Homework Set 5
Due Tuesday, September 17

I have taken the US census data from 1790 to 1990 and generated a “random subsample.” This random subsample produces a noisy set of measurements, and simulates the type of census data we would have if we tried to estimate the total population from a much smaller sample. The US census data is available in Matlab (type ’load census’ in Matlab). The random subsample can be downloaded from www.ece.rice.edu/~novak/elec531/us_pop.mat (use the “save as” feature on your browser). The noisy subsample population data are \(y = [y_0, \ldots, y_{20}]^T \) and we want to fit a degree \(p \ll N \) polynomial to the data.

1. Assume the “noise” is Gaussian white noise and give expressions for \(H \) and \(\theta \) for the corresponding model \(y \sim N(\theta, \sigma^2 I) \).

2. Verify that the moments \(m_k = \sum_{n=0}^{N-1} n^k y_n \), \(k = 0, \ldots, p \) are sufficient statistics for this model.

3. Derive a general expression for the projection matrix \(P_H \) and explain how the projection matrix can be used to obtain a polynomial fit to the data.

4. Generate and plot polynomial fits for \(p = 1, 2, \ldots, 8 \).

5. What value of \(p \) seems to provide the best fit to this data? How does your polynomial fit agree with the full census data?