Error Analysis for Digital Communication

Samantha R. Summerson
18 November, 2009

1 Probability of Error

Recall the receiver structure from last class:

\[r(t) \otimes s(t) \]

\[\int_{t-T}^{t} r(t) \, dt = nT \]

Choose Largest \(\hat{b}_n \)

![Figure 1: Receiver.](image)

For BPSK, if \(r(t) = s_0(t) \), then the output from the top branch in the receiver is \(A^2T \) and the output from the bottom branch of the receiver is \(-A^2T \). Since the output from the top branch is larger and this output corresponds to \(s_0(t) \), or equivalently \(b_n = 0 \), being transmitted, then \(b_n = 0 \). For \(r(t) = s_1(t) \), we have the output from the top branch is \(-A^2T \) and the output from the bottom branch is \(A^2T \). Again, we choose the correct bit.

For FSK, if \(r(t) = s_0(t) \), the output from the top branch is \(\frac{A^2T}{2} \) and the output from the bottom branch is 0. The opposite will be the case for \(r(t) = s_1(t) \). Here, again, we select the correct bit with our receiver design.

However, communication is usually noisy. How does our receiver perform when noise is present in the received signal? Consider that \(s_1(t) \) is transmitted and the received signal is

\[r(t) = s_1(t) + N_t. \]

For BPSK, the output from the top branch will be \(-A^2T + N \) and the from the bottom branch we have \(A^2T + N \). Here, \(N \) is a random quantity which is distributed according to the Normal (Gaussian) distribution. Thus, our decision of what bit was sent depends on the realization of \(N \). For FSK, the output from the top branch will be \(\frac{A^2T}{2} + N \) and from the bottom branch will be \(\frac{A^2T}{2} + N \). Since these outputs are closer together, we are more likely to make an error with FSK.

For FSK, the probability of error is

\[P_e = Q \left(\sqrt{\frac{\int_{0}^{T} (s_0(t) - s_1(t))^2 \, dt}{2N_0}} \right). \]
For BPSK, we have the same formula but we can simplify it further:

\[P_e = Q \left(\sqrt{\frac{\int_0^T (s_0(t) - s_1(t))^2 dt}{2N_0}} \right), \]

\[= Q \left(\sqrt{\frac{\int_0^T 4s_0^2(t)dt}{2N_0}} \right), \]

\[= Q \left(\sqrt{\frac{4A^2T}{2N_0}} \right), \]

\[= Q \left(\sqrt{\frac{2A^2T}{N_0}} \right). \]

To make the error small, we need to make the argument of the Q-function large. We can do this by making \(T \) large, but this means that \(R = \frac{1}{T} \) is small. Alternatively, we can make \(A \) large, which requires more power.

For FSK,

\[s_0(t) - s_1(t) = A \left(\sin \left(\frac{2\pi kt}{T} \right) - \sin \left(\frac{2\pi lt}{T} \right) \right), \]

\[\Rightarrow \int_0^T (s_0(t) - s_1(t))^2 = A^2T. \]

There is more power in BPSK than FSK. Therefore, we conclude that the choice of signal set influences the overall performance of the system.