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ABSTRACT
The objective of this paper is to demonstrate the effectiveness of
sparse representation techniques for speaker recognition. In this ap-
proach, each feature vector from unknown utterance is expressed
as linear weighted sum of a dictionary of feature vectors belonging
to many speakers. The weights associated with feature vectors in
the dictionary are evaluated using orthogonal matching pursuit al-
gorithm, which is a greedy approximation to l0 optimization. The
weights thus obtained exhibit high level of sparsity, and only a few
of them will have nonzero values. The feature vectors which be-
long to the correct speaker carry significant weights. The proposed
method gives an equal error rate (EER) of 10.84% on NIST-2003
database, whereas the existing GMM-UBM system gives an EER of
9.67%. By combining evidence from both the systems an EER of
8.15% is achieved, indicating that both the systems carry compli-
mentary information.

Index Terms— Sparse representation, orthogonal matching pur-
suit, l0 optimization and Gaussian mixture modeling.

1. INTRODUCTION

Speaker recognition refers to recognizing persons from their voice [1].
A speaker recognition system can be operated in either identifica-
tion mode or verification mode. In speaker identification, the goal
is to identify the speaker of an utterance from a given population,
whereas speaker verification involves validating the identity claim of
a person. Speaker recognition systems can be categorized into: text-
dependent systems, and text-independent systems. Text-dependent
systems require recitation of a predetermined text, whereas text-
independent systems accept speech utterances of unrestricted text.
This work deals with text-independent speaker verification.

An automatic speaker recognition system typically comprises
of three stages: feature extraction, feature matching and score com-
putation. Depending on how the feature matching is done, speaker
recognition systems can be classified into template-matching sys-
tems and probabilistic modeling systems [2], also known as nonpara-
metric and parametric systems, respectively. In template-matching
systems, the feature vectors from the training and testing utter-
ances are compared directly, with the assumption that either of
them is an imperfect replica of the other. Dynamic time warp-
ing is an example of template-matching method for text-dependent
speaker recognition [3]. Dynamic time warping can not be applied
to text-independent speaker recognition, due to the lack of temporal
alignment between the sequence of feature vectors from training and
testing utterances. Most of the text-independent speaker recogni-
tion systems rely on the probabilistic modeling of the set of feature
vectors.

In probabilistic modeling, the set of feature vectors from each
speaker is modeled with a fixed but unknown probability density
function [4]. Matching is done by evaluating the likelihood of the
testing utterance with respect to the speaker model. The unknown
probability density function is usually approximated as a linear com-
bination of Gaussian density functions, and is popular as Gaussian
mixture modeling (GMM). The parameters, i.e mean vectors covari-
ance matrices and weights, of the GMM are evaluated iteratively
from the training data using maximum-likelihood estimation [5].
Since this method involves estimation of several parameters, it typ-
ically requires large amount of training data to capture the variabil-
ity due to different environments, channels, speaking styles and so
on. In order to reduce the data requirements during the training
phase, Reynolds et. al., have introduced the concept of universal
background modeling (UBM) [6]. UBM is essentially a very large
GMM trained to represent the speaker independent distribution of
the speech features gathered from a large number of speakers under
different environments. When enrolling a new speaker to the system,
the parameters of the background model are adapted to the feature
distribution of the new speaker. The adapted model is used as the
model of that speaker. In this approach, the model parameters are
not estimated from scratch, instead prior knowledge about the dis-
tribution of the features in the acoustic space is being utilized. As
a consequence, this method not only reduces the data requirements
during training but also provides normalization across the speaker
models as all of them are adapted from the same UBM.

In this work, we propose a template-matching approach for
text-independent speaker recognition using sparse representations.
Sparse representations have been used in image processing for face
recognition [7], and iris recognition [8]. Sparse representation of
GMM-supervectors was used for speaker identification in [9] and
[10]. In both these approaches, sparse representation is used for
classification of GMM-super vectors. Hence, these approaches
require probabilistic modeling of the features before invoking the
sparse representations. In this paper, we use sparse representations
for directly matching feature vectors from the training and testing
utterances. This approach does not require probabilistic modeling.

The main assumption behind the proposed approach is that the
testing template lies approximately in the linear span of the training
templates. Here the word template refers to a feature vector. That
is, the testing template can be approximated as linear weighted sum
of a few training templates. We have employed orthogonal matching
pursuit (OMP) algorithm to identify which of the training templates
contribute to the representation of a given testing template. The de-
gree of contribution of different speakers in representing the testing
template can be used to recognize the correct speaker.

The rest of this paper is organized as follows: The theory of



sparse representations and the application of OMP algorithm for
speaker recognition are discussed in Section 2. Experimental evalu-
ation of the proposed method on NIST-2003 database, and its com-
parison with GMM-UBM system is presented in Section 3. Finally
in Section 4, we summarize the important contributions of this work,
and indicate possible directions for future studies.

2. SPARSE REPRESENTATIONS USING OMP

Suppose that there are K speakers, and each speaker has a set of N
frames extracted from his reference utterance1. Let a d-dimensional
feature vector be extracted from each frame. Let

Ak = [ak1ak2 . . .akn . . .akN ] ∈ Rd×N

be a d × N matrix of feature vectors of the kth speaker, where
the column akn = [akn1akn2 . . . aknd ]T denotes the d-dimensional
feature vector of the nth frame belonging to the kth speaker. A dic-
tionary A can be defined as concatenation of feature vectors of all
the K speakers, as follows:

A = [A1A2 . . .Ak . . .AK ] ∈ Rd×KN (1)
= [a11 . . .a1N |a21 . . .a2N | . . . |ak1 . . .akN | . . . |aK1 . . .aKN ]

Let us consider that an observed feature vector y ∈ Rd, extracted
from a testing utterance, be expressed as a linear weighted sum of
columns of dictionary A as

y =

K∑
k=1

N∑
n=1

xknakn

where the scalar xkn is the wight associated with the column akn.
The above equation can be compactly written in the matrix form as

y = Ax, (2)

where

x = [x11 . . . x1N |x21 . . . x2N | . . . |xk1 . . . xkN | . . . |xK1 . . . xKN ]T .

If the observation vector y belongs to the kth speaker, then it lies ap-
proximately in the linear span of the training vectors of that speaker.
This implies that the coefficients x that are not associated with the
kth speaker should ideally be close to zero. As a result, the weight
vector x exhibits high level of sparsity with very few nonzero coef-
ficients.

In order to represent y as a linear combination of columns A,
we need to solve the system of linear equations in (2). Since the di-
mensionality of the feature vector (d) is much smaller than the num-
ber of feature vectors in the dictionary (K.N ), the system of linear
equations in (2) is under-determined, and does not admit a unique
solution. Out of the infinitely many solutions available in the solu-
tion space, we need to search for the sparsest solution. The sparsest
solution can be obtained by solving the following optimization prob-
lem

min
x
||x||0 subject to y = Ax (3)

where ||x||0 refers to zero norm of x which denotes the number of
nonzero coefficients in x. This combinatorial optimization problem

1Note that the number of frames per speaker differs based on the duration
of training utterance. Here, we have assumed same number (N ) of frames for
simplifying the presentation. This method can be applied even if the number
of frames per speaker differs.

is NP-hard to solve, and several iterative algorithms like matching
pursuit (MP), and orthogonal matching pursuit (OMP) were pro-
posed to address it [11]. Attempts were also made to convexify
the objective function in (3) by replacing the l0 norm with the l1
norm. The resulting optimization problem involves minimization of
l1 norm, and can be solved using linear programming techniques in
polynomial complexity [11].

In this work, we have opted to the OMP algorithm to obtain an
approximate sparse weight vector x̂ [12], because of its simplicity.
In order to identify a sparse weight vector x̂, we need to determine
which columns of A participate in the representation of y. The ba-
sic idea behind the OMP algorithm is to pick those representative
columns in a greedy fashion [13]. To start with x̂ is initialized to 0.
At each iteration we choose one column of A that is most strongly
correlated with the residual,

r(y) = y −Ax̂.

Then the corresponding coefficient of x̂ is updated, and procedure
is repeated on the new residual. This procedure is continued till the
residual error

r(y) = ||r(y)||2 = ||y −Ax̂||2

goes below a predefined error threshold θ. Since the residual error
depends on ||y||2, a fraction of ||y||2 can be used as error threshold
θ. That is

θ = λ||y||2,
where 0 < λ < 1. Notice that a high value of λ may result in only
a gross representation of the observed vector, and may not capture
the speaker-specific characteristics. On the other hand, a low value
of λ may spoil the sparsity of the weight vector x̂ while trying to
minimize the residual error, though the error might be due to noise
in the measurements. A detailed description of OMP and a step-wise
algorithm to implement it can be found in Chapter 3 of [11]

2.1. Evaluation of confidence score

Given an observation vector y, extracted from a frame of the testing
utterance, we find the sparse weight vector x̂ by solving (2) using
OMP algorithm. Speaker recognition is performed based on the fact
that most of the significant coefficients of the weight vector x̂ would
belong to the genuine speaker. The contribution of individual speak-
ers in the dictionary A in representing y can be quantified in terms of
speaker-specific residual error. The speaker-specific residual error of
the kth speaker is computed by retaining the weights associated with
that speaker, and setting the weights associated with other speakers
to zero. This can be done by introducing a mask function Πk(x̂)

which selects the weights associated with kth speaker as follows:

Πk(x̂) = [0 . . . 0|0 . . . 0| . . . |x̂k1 . . . ˆxkN | . . . |0 . . . 0]T

The speaker-specific residual error of the kth speaker can be evalu-
ated as

rk(y) = ||y −AΠk(x̂)||2 (4)
Since the residual error depends on ||y||2, it is divided by ||y||2 in
order to obtain normalized residual error,

˜rk(y) =
||y −AΠk(x)||2

||y||2
(5)

The normalized residual error always lies between 0 and 1, and is
converted into a confidence score by exponentiating it as follows,

sk(y) = exp(− ˜rk(y)), (6)



where sk(y) is the confidence score for a single frame in the test-
ing utterance. If the testing utterance contains L frames (yl, l =
1, 2, . . . , L), the above procedure is repeated for each of the L
frames, and the mean confidence score

Sk =
1

L

L∑
1

sk(yl) (7)

is used for making a decision with respect to kth speaker. This proce-
dure is repeated for all theK speakers in the dictionary A to evaluate
their respective confidence scores.

3. EXPERIMENTAL EVALUATION

3.1. Database for the study

The speaker recognition system proposed in this paper is evaluated
on NIST - 2003 speaker recognition evaluation corpus [14]. We have
considered only male speaker trials for this evaluation. There are 149
male speakers, and the duration of the training utterance for each
speaker is about 2 minutes. There are 1343 testing utterances, each
having a duration of 15 - 45 seconds. Each testing utterance has 11
claimants, where the genuine speaker may or may not be present.
All the speech signals are collected over telephone channels, and are
sampled at 8 kHz.

3.2. Feature extraction

In this study, we have used Mel-frequency cepstral coefficients
(MFCC) as features to represent the speaker-specific characteristics.
The speech signal is preemphasized, and is divided into frames of
20 ms duration with an overlap of 10 ms. Each frame is multi-
plied by a hamming window, and a 19-dimensional MFCC vector
is extracted using 26 Mel-scaled triangular filters in the telephone
bandwidth ranging from 300 Hz to 3300 Hz. Delta-cepstral coef-
ficients computed over a span of ±2 frames are appended to the
MFCCs producing a 38-dimensional feature vector. An energy
based speech detector is applied to discard feature vectors from low-
energy frames. Cepstral mean subtraction is performed to mitigate
the channel effects.

3.3. Speaker recognition using OMP

In NIST-2003 speaker recognition evaluation, each test utterance
has 11 claimants. The 38-dimensional MFCC vectors from all the
11 claimants are augmented to form a dictionary A, as in (1) with
K = 11. Each MFCC vector yl, l = 1, 2, . . . , L, from test utter-
ance is represented as a linear weighted sum of MFCC vectors in
the dictionary A as in (2), and the associated weight vector x̂l is
obtained using OMP algorithm described in Section 2. The OMP al-
gorithm is iterated till the residual error r(yl) goes below 0.1||yl||2.
The weight vector thus obtained is used to compute the confidence
score (per frame) for each of the 11 claimants as in (6). The mean
confidence score of all the MFCC vectors extracted from the test ut-
terance is used for verifying the speaker’s claim. The performance
of the proposed speaker recognition system is given as the detection
error tradeoff (DET) curve [15] in Fig. 1 (dashed curve). From the
DET curve, the EER is found to be 10.84%. In this evaluation, we
have not performed test utterance normalization on the confidence
scores. The performance could be improved by implementing test
utterance normalization using background data [16].
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Fig. 1. DET curves for the proposed speaker recognition system,
GMM-UBM system and combined system.

3.4. Speaker recognition using GMM-UBM

The performance proposed template-matching based method is com-
pared with the state-of-the art probabilistic modeling method, i.e.,
GMM-based speaker recognition system. In this approach, speaker-
specific GMM is obtained by adapting a UBM with 2048 mixtures.
The UBM is trained using the male speaker trails of NIST-2002 de-
velopment data. The parameters of the UBM are estimated using the
maximum likelihood criterion, performing 20 iterations per mixture
split. Speaker specific GMMs are obtained by adapting the UBM
using classical maximum a-posteriori adaptation (MAP) with one it-
eration, and a relevance factor of 16 [6].

In the recognition mode, the MAP-adapted speaker model and
the UBM model are coupled, and recognizer is commonly referred to
as GMM-UBM. The confidence score is computed by subtracting the
average log-likelihood of the test utterance with respect to the UBM
from its average log-likelihood with respect to the speaker model.
This subtraction helps in test utterance normalization, and makes the
confidence scores across different test utterances comparable. The
performance of the GMM-UBM system on NIST-2003 database is
shown in Fig. 1(dotted curve). The EER for GMM-UBM system is
found to be 9.67%, and is marginally better than the proposed sys-
tem. Note that proposed system and GMM-UBM system are based
on two different pattern matching paradigms, template-matching and
probabilistic modeling, respectively. Hence, both these systems may
carry complimentary information, and their combination may per-
form better.

3.5. Combination of speaker verification systems

The confidence scores Comp and Cgmm obtained using OMP and
GMM, respectively, are combined using the linear weighted sum

C = αComp + (1− α)Cgmm.

The performance of the combined system is plotted as a DET curve
in Fig. 1 (solid curve), for α = 0.5. The EER of the combined sys-



tem is found to be 8.15%, which is better than either of the individual
systems. This shows that the proposed template-matching approach
is complimentary to the existing probabilistic-modeling approach.

4. SUMMARY AND CONCLUSION

In this paper, we have proposed a template-matching approach for
text-independent speaker recognition. In text-independent speaker
recognition, we can not directly compare the templates of training
and testing utterances due to the lack of temporal alignment be-
tween them. In the proposed method, we have used sparse repre-
sentations to identify a set of training templates, whose linear com-
bination collectively represent a given testing template. The de-
gree of contribution of training templates from different speakers
in representing a given testing template can be used as a confidence
measure for speaker recognition. The performance of the proposed
template-matching system is comparable with the existing GMM-
UBM method which is based on probabilistic modeling. However,
the combined system performed better than either of the individual
systems. This might be because these two systems are based on dif-
ferent pattern matching paradigms, and hence carry complementary
information.

The proposed method does not involve any kind of probabilis-
tic modeling, and hence does not involve estimation of parameters
from the data. This method is based on providing a sparse repre-
sentation for testing template in terms of training templates. This
involves solving underdetermined system of linear equations for a
sparse solution, or minimizing l0 norm of the solution. We have
used OMP algorithm for obtaining the sparse solution. It is observed
that the performance of the OMP algorithm depends on the stop-
ping criterion, i.e., the error threshold θ. We need to explore ways
to adaptively set the error threshold to control the iterations of OMP
algorithm. Though the performance of the OMP algorithm is satis-
factory, it does not guarantee the most optimum solution. We need
to explore methods like basis pursuit and lasso which are based on
l1 minimization for speaker recognition. Finally, the performance of
the proposed method could be improved by implementing test utter-
ance normalization. This can be done by augmenting the dictionary
with known background data, and subtracting the background score
from the confidence score of each speaker.
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