger with internal source, set the TRIG SOURCE switch to CH2.
CHOP: Switches and displays CH1 and CH2 input signals about 250 kHz rate regardless of the TIME/DIV switch setting. Use this mode for the TIME/DIV setting of 0.5 ms/div or lower.
ALT: Displays CH1 and CH2 input signals alternately every sweep. Use this mode for the TIME/DIV setting of 0.5 ms/div or higher.
ADD: Algebraically adds and displays CH1 and CH2 input signals. When the CH2 POSITION control is pulled out (INV), the subtracted signal is displayed.

AC-GND-DC switch (CH1 or X)
Selects the method of coupling the input signal applied to the CH1 OR X IN connector.
DC: DC coupled.
AC: AC coupled. A capacitor block the DC component.
GND: The amplifier input is grounded, and the CH1 OR X IN connector is opened.

3.2.3 Trigger Block

SLOPE +/-, TV POL switch
Selects the positive or negative of the trigger signal for starting sweep.

LEVEL control
Sets the trigger point on the waveform at which the sweep is triggered. Counterclockwise rotation towards the trigger point negative; clockwise rotation towards the trigger point positive.
HOLDOFF control, PULL NORM/PUSH AUTO switch
This knob has following two functions.
HOLDOFF: Adjusts holdoff time (i.e., from the sweep end to sweep start). Rotating clockwise increases the holdoff time. Normally, set the knob fully counterclockwise for NORM position.
NORM/AUTO: Selects the sweep mode.
When the AUTO (knob is pushed in) is selected with no trigger signal presents, the sweep free runs and trace is displayed.
When the NORM (knob is pulled out) is selected, trace is only displayed when trigger signal presents.

EXT TRIG INPUT connector
To apply external trigger source.

[CAUTION] Do not apply excessive voltage to the connector. The maximum allowable input voltage is 400 V peak.

SOURCE switch
Selects source of trigger signal.
The trigger signal is automatically selected by setting the V MODE switch.

<table>
<thead>
<tr>
<th>V MODE</th>
<th>Trigger Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1</td>
<td>CH1</td>
</tr>
<tr>
<td>CH2</td>
<td>CH2</td>
</tr>
<tr>
<td>CHOP</td>
<td>CHOP signal</td>
</tr>
<tr>
<td>ALT</td>
<td>CH1, CH2 respectively</td>
</tr>
<tr>
<td>ADD</td>
<td>CH2</td>
</tr>
</tbody>
</table>

CH1: Selects the CH1 signal for triggering.
CH2: Selects the CH2 signal for triggering.
LINE: Selects the power line signal for triggering.
EXT: Selects the signal applied to the EXT TRIG INPUT connector for triggering.

COUPLING switch
Selects coupling of trigger signal.
AC: Accepts signal for triggering above 10 Hz. Normally, set the coupling to AC.
HF-REJ: Rejects signal above about 100 kHz. This coupling is useful to observe low frequency signal with high-frequency components since it is rejected.
DC: Accepts all trigger signals including DC component. This coupling is useful to observe below 10 Hz signal.
TV-V: Accepts vertical sync signal of TV video signal.
TV-H: Accepts horizontal sync signal of TV video signal.
3.2.4 Sweep Block

慎重 H POSITION control, PULL X10 MAG switch
This knob has following two functions.

H POSITION: Clockwise rotation moves the waveform to the right.
In the X-Y display mode, this knob moves the waveform horizontally.

X10 MAG: Pulling this switch out magnifies the displayed waveform 10 times horizontally.

慎重 TIME VARIABLE control
Provides continuously variable between the setting of the TIME/DIV switch.
Counterclockwise rotation reduces sweep speed.
When making time measurements, set this control to the CAL.

慎重 TIME/DIV switch
Selects the sweep time.
The sweep time is calibrated with respect to the graticule per division.
By selecting the X-Y position, this oscilloscope can be used as a X-Y oscilloscope (CH1 for X axis, CH2 for Y axis).
3.3 Rear Panel

 choked)

 CH1 OUTPUT connector
 Outputs the signal applied to the CH1 OR X IN connector.

 Z AXIS INPUT connector
 Used for intensity modulation.
 Positive TTL level reduces display brightness.
4. BASIC OPERATING PROCEDURES

This section describes a basic operating procedure.

4.1 Displaying Trace

This section describes a display procedure of the CAL signal. These settings can also be used for performance check.

- Procedure
 (1) Set the controls as follows.
 Display block
 ILLUM switch \quad As desired
 ROTATION adjustment \quad Center
 FOCUS control \quad Center
 INTEN control \quad Center
 Vertical block
 V MODE switch \quad ALT
 CH1, CH2 VOLTS/DIV switches \quad 0.1 V
 CH1, CH2 V VARIABLE controls \quad CAL, pushed in
 CH1, CH2 V POSITION controls \quad Center, pushed in
 CH1, CH2 AC-GND-DC switches \quad AC
 CH1 OR X IN connector \quad Apply CAL signal through the X1 probe
 Sweep block
 TIME/DIV switch \quad 0.5 ms
 TIME VARIABLE control \quad CAL
 H POSITION control \quad Center, pushed in
 Trigger block
 TRIG SLOPE switch \quad +
 TRIG LEVEL control \quad Center
 HOLDOFF control \quad NORM, pushed in
 TRIG SOURCE switch \quad CH1
 TRIG COUPLING switch \quad AC
 (2) Connect the power cord to the rated power line voltage.
 (3) Press the POWER switch. The pilot lamp lights. The square wave and CH2 trace are displayed about 10 seconds after as shown in Figure 4-1.
 (4) Adjust the FOCUS control for optimum trace sharpness.
 (5) If the trace is tilted, adjust ROTATION adjustment using a flat-head screwdriver so that the trace is paralleled to a horizontal graticule line.
4.2 Using the Low Capacitance Probe

The low capacitance probe with selectable impedance of X1 and X10 is provided as an accessory.

4.2.1 Appearance and Name

![Probe Diagram]

Figure 4-2

4.2.2 Probe Adjustment

- **Procedure**

 (1) Set the switch to X10 position.

 (2) Refer to Section "4.1 Displaying Trace" and set the controls. Set the CH1 and CH2 VOLTS/DIV switches to 10 mV.

 (3) Connect the probe to the CH1 OR X IN connector, and connect the probe tip to the CAL terminal.
(4) Adjust the trimmer for a best flat-top square wave.

(5) Connect the other probe to the CH2 OR Y IN connector.
 Set the TRIG SOURCE switch to CH2.
 Adjust the trimmer for a best flat-top square wave.

![Waveform Diagram]

Figure 4-3

4.3 Connecting Signal

There are two methods for connecting a signal to the oscilloscope: direct connection using a conventional cable (e.g., coaxial cable, wire lead), and low capacitance probe.

4.3.1 Direct Connection

When using a coaxial cable or wire lead to apply a signal, consider that the following conditions.

(1) Using a Lead Wire
 A wire lead may be used in the following conditions:
 - signal level is high,
 - signal frequency is low (<100 kHz), or
 - source impedance is low.

 Using the wire lead under the conditions other than mentioned above may result improper waveform display since it picks up noise or hum components.
 Use shielded cable (e.g., coaxial cable) or low capacitance probe in this case.
 When connecting the wire lead to the oscilloscope, use the LC-1585 BNC Adapter (optional accessory).

(2) Using a Coaxial Cable
 When a signal source has a coaxial connector, a coaxial cable with connectors can be used.
 When the source impedance is high or signal frequency is above 100 kHz, waveform distortion or amplitude reduction may occur due to the loading error.
 Use the low capacitance probe in this case.
4.3.2 Using the Low Capacitance Probe

Use the low capacitance probe with X10 setting to reduce influence by noise or loading error. The probe is convenient to connect a device under test without connector.

The probe has two impedance positions, X1 and X10.

(1) Selecting X1 or X10
 Slide the switch on the probe to X1 or X10.

(2) Using X10 setting
 In the X10 setting, the signal is divided by 10 before being applied to the oscilloscope. Multiply the displayed amplitude 10 times to obtain correct value.
 Since the probe input capacitance is 20 pF, it greatly reduce a loading error.

(3) Using X1 setting
 In the X1 setting, the probe input capacitance is approximately 200 pF. Therefore, the loading error may result when measuring high impedance source or signal frequency of 100 kHz or higher.

Connect the ground clip close to the measurement point.
4.4 Single-Trace Operation

This section describes the single-trace operation mode. In general, CH1 is used in this case.

- Procedure
 (1) Set the controls as follows.
 Refer to Section "4.1 Displaying Trace" and set other controls.
 Vertical block
 V MODE switch
 CH1 VARIABLE control
 CH1 VOLTS/DIV switch
 CH1 AC-GND-DC switch
 CH1
 CAL, pushed in
 5 V
 AC (for AC voltage measurement)
 DC (for DC voltage measurement)
 Sweep block
 TIME VARIABLE control
 TIME/DIV switch
 CAL
 1 ms
 Trigger block
 TRIG SLOPE switch
 TRIG LEVEL control
 HOLDOFF control
 TRIG SOURCE switch
 TRIG COUPLING switch
 +
 Center
 NORM, pushed in
 CH1
 AC
 (2) Position the trace to the horizontal center graticule line by using the V POSITION control.
 (3) Connect the signal to the CH1 OR X IN connector by using the probe or cable.
 (4) Set the CH1 VOLTS/DIV switch to obtain suitable waveform amplitude.
 (5) Set TIME/DIV switch to obtain several cycles of waveforms.
 Adjust the TRIG LEVEL control as required to display a stable waveform.

![Figure 4-4](image_url)

Figure 4-4

4-5
4.5 Dual-Trace Operation

The CH1 and CH2 input signals are electrically switched and displayed. This mode is used to observe amplitude or time relationship between signals. This section describes the dual-trace operation mode.

• Procedure
 (1) Set the controls as follows.
 Refer to Section "4.1 Displaying Trace" and set other controls.
 Vertical block
 V MODE switch
 Select ALT for higher frequency
 Select CHOP for lower frequency
 CH1, CH2 VARIABLE controls
 CAL, pushed in
 CH1, CH2 VOLTS/DIV switches
 5 V
 CH1, CH2 AC-GND-DC switches
 AC (for AC voltage measurement)
 DC (for DC voltage measurement)
 Sweep block
 TIME VARIABLE control
 CAL
 TIME/DIV switch
 1 ms
 Trigger block
 TRIG SLOPE switch
 +
 TRIG LEVEL control
 Center
 HOLDOFF control
 NORM, pushed in
 TRIG SOURCE switch
 CH1
 TRIG COUPLING switch
 AC

 (2) When the DC signals are input, position the two traces to the graticule center by using the CH1 and CH2 V POSITION controls.
When the AC signals are input, position the CH1 waveform 2 divisions above the graticule center by using CH1 V POSITION control; CH2 waveform 2 division below the graticule center by using CH2 V POSITION control.
 (3) Apply the reference signal to the CH1 OR X IN connector, and signal to be measured to the CH2 OR Y IN connector.
 (4) Set the CH1 and CH2 VOLTS/DIV and TIME/DIV switches to obtain suitable waveform amplitude.

![Figure 4-5](image-url)
4.6 Triggering for Stable Display

When observing a waveform, triggering is really important to obtain a stable display. This section describes a triggering procedure to display stable waveform. Table 4-1 lists the triggering procedure. Refer to Sections "4.6.1 Trigger Mode Selection" through "4.6.4 Trigger Point Setting" for detail.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Switch/Control</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger Mode Selection</td>
<td>PULL NORM/PUSH AUTO</td>
<td>AUTO</td>
</tr>
<tr>
<td>(Section 4.6.1)</td>
<td>(HOLDOFF control)</td>
<td>NORM</td>
</tr>
<tr>
<td>Trigger Source Selection</td>
<td>SOURCE switch</td>
<td>ALT (Internal)</td>
</tr>
<tr>
<td>(Section 4.6.2)</td>
<td></td>
<td>CH1 (Internal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH2 (Internal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LINE (Line)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXT (External)</td>
</tr>
<tr>
<td>Trigger Coupling Selection</td>
<td>COUPLING switch</td>
<td>AC</td>
</tr>
<tr>
<td>(Section 4.6.3)</td>
<td></td>
<td>HF-REJ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TV-V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TV-H</td>
</tr>
<tr>
<td>Trigger Point Setting</td>
<td>LEVEL control</td>
<td>LEVEL</td>
</tr>
<tr>
<td>(Section 4.6.4)</td>
<td>SLOPE switch</td>
<td>+,-</td>
</tr>
<tr>
<td>Trigger Point</td>
<td>HOLDOFF control</td>
<td>HOLDOFF</td>
</tr>
<tr>
<td>Holdoff Time</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following control settings can be used to display a simple waveform.

- **PULL NORM/PUSH AUTO**: AUTO
- **SOURCE**: CH1 or CH2
- **COUPLING**: AC
- **LEVEL**: Center

4.6.1 Trigger Mode Selection

1. **AUTO**
 - Push the HOLDOFF knob in.
 - This mode is used for displaying above 30 Hz.
 - The sweep free runs in the following conditions:
 - no signal is applied,
 - signal frequency is below 30 Hz, or
 - incorrect trigger setting is made.

2. **NORM**
 - Pull the HOLDOFF knob out.
 - The sweep occurs when a signal is input, and proper trigger setting is made.
4.6.2 Trigger Source Selection

Use the SOURCE switch to select source of trigger signal.

(1) Internal Trigger Source (ALT, CH1, CH2)
Normally, select the internal source for triggering.

Single-trace mode:
Select the CH1 or CH2 corresponding to the vertical input channel.
ALT selects the CH1 or CH2 automatically according to the V MODE switch setting.

Dual-trace mode:
Select the CH1 or CH2 corresponding to the vertical input channel used as a reference.
When synchronous signals (e.g., input and output of a frequency divider) are applied to the CH1 and CH2 input connectors, select the lower frequency signal as a reference.
When asynchronous signals are applied to the CH1 and CH2 input connectors, selected channel signal is only triggered. To trigger both signals, set the V MODE and SOURCE switches to ALT.

(2) External Trigger Source (EXT)
When using a signal other than internal or line source for triggering, apply the signal to the EXT TRIG IN connector.

(3) Power Line Trigger (LINE)
This triggering is useful for observing the signal related to a power line frequency.

Figure 4-6

Select lower frequency signal for triggering
4.6.3 Trigger Coupling Selection

Use COUPLING switch to select coupling of trigger signal.

(1) Conventional Waveform Observation
Select the AC.
Since AC component of the trigger signal is blocked by a capacitor, above 10 Hz signal is triggered. The proper triggering can be made even DC component on the signal drifts.
Select the DC to observe below 10 Hz signal.

(2) Displaying Noisy Signal
If displayed waveform is unstable due to noise components on the trigger signal, select the HF-REJ for a stable display.
Since the trigger signal is low-pass filtered to reject above 100 kHz components, a stable display can be obtained.

![Diagram showing the process of filtering noise from a signal](image)

Figure 4-7

(3) Displaying TV Video Composite Signal
Since the video signal contains both horizontal and vertical sync signals, triggering is relatively difficult.
In this mode, the horizontal or vertical sync signal is picked up from the video signal and applied to the trigger circuit for a stable triggering.
Set the COUPLING switch to TV-V for observing the vertical component, or set the COUPLING switch to TV-H for observing the horizontal component.
Set the SLOPE switch as shown in Figure 4-8.

![Diagram showing SLOPE switch](image)

Figure 4-8

4-9
4.6.4 Trigger Point Setting

Setting the trigger point and holdoff time is useful for a stable display.

1. Trigger Point Setting
 Position the trigger point to the stable portion on the waveform by using the LEVEL control as shown in Figure 4-9.

 ![Figure 4-9](image)

 - Jittering display caused by such noise as parasitic oscillation
 - Stable display achieved by selecting trigger point to non-noise portion with the LEVEL control

2. Slope Selection (SLOPE)
 When the SLOPE switch is set to ",-", triggering is made at the negative slope of waveform.
 When the SLOPE switch is set to "+", triggering is made at the positive slope of waveform.
 For example, if a square wave has jitter on the trailing edge, set the SLOPE switch to "+" to obtain a stable display.

 ![Figure 4-10](image)
(3) Triggering Intermittent Pulse (HOLDOFF)
When observing an intermittent pulse train, the display is triggered in appearance, however sometimes, the waveform is not triggered. Adjust the holdoff time (from the sweep end to sweep start) for proper triggering.

![Diagram of input signal and triggered sweep]

For proper display, trigger the sweep with this pulse

Improper display

Proper display

4.7 Horizontal Magnification

When the TIME/DIV switch is used to magnify a part of waveform to be measured, off-screen display may result. In this case, use the horizontal X10 MAG mode to magnify the waveform.

- Procedure
(1) Position the part of waveform to be magnified to the graticule center by using the H POSITION control.

(2) Pull the H POSITION control out for X10 MAG mode. Thus, the waveform is magnified 10 times in the horizontal direction with the measurement point centered.

Note: Normally, set the X10 MAG to off since brightness is reduced.
5. MEASUREMENT APPLICATIONS

5.1 DC Voltage Measurements

- Procedure
 (1) Refer to Section "4.4 Single-Trace Operation" and set the controls. The V VARIABLE control should be set to the CAL.
 (2) Set the AC-GND-DC switch to GND.
 Position the trace to the horizontal center graticule line by using the V POSITION control.
 (3) Set the AC-GND-DC switch to DC.
 Read the trace displacement from the center graticule line.
 (4) Moving direction of the trace indicates the voltage polarity: upward for positive and downward for negative.
 The voltage can be obtained as follows.
 a. When using the cable or probe (X1 setting)
 Voltage = VOLTS/DIV setting [V/div] x displacement [div]
 b. When using the probe with X10 setting
 Voltage = VOLTS/DIV setting [V/div] x displacement [div] x 10

In the X10 MAG setting (V VARIABLE control is pulled out), divide the voltage by 10 to obtain correct value.

Example:
See Figure 5-1. The displacement is +3.0 divisions.
In the following conditions, the voltage is as follows.
VOLTS/DIV switch: 0.2 V
Probe switch: X10

\[
\text{Voltage} = 0.2 \text{ [V/div]} \times (+3.0) \text{ [div]} \times 10 \\
= +6.0 \text{ [V]}
\]

![Position the trace to the horizontal center line](image)

Figure 5-1

5-1
5.2 AC Voltage Measurements

- **Procedure**
 1. Refer to Section "4.4 Single-Trace Operation" and set the controls. The V VARIABLE control should be set to the CAL.
 2. Set the AC-GND-DC switch to AC. Position the waveform trough to the bottommost graticule line by using the V POSITION control.
 3. Position the waveform peak to the vertical center graticule line by using the H POSITION control.
 4. Read the vertical distance, from the peak to trough.
 5. The peak-to-peak voltage can be obtained as follows.
 a. When using the cable or probe (X1 setting)
 \[
 \text{Peak-to-peak voltage} = \text{VOLTS/DIV setting [V/div]} \times \text{vertical distance [div]}
 \]
 b. When using the probe with X10 setting
 \[
 \text{Peak-to-peak voltage} = \text{VOLTS/DIV setting [V/div]} \times \text{vertical distance [div]} \times 10
 \]

In the X10 MAG setting (V VARIABLE control is pulled out), divide the voltage by 10 to obtain correct value.

When the input signal is a sine wave, the root-mean-square [rms] voltage can be obtained as follows.

\[
\text{Root-mean-square voltage} = \frac{\text{peak-to-peak voltage}}{2.83}
\]

Example:
See Figure 5-2. The vertical distance is 5.0 divisions.
In the following conditions, the voltage is as follows.
- VOLTS/DIV switch: 50 mV
- Probe switch: X10
 \[
 \begin{align*}
 \text{Peak-to-peak voltage} &= 50 \text{ [mV/div]} \times 5.0 \text{ [div]} \times 10 \\
 &= 2.5 \text{ [Vp-p]}
 \end{align*}
 \]

\[
\text{Root-mean-square voltage} = \frac{2.5 \text{ [Vp-p]}}{2.83} = 0.883 \text{ [Vrms]}
\]
5.3 Time Interval Measurements

• Procedure
(1) Refer to Section "4.4 Single-Trace Operation" and set the controls. The TIME VARIABLE control should be set to the CAL.
(2) Display the two measurement points on the waveform as large as possible in the horizontal direction by using the TIME/DIV switch.
(3) Position the left-end point on the waveform to the leftmost vertical graticule line by using the H POSITION control.
(4) Position the right-end point on the waveform to the horizontal center graticule line by using the V POSITION control.
(5) Read the horizontal distance between the two points.
(6) The time interval can be obtained as follows.

\[
\text{Time interval} = \text{TIME/DIV setting [s/div]} \times \text{horizontal distance [div]}
\]

In the X10 MAG setting (H POSITION control is pulled out), divide the time by 10 to obtain correct value.

Example:
See Figure 5-3. The horizontal distance is 4.5 divisions.
When the TIME/DIV switch is set to the 0.5 ms, the time interval is as follows.

\[
\text{Time interval} = 0.5 \text{[ms/div]} \times 4.5 \text{[div]}
\]
\[
= 2.25 \text{[ms]}
\]

Figure 5-3
5.4 Frequency Measurements

The frequency is the reciprocal of the period (one complete cycle of repeating signal).

• Procedure
 (1) Refer to Section "5.3 Time Interval Measurements" and read the period.
 (2) The frequency can be obtained as follows.

\[
\text{Frequency} = \frac{1}{\text{period}}
\]

Example:
See Figure 5-4. The period is 4.0 divisions.
If the TIME/DIV switch is set to the 0.5 ms/div, the period is as follows.

\[
\begin{align*}
\text{Period} &= 0.5 \text{ [ms/div]} \times +4.0 \text{ [div]} \\
&= 2.0 \text{ [ms]}
\end{align*}
\]

The frequency is as follows.

\[
\begin{align*}
\text{Frequency} &= \frac{1}{2.0 \text{ [ms]}} \times \frac{1}{2.0 \times 10^{-3} \text{ [s]}} \\
&= 500 \text{ [Hz]}
\end{align*}
\]

Figure 5-4
5.5 Pulse Rise Time Measurements

The rise time (fall time) can be obtained by measuring the time interval between 10 % and 90 % of the total pulse amplitude. The 0, 10, 90, and 100 % graticule lines are provided for measuring the rise time.

- Procedure
 (1) Refer to Section "4.4 Single-Trace Operation" and set the controls.
 The TIME VARIABLE control should be set to the CAL.
 (2) Adjust the pulse amplitude for 5 divisions by using the VOLTS/DIV switch and V VARIABLE control.
 (3) Position the bottom of pulse to the 0 % graticule line by using the V POSITION control. The top of pulse should be positioned at the 100 % line.
 (4) Magnify the leading edge by using the TIME/DIV switch.
 When the leading edge is displayed off-screen, pull the H POSITION control for X10 MAG setting.
 (5) Use the H POSITION control so that the leading edge is positioned at the intersection of 10 % and vertical graticule lines.
 Read the horizontal distance between the 10 % and 90 % points.
 Refer to Section "5.3 Time Interval Measurements" to obtain the time interval. The time interval represents the rise time.

Example:
See Figure 5-5. The horizontal distance between the 10 % and 90 % points is 2.9 divisions.
In the following conditions, the rise time is as follows.

\[
\text{Rise time} = 2 \, [\mu s/\text{div}] \times 2.9 \, [\text{div}] \times 0.1
\]
\[
= 0.58 \, [\mu s]
\]

Figure 5-5
When the rise time of a device under test is 50 ns or faster, measurement error increases caused by the rise time of this oscilloscope. Calculate the rise time of the device under test using the following formula.

\[
\text{Rise time of device under test} = \sqrt{\text{Ta}^2 - \text{Tr}^2}
\]

where
- Ta: Rise time displayed
- Tr: Rise time of this oscilloscope (17.5 ns)

When the rise time of a device under test is 50 ns or slower, the measurement error will be 3% or less.

5.6 Observing Composite Video Signal

Since the composite video signal contains both horizontal and vertical components, the conventional triggering is difficult to obtain a stable display. This oscilloscope can easily be triggered to the video signal due to the sync signal pick-off circuit is provided.

![Composite Video Signal](image)

Figure 5-6

- **Procedure**
 1. Refer to Section "4.4 Single-Trace Operation" and set the controls.
 2. Refer to Table below for setting the TIME/DIV and TRIG COUPLING switches. Set the SLOPE switch according to the sync signal polarity.

<table>
<thead>
<tr>
<th>Video Signal</th>
<th>Sync Polarity</th>
<th>TIME/DIV</th>
<th>COUPLING</th>
<th>SLOPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Component</td>
<td>Negative</td>
<td>2 ms</td>
<td>TV-V</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>2 ms</td>
<td>TV-V</td>
<td>+</td>
</tr>
<tr>
<td>Horizontal Component</td>
<td>Negative</td>
<td>10 µs</td>
<td>TV-H</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>10 µs</td>
<td>TV-H</td>
<td>+</td>
</tr>
</tbody>
</table>

![Slope Controls](image)

Figure 5-7

5-6
5.7 Phase Difference Measurements

The phase difference between two signals can be measured by using the dual-trace or X-Y display method as described below.

5.7.1 Dual-Trace Method

- **Procedure**
 1. Refer to Section "4.5 Dual-Trace Operation" and set the controls.
 2. Apply the reference signal to the CH1 OR X IN connector, and signal to be measured to the CH2 OR Y IN connector.
 Adjust the waveform amplitude for 4 divisions by using the CH1 and CH2 VOLTS/DIV switches and V VARIABLE controls.
 3. Adjust the one cycle of waveform for 8 divisions display by using the TIME/DIV switch and TIME VARIABLE control.
 By this setting, horizontal 1 division represents a phase of 45°.
 4. Position the waveform to the graticule center by using the CH1 and CH2 V POSITION controls.
 5. Read the horizontal distance between the corresponding points on the horizontal center graticule line. When the distance is short, pull the H POSITION control for X10 MAG setting.
 6. The phase difference can be obtained as follows.
 \[
 \text{Phase difference} = 45 [''/\text{div}] \times \text{horizontal distance [div]}
 \]

In the X10 MAG setting (H POSITION control is pulled out), divide the phase difference by 10 to obtain correct value.

Example:
See Figure 5-8. The horizontal distance is 0.7 division. The phase difference is as follows.

\[
\text{Phase difference} = 45 [''/\text{div}] \times 0.7 \text{ [div]}
= 31.5 ['']
\]

![Figure 5-8](image)
5.7.2 X-Y Display Method

- **Procedure**
 1. Refer to Section "4.5 Dual-Trace Operation" and set the controls.
 2. Set the TIME/DIV switch X-Y.
 3. Apply the reference signal to the CH1 OR X IN connector, and signal to be measured to the CH2 OR Y IN connector.
 Set the CH1 AC-GND-DC switch to AC.
 Set the CH2 AC-GND-DC switch to GND.
 Adjust the CH1 VOLTS/DIV switch and VARIABLE control for a horizontal display of 6 divisions.
 Position the trace to the horizontal center graticule line by using the H POSITION control.
 4. Set the CH2 AC-GND-DC switch to AC.
 Set the CH1 AC-GND-DC switch to GND.
 Adjust the CH2 VOLTS/DIV switch and VARIABLE control for a vertical display of 6 divisions.
 Position the trace to the vertical center graticule line by using the H POSITION control.
 5. Set the CH1 AC-GND-DC switch to AC. The lissajous pattern is displayed.
 6. Read the vertical distance between the intersections of the lissajous pattern and the vertical center graticule line.
 The phase difference can be obtained as follows.

\[
\text{Phase difference} = \sin^{-1} \frac{\text{vertical distance (div)}}{6 \text{ (div)}}
\]

Example:

See Figure 5-9. The vertical distance is 4 division.

The phase difference is as follows.

\[
\text{Phase difference} = \sin^{-1} \frac{4 \text{ [div]}}{6 \text{ [div]}} = 41.8^\circ
\]

![Figure 5-9](image)
6. MAINTENANCE

6.1 Cleaning

If the CRT surface becomes dirty, remove the filter before cleaning the surface. To remove the filter, proceed as follows.

See Figure 6-1. Stick a cellophane tape on the filter and slide it downward. Filter top is came off from the frame, then pull it out. To install the filter, insert the bottom of filter into the frame and press it in place.

![Diagram of CRT and filter with instructions]

Figure 6-1

If the oscilloscope becomes dirty, wipe it off using a cloth damped with diluted neutral detergent, then clean the oscilloscope with a dry cloth.

[CAUTION] Avoid the use of solvents (e.g., benzol, thinner) which may damage the panels or cabinet surface.

6.2 Periodical Calibration

To maintain the performance of the oscilloscope, yearly calibration is recommended. Contact your local Leader agent for periodical calibration.
LEADER ELECTRONICS CORP.
2-6-33 Tsunashima-higashi, Kohoku-ku, Yokohama, JAPAN
PHONE: 81-45-541-2123
FAX: 81-45-544-1280 TELEX: J47780 JPLEADER

LEADER INSTRUMENTS CORP.
380 Oser Avenue, Hauppauge, New York 11788 U. S. A.
PHONE: 1-516-231-6900
FAX: 1-516-231-5295 TELEX: 510-227-9669 LEADER HAU

LEADER INSTRUMENTS (EUROPE) LTD.
Raglan House, 6-24 Stoke Road,
Slough, Berkshire SL2 5AG, ENGLAND
PHONE: 44-763-538022
FAX: 44-763-538528

LEADER INSTRUMENTS (H.K.) LTD.
Room 303-304 New East Ocean Centre,
9 Science Museum Road, Tsimshatsui East,
Kowloon, HONG KONG
PHONE: 852-2-7212503
FAX: 852-2-7237673 TELEX: 39025 LDR HK HX

LEADER INSTRUMENTS ASIA PTE., LTD.
300 Beach Road, #25-01/02,
The Concourse, SINGAPORE 0719
PHONE: 65-295-4822
FAX: 65-295-4833