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Abstract|We demonstrate that the information theoretic

capacity of multiple-transmit antenna systems is not re-

duced by using space-time orthogonal transmit schemes as

means of exploiting the transmit diversity. Then, we con-

sider concatenation of a channel code with space-time or-

thogonal transmit scheme, where data stream is �rst en-

coded with the channel code, and then transmitted using

orthogonal space-time transmit scheme. Using this orthog-

onal space time transmit scheme the elements in the product

criterion for code construction are made more uniform and

hence better gain is achieved. We derive code construction

criterion for designing the channel code, taking into consid-

eration coherence time of the channel.

Keywords| Transmit diversity, space-time codes, coher-

ence time

I. Summary

D
EEP fade in a wireless channel makes it extremely dif-

�cult for receiver to recover the transmitted signal.

One way of combating this problem is diversity, i.e. multi-

ple replicas of the transmitted signal present at the receiver.

Here we consider case of antenna diversity, where spatially

separated antennas at the transmitter side are available.

Generalization to multiple antennas on both transmitter

as well as receiver side is straightforward. Information the-

oretic capacity of this multiple-transmit multiple-receive

antenna scheme was derived in [2], where fading coe�-

cients between antennas were assumed to be iid Rayleigh

distributed and the coherence time of the channel corre-

sponded to one symbol. This derivation was extended for

the coherence time larger than one symbol in [3]. It is eas-

ily shown that there is no improvement in the achievable

information rate for larger coherence times. Several practi-

cal schemes were proposed to utilize this additional degree

of freedom on the transmitter side [4]-[7]. Delay diversity

transmit scheme was considered in [4], and subsequently

generalized to space-time trellis codes [5]. Similarly, an-

other simple diversity technique based on orthogonal ma-

trices was proposed in [6], and generalized to space-time

block codes from orthogonal designs in [7]. It is generally

accepted that space-time trellis coder perform better than

the space-time block codes, however here we demonstrate

that if one uses orthogonal space time transmit scheme as

transmit diversity technique there is no loss in the achiev-

able information rate. In addition to that, space-time block

codes (orthogonal space time transmit scheme is an exam-

ple of a space time block code) have much lower decoding

All authors are with the Department of Electrical and Computer
Engineering (MS 366), Rice University, Houston, Texas 77251-1892.
This research work was supported by Nokia.

complexity than the space-time trellis codes [7]. Then, we

consider concatenation of a channel code with the space-

time orthogonal transmit scheme and derive the criterion

for code design, taking into consideration coherence time

of the channel. It is essential that the concatenation is

done carefully so that channel code is designed optimally

with respect to the orthogonal space time transmit scheme.

Hence, we demonstrate that the orthogonal space time

transmit scheme represent a simple low complexity trans-

mit scheme with no impact on the channel capacity. Dis-

tance metric between two codeword symbols is derived to

be the product of Euclidean distances taken within the co-

herence time, and based on that we propose a code design

criterion.

II. Information Theoretic Considerations

Consider the following system description: there are t

transmit antennas available at transmitter side, and there

is only one receiver antenna (taken only for simplicity of

consideration and can be easily generalized to r receive

antennas). The receiver antenna observes raw summa-

tion of randomly faded transmitted symbols, corrupted by

AWGN. All fading coe�cients are iid. In other words we

deal with the channel model where the received symbol Y

depends on the transmitted vector X via

Y = HTX +N; (1)

where H = [h1:::ht]
T is a complex random vector which

represents the channel, and N is complex AWGN. The

power constraint is given as

E[XHX ] � P (2)

Here, XH denotes X conjugate transposed. We assume

that the receiver observes fading coe�cients, and there-

fore both Y and H are available at the output. Proceed-

ing as in [2] we want to maximize the mutual information

I(X ; (Y;H)).

I(X; (Y;H)) = I(X ;H))+ I(X;Y jH)) = I(X;Y jH)) (3)

since the transmitter has no knowledge on the fading coef-

�cients. Conditioned on the fade, channel is nothing more

than attenuated AWGN channel, and averaging over all

possible fades

I(X ;Y jH)) = EH (log(1 +
P

t
HHH) (4)
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and therefore the achievable rate of the channel described

above is given as

C = EH(log(1 +
P

t
HHH) bits per channel use (5)

which was derived in [2]. Note that the above analysis is

under assumption that the coherence time of the channel

corresponds to one transmission. In [3] this assumption

we easily extended to the case when the coherence time is

Tc > 1. It was derived that

C = TcEH [log(1 +
P

t
HHH)] per Tctransmissions (6)

which means that per one transmission we essentially have

(5). What we will do next is compare space time orthog-

onal block codes with (6). We will conclude that if one

uses these codes as a transmit diversity scheme there is no

loss in the achievable information rate. We will consider

a simple transmission scheme [6], which uses two trans-

mit antennas. This analysis is subsequently generalized to

more complex orthogonal space time transmission schemes.

For the case of two transmit antennas, we assume that the

coherence time of the channel is two symbols, and if it

happens to be larger we perform a su�cient ammount of

interleaving.

The scheme is described as follows: at the �rst time in-

stant symbol X1 is transmitted on the antenna 1 and X2

on the antenna 2. At the next time instant the antenna 1

transmits X?
2 and the antenna 2 transmits �X?

1 . Hence,

the receiver receives

Y1 = h1X1 + h2X2 +N1

at the �rst time instant, and

Y2 = h1X
?
2 � h2X

?
1 +N2:

at the second time instant. One can easily ver-

ify that the power constraint (2) is still perti-

nent to this transmission scheme, because if symbols

fX
(1)
1 ; X

(1)
2 ; X

(2)
1 ; X

(2)
2 ; :::; X

(n)
1 ; X

(n)
2 g (superscript refers

two time instants, total of 2n transmit time instants be-

cause of repetition) enter the block encoder the power

transmitted by each antenna is given as

1

2n

nX
i=1

jX
(i)
1 j2 + jX

(i)
2 j2 (7)

which means that the total transmitted power is given as

1

n

nX
i=1

jX
(i)
1 j2 + jX

(i)
2 j2

LLN
�! E[jX1j

2 +E[jX2j
2]; (8)

Where LLN refers to law of large numbers, and convergence

is in probability. Hence the power constraint (2) is still a

valid constraint, namely

E[jX1j
2 +E[jX2j

2] � P (9)

We can compactly write the received vector Y as

�
Y1
Y ?
2

�
=

�
h1 h2
�h?2 h?1

��
X1

X2

�
+

�
N1

N?
2

�
(10)

or in matrix notation

Y 0 = GX +N (11)

Here, Y 0 is the vector Y with even components conjugated

and

G =

�
h1 h2
�h?2 h?1

�
(12)

is essentially Radon-Hurwitz transform of the vector of fad-

ing coe�cients H [7]. Another interesting observation is

that using this transmit scheme, symbols X1 and X2 are

spread across both time and antennas in an orthogonal

manner. We evaluate the capacity of the above scheme,

again assuming that the receiver perfectly knows the fad-

ing coe�cients. The mutual information is given as

I(X ; (G; Y )) = I(X ; (G; Y 0)) = I(X ;G) + I(X;Y 0jG):

(13)

Again we conclude that the �rst term is zero (transmitter

has no knowledge of the channel) and the second term is

averaged over G, similar to (4). Hence the capacity of the

scheme proposed in [6] is given as

EG[log det(I +GRGH)] (14)

This is again a standard formula where the term in-

side the expectation is the capacity for the deterministic

channel with the transfer function G, and can be found

in any reference which considers capacity of fading chan-

nels, like [2]. The matrix Rij is cross-correlation matrix be-

tween each two consecutive input symbols, Rij = E[XiXj ].

Power constraint is still given as (9). We expand (14) as

C = EG[log det(I+

�
h1 h2
�h?2 h?1

� �
R11 R21

R12 R22

� �
h?1 �h2
h?2 h?1

�
)]

(15)

Using the common matrix identity

det(I +AB) = det(I +BA) (16)

We obtain

C = EG[log det(I+

�
h?1 �h2
h?2 h?1

� �
h1 h2
�h?2 h?1

� �
R11 R21

R12 R22

�
)]

(17)

Hence

C = EG[log det(I+(jh1j
2+jh2j

2)

�
1 0

0 1

��
R11 R21

R12 R22

�
)]

(18)

In order to maximize the above expression the matrix R

should be diag[P=2; P=2] (can be proven using Hadamard's

inequality). Hence,
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C = EG[log det(I +
P

2
(jh1j

2 + jh2j
2)I)]

= EG[log(1 +
P

2
(jh1j

2 + jh2j
2))2)

= 2EG[log(1 +
P

2
(jh1j

2 + jh2j
2))] (19)

which is exactly (6). Of course, this is per two transmit

time instants, and if we normalize properly, we obtain (5).

Hence, we conclude that the achievable information rate is

not reduced by using the described transmission scheme. In

addition to that, this scheme was proposed as low compu-

tational complexity at the receiver [6], [7] because it alows

the receiver to decouple the estimate for symbols X1 and

X2.

III. Generalizations

Here we generalize the above analysis for arbitrary 2n

transmit antennas. We again assume that the coherence

time is at least 2n. We �rst make a generalization of the

transmission scheme proposed in [6]. Given a vector X of

length 2n to be transmitted, we decompose it into vectors

X1 and X2, each of length 2n�1. Each of these two vectors

is sent similar to (6)

Y 1 = G1X1 +G2X2 +N1

Y 2 = G1X
?
2 �G2X

?
1 +N2

Here, G1 and G2 are again matrixes of fading coe�cients,

and X?
2 denotes vector X conjugated (but not transposed).

This can compactly we written in the form

�
Y 1

Y ?
2

�
=

�
G1 G2

�G?
2 G?

1

� �
X1

X2

�
+

�
N1

N?
2

�
(20)

or in the matrix notation

Y 0 = GX +N (21)

We continue partitioning, now vectorsX1 andX2. Because

of the iterative construction, the matrix G is orthogonal,

meaning that

GHG =

2nX
j=1

jhj j
2I (22)

Where, t = 2n is the number of transmit antennas. The

capacity of the generalized space time orthogonal transmis-

sion scheme is

EG[log det(I +GRGH)] (23)

which, because of the orthogonal structure of G (and using

the same argument as in the case of two antennas) is

tEG[log(1 + (P=t)

tX
j=1

jhj j
2)] (24)

and, if normalized properly (per one transmission) is the

same as (4). Hence, again the capacity stays the same.

IV. Comparison with multicode CDMA

One of the common questions is given that there are

two transmit antennas available, how can one use this

additional comodity to increase the data rate. Orthogo-

nal space-time transmission scheme spreads symbols both

across time and antennas, as opposed to multicode CDMA

scheme which assigns di�erent spreading sequences to each

antenna [9]. Here we demonstrate that if we were to orthog-

onalize between antennas in a multicode CDMA manner we

would decrease the achievable information rate. In order

to have a fair comparison with the above transmit scheme,

number of transmit antennas again has to be t = 2n. We

assume length of the spreading code would be less than the

coherence time so the transmitted waveforms would stay

orthogonal after passing through the channel. The spread-

ing length is equal to the number of transmit antennas, so

we don't have any loss in degrees of freedom. Hence we

have a channel which can be described as

Y =

tX
j=1

hjsjXj +N (25)

where sj is the spreading sequence of the j-th user (length

t), Xj is the transmitted symbol of the user j, and the hj
is the fading coe�cient of th j-th user. We can write the

above equation as follows

Y = SUX +N (26)

where S is the matrix whose columns are spreading se-

quences of unit energy, and U is the diagonal matrix of

fading coe�cients. Considering again the power constraint,

the average power transmitted on all t antennas is

1

t

tX
j=1

E[jXj j
2] � P (27)

or

tX
j=1

Rjj � tP (28)

The capacity is given as follows

C = EU [log det(I + (SU)R(SU)H))] (29)

Now, using (16)

C = EU [log det(I + SHSURUH)] (30)

Assuming that the spreading sequences are orthogonal

we have SHS = I . Then,

C = EU [log det(I + URUH)] (31)

which is maximized when R is diagonal because logdet

is concave on positive de�nite matrixes [2]. The maximum

value is

C = EU [log det(I + PUHU)] (32)
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Fig. 1. Achievable Information Rates

However, since UHU = diag[jh1j
2 : : : jhtj

2] then

C =

tX
j=1

EU [log det(1 + P jhj j
2)] (33)

Since, hj are identically distributed, then

C = tEh[log(1 + P jhj2)] (34)

per t transmissions (spreading length t). If we compare

this equation with (24) we see that the capacity with mul-

ticode orthogonalization is strictly less because log(1 + x)

is a concave function. For the case of two transmit one

receive antennas in iid Rayleigh faded channel, the above

expressions are calculated in [2], and we plotted them in

Figure 1.

V. Concatenated Code Construction Criterion

Inspired by the achievable rates in the previous section

we now consider practical codes to try to reach the capac-

ity. We will again do the analysis for the two transmit

antennas, however it can be easily generalized for other

powers of 2 (which allow the orthogonal transmit scheme

[6]). We proceed similar to [8], [5], assuming that the sym-

bol stream fx
(1)
1 ; x

(1)
2 ; :::; x

(l)
1 ; x

(l)
2 g is concatenated with the

orthogonal block transmission scheme, we upper bound the

probability that it is mistaken for fe
(1)
1 ; e

(1)
2 ; :::; e

(l)
1 ; e

(l)
2 g.

Here each two consecutive symbols are transmitted us-

ing the space time orthogonal transmission scheme i.e.

symbols fx
(1)
1 ; (�x

(1)
2 )?; :::; x

(l)
1 ; (�x

(l)
2 )?g are transmitted

on the �rst antenna, while fx
(1)
2 ; (x

(1)
1 )?; :::; x

(l)
2 ; (x

(l)
1 )?g is

transmitted on the second antenna. We assume that coher-

ence time of the channel corresponds to two symbols, and

each consecutive fade is independent (for both of the an-

tennas). Proceeding as in [8], [5] we calculate the Cherno�

upper bound for

ProbfX ! Ej�g � e�d
2(X;Ej�)(Es=4N0) (35)

where � are all fading coe�cients (each proper com-

plex gaussian, zero mean variance 0.5 per dimension), and

Es=4N0 is properly normalized SNR. It is easy to verify

that

d2(x
(t)
1 ; x

(t)
2 ; e

(t)
1 ; e

(t)
2 j�) =

j�
(t)
1 (x

(t)
1 � e

(t)
1 ) + �

(t)
2 (x

(t)
2 � e

(t)
2 )j2+

+j�
(t)
2 (x

(t)
1 � e

(t)
1 )? � �

(t)
1 (x

(t)
2 � e

(t)
2 )?j2 (36)

Since the cross terms cancel out, it reduces to

(j�
(t)
1 j2 + j�

(t)
2 j2)[jx

(t)
1 � e

(t)
1 j2 + jx

(t)
2 � e

(t)
2 j2] (37)

And hence if we assume each two consecutive fades in-

dependent, because the coherence time is two symbols, we

obtain

d2(X ;Ej�) =

lX
t=1

(j�
(t)
1 j2+j�

(t)
2 j2)[jx

(t)
1 �e

(t)
1 j2+jx

(t)
2 �e

(t)
2 j2]

(38)

or in simpli�ed notation

d2(X ;Ej�) =

lX
t=1

j�(t)j2D(t) (39)

ProbfX ! Ej�g � exp[�

lX
t=1

j�(t)j2D(t)(Es=4N0)] (40)

Since, j�j2 is the sum of four Gaussian random variables

with 0 mean and 0.5 variance, than by avearging the above

equation with respect to � we obtain

ProbfX ! Eg �

lY
t=1

[1+(jx
(t)
1 �e

(t)
1 j2+jx

(t)
2 �e

(t)
2 j2)(Es=4N0))]

�2

(41)

We can drop the 1 and get

ProbfX ! Eg �
Y

x(t) 6=e(t)

[jx
(t)
1 �e

(t)
1 j2+jx

(t)
2 �e

(t)
2 j2)(Es=4N0)]

�2

(42)

Hence, what we propose is to treat (xt1; x
t
2) as elements

of multidimensional constalation with large Euclidean dis-

tance among them. On top of that we encode them with

TCM which has large Hamming distance (because of the

product).

The exponent (-2) re
ects optimisation using the coher-

ence time of the channel because it makes each two consec-

utive factors in the product distance equal, thereby increas-

ing the product distance. This is the avantage of the space

time orthogonal transmission scheme. This additional gain

comes from considering the coherence time.



5

VI. conclusion

We demonstrated that the achievable information rate is

not reduced by using orthogonal transmission schemes such

as the one proposed by Alamouti [6], as a way of exploiting

transmit diversity. In addition to that we show that or-

thogonalization among antennas in a CDMA fashion is not

optimal because there is a decrease in the achievable infor-

mation rate. Then we consider concatination of a channel

code with the above orthogonal transmission scheme and

derive the code construction criterion.

VII. ACKNOWLEDGEMENT

The authors thank Krishna K. Mukkavilli and Moham-

mad J. Borran for extremly valuable comments and discus-

sions.

References

[1] T.M. Cover and J.A. Thomas, Elements of Information Theory,
John Wiley and Sons, Inc., 1991.

[2] E. Telatar, "Capacity of multi-antenna Gaussian channels,",
AT&T-Bell Laboratories Internal Tech. Memo., June 1995.

[3] T.L.Marzetta and B.M. Hochwald "Capacity of a mobile multiple-
antenna communication link in Rayleigh 
at fading environment,"
IEEE Trans. Inform. Theory, vol. 45, pp.139-158, Jan. 1999.

[4] Wittenben "A new bandwidth e�cient transmit antenna mod-
ulation diversity scheme for linear digital modulation," Proc
IEEE'ICC, 1993 pp. 1630-1634

[5] V. Tarokh, N. Seshadri, and A. R. Calderbank, "Space-time codes
for high data rate wireless communications: Performance analysis
and code construction," IEEE Trans. Inform. Theory, vol. 44,
pp.199-207, Feb. 1999.

[6] S. M. Alamouti, "A simple diversity scheme for wireless communi-
cations," IEEE J. Select. Areas Commun., vol. 16, pp.1451-1458,
Oct. 1998.

[7] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, "Space-time
block codes from orthogonal designs," IEEE Trans. Commun.,
vol. 36, pp.1004-1012, Sep. 1988.

[8] D. Divsalar and M. K. Simon, "The design of trellis coded MPSK
for fading channels: Performance criteria" IEEE Trans. Inform.
Theory, vol. 45, pp.1456-1467, July 1999.

[9] J. Chen and U. Mitra, "Optimum Near-Far Resistance for Dual-
Rate DS/CDMA Signals: Random Signature Sequence Analy-
sis, IEEE Transactions On Information Theory, vol. 45, No. 7,
November 1999.


	isbn: ISBN 968-36-7763-0 / 22-25 May 2000 © ICT 2000


